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Queueing  Network Model of Interactive 
Computing  Systems 

PETER PIN-SHAN CHEN 

Abstruct-A closed queueing network  model  with state dependent 
routingprobabilities is developed  for  the atudy of interactive  computing 
systems  which use swapping as a  memory  management  strategy. An 
algorithm to obtain an approximate solution of the  mathematical  model 
is proposed. Based on measurements of a  dualprocessor PDP-10 sye 
tem,  the  model is found to be better in predicting  ffie  system per- 
formance  than  the classical model  without  state  dependent routing 
probabilities. 

I.  INTRODUCTION 
HERE HAS  BEEN considerable interest in developing 
models for interactive computing systems. One of the 
earliest analyses was done by Scherr [ 11 for  the Com- 

patible  Time-sharing  System (CTSS) at M.I.T., Cambridge, 
Mass. Kleinrock, Chang, Coffman, Muntz, Adiri, Avi-itzhak, 
and other researchers have also used queue-theoretic models to 
study CPU scheduling  algorithms [2] -[6]. Most of these 
models  are  concerned  with one system component-the CPU; 
thus  the interrelationships  between the CPU and other system 
components, such as disks, have been ignored. 

To  study an interactive computing system as a whole, a 
“total system model” is needed. Using Gordon and Newell’s 
method [ 71 , Moore [ 81 constructed a  queueing network  model 
for  the Michigan Time-sharing  system at  the University of 
Michigan, Ann  Arbor. His model consists of peripheral devices 
as well  as the CPU’s, but  the effect of memory size on system 
behavior is not considered. Queueing networks have also been 
utilized by Buzen [9] and Rice [ 101 to  study  the behavior of 
multiprogramming  systems. 

Using a different  approach,  Sekino [ 1 11 develops a  model 
for MULTICS at M.I.T.. Essentially, his model is a set of 
hierarchically organized submodels such as the program be- 
havior model, the secondary memory  model,  etc. His model 
includes many important system  parameters but is not suitable 
in  estimating the utilization factor and queue length of indi- 
vidual system resources. 

Both Sekino’s work and a  major part of Moore’s work are 
oriented toward  interactive computing systems with virtual 
memory. Since  a large proportion of the existing  systems  still 
use swapping as the memory  management  strategy [ 121,  it is 
the purpose of this  paper to develop  a  model for this type  of 
system. 

The classical approach to  the modeling of program  swapping 
behavior is to assume that each program is always swapped  in 
at  the  start of the  interaction, and always swapped out at the 
end of the  interaction. Moore [ 81 uses this approach  to  model 
the GE435 time-sharing system. In reality, the program swap- 
ping behavior is more complex  and  should  depend on  the main 
memory size, the  number of jobs  competing  for  memory, and 
the  job sizes. 
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This paper proposes  a new approach:  the program  swapping 
behavior is represented  by state  dependent  routing probabilities 
in  a closed queueing network.  The probability that a  program 
needs to be swapped in  (or  out) is expressed as a function of 
the system state and several important system  parameters such 
as main memory size. Since the  exact  solution  for this type of 
queueing network model is not available, we propose an 
algorithm to obtain  an  approximate  solution and discuss its 
convergence. The  model is compared with the classical model 
using measurement data  obtained from  a  dual-processor PDP- 
10 system. 

11. THE MODEL 
A  model of an interactive computing system which consists 

of one CPU, one disk, one swapping drum,  and a set of 
terminals is shown in Fig. 1. There are queues ahead of the 
CPU, the disk, and  the swapping drum. There is no  queue in 
front of the terminals  since  each  terminal is dedicated to a 
user (i.e., a job).  The mean service times of the CPU, the disk, 
and the swapping drum are 1/pl ,   l /pz ,   l /p3,  respectively. The 
average “think  time” of the users is denoted by 1/p4. All 
service times are  considered to be exponentially  distributed. 
The  routing probability Pij is the probability that a job will 
request the service of the  jth facility after  the service of the  ith 
facility is completed.  The  number of jobs in the system N is 
assumed to be fixed  during the  time period we are  concerned 
with. Thus we have a closed queueing  network system. 

Queueing networks are  good representations of interactive 
systems, since each job usually goes through several service 
facilities  in order to satisfy the user’s request. The following 
description will make  this  point clear. Consider  a  user  who 
sits  in front of a  terminal and  types  in a  request. If his job 
(program) is not  in main memory  (this event  has probability 
of P43), the  job will need to be  swapped  in  before it is put in 
the CPU queue. When a job has  been processed by the CPU 
for a while (with  an average l/pl time  units), it has  four 
possible destinations. If the  stoppage of processing is due  to 
the  fact  that  the allocated quantum is expired (probability 
PI1),  it will be put back in  the CPU queue; if the  job needs 
infarmation  on a disk f i e  (probability P r z ) ,  it will be put in 
the disk queue; if the main memory size is not sufficient 
(probability P13), .it  will- be  swapped out; and  finally, if all 
service requirements of the user’s request have been  satisfied, 
the answer to the user’s request will appear on  the terminal. 
After  “thinking”  for an average l/p4 time  units,  the user will 
type  in  another request  and begin another  “interaction.” 

A .  Input Parameters 
The  input parameters to  the model  are: 

1)  number of jobs  in  the system ( N )  
2) main memory size (user  area) (M) 
3) average job size ( J )  
4) average CPU service time ( 1 / p  1 ) 
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Fig. 1 .  A closed  queueing  network  model for interactive  systems. 

5 )  average disk 1/0 time ( l / pz )  
6 )  average job swapping time ( l/p3) 
7 )  average user think  time ( l/p4) 
8) average CPU time  needed per  interaction ( T c p u )  
9 )  average number of disk 1 / 0  requests  per  interaction 

(NDIO). 

The values of these  parameters are assumed to be available 
by  measurements. 

B. Derivation of P14  and P12 
PI4 and Plz are derived from T c p u  and NDIO as follows. As- 

suming that Pi4 is  known,  the average number of CPU requests 
per interaction is 

OD 

NCPU = kP14(1 - P14)k-1 = 1/P14. (1) 
k = l  

The average CPU time needed per  interaction is 

TCPU =( l /p i )  (1/pi4). (2) 

Therefore, we have 

p14 = 1/@1 TCPU). (3) 

Assuming that P1z is known,  the  probability  that a job makes 
exactly k disk I/O  requests is 

ating systems may have different rules for handling swapping. 
Therefore,  the expressions for P43 and P13 may be different 
for  different  operating systems. In this paper, we derive the 
expressions for P43 and P13 under a set of assumptions which 
are reasonable in several operating systems  including the 
TOPS10  operating system for PDP-10. 

The assumptions we made  for deriving P43 are as follows. 
1) Each job in the main memory is allocated the same 

amount of memory. Therefore,  the maximum number of jobs 
that can be allocated  in the main memory simultaneously is a 
constant and denoted by A .  

2) Among all jobs  in  the main memory,  the  jobs in the 
“think”  mode have the highest priority to be swapped out if 
memory  space is needed for  the  jobs  to be swapped  in. 

Assumption 1) is justified  in systems  in which the main 
memory is partitioned  into a  fixed number of parts. If the 
memory  allocated to  jobs is a random variable, we let 

A=IMIJI  

where J is the average job size, and the resulting  expression 
of P43 and Pi3 can  be used as an approximation. 

Assumption 2) is actually the  memory management  strategy 
used in many existing  systems,  since the  jobs  in  the  “think 
mode” are very unlikely to need CPU service in the  immediate 
future  (note  that  the average think  time is in  the  order of 
seconds). 

The  routing  probability P43 is derived by  analyzing the  status 
of jobs in the  think  mode.  Let ni( i  = 1, 2 , 3 , 4 )  denote  the 
number of jobs  in  the  ith facility. If N ,  the  total  number of 
jobs  in  the  system, is not greater than A ,  there is no swapping 
activity (all jobs can reside in the main memory all the time). 
If N is greater than A ,  which is the  common case, the  number 
of jobs which cannot  stay  in  the main memory is N - A .  Under 
assumption 2), all jobs in the  think  mode will not be in the 
main memory if n4 < N - A .  Or, N - A jobs  out of n4 jobs in 
the  think  mode are not  in  the main memory if n4 > N  - A .  
Therefore,  the probability that a job needs to be swapped  in 
at  the beginning of the  interaction, P43, is equal to  the proba- 
bility that a job in the  think  mode is not in the main memory. 
We use the  approximation 

((N- A)/n4, if n4 > N  - A 

and N > A  

if N < A  

= (p14/(p1Z +p14)) (pl2 /(p12 + P14)lk. (4) at the beginning of the interaction is and  the probability that a job  does  not need to be  swapped  in 

The average number of disk 1 /0  requests  per interaction is P41 = 1 - P43. (9 )  

NDIO = 5 k(P14/(P12 +P14)) (p12/(p12 +P14)lk =p12/p14. 
k=O 

( 5 )  

Therefore, we have 

p12 = NDIO * p14. ( 6 )  

C. Model of Program  Swapping  Behavior 
The program  swapping  behavior is represented  by state 

dependent  routing probabilities P43 and P13. Different  oper- 

To derive P13, two more  assumptions  are  made: 
3) P13 is linearly proportional to n l  + n2 + n3 - A if n l  + 

nz + n 3  2 A .  Otherwise, it is zero. 
4) In the worst case, the maximum average number of times 

that a job will be  swapped out  before  the end of the interac- 
tion is limited to one. 

In  assumption 3), n l  + n2 + n3 - A can be interpreted as the 
number of jobs which need  space  in the main memory  but can 
not have it. When n l  + n2 + n3 > A ,  some jobs have to be 
swapped out before the  end of the  interactions  (note  that all 
jobs  in  the  think  mode are  already  swapped out  under assump- 
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tion 2). When n l  + nz + n 3  < A ,  Pi3 is zero since no  jobs 
need to be swapped out  except  those  in  the  think mode. 

Assumption 4) represents the  effect of some  schemes used in 
the  operating systems to prevent  serious swapping. One such 
scheme is to lock the  jobs which have been  swapped  once  in 
the main memory until  they  enter  the  think mode. 

From assumption  3), Pi3 achieves its maximum when nl + 
nz + n3 achieves the maximum value N .  Similar to (6 ) ,  the 
maximum value of P13, which is given in  assumption 4),  is 
equal to P14. Following  assumption 3), Pi3 varies linearly 
from 0 to P14 as n l  + n 2  + n3 varies from A to N .  

Note also that  the sum of P l l ,  P l z ,  P13,  and P14 is one,  and 
Plz  and P14 are determined by (3) and (6 ) .  Thus  the value of 
P13 is bounded by 1 - P l z  - P14. Therefore, we have 

{ 
min 11 - P I Z  - P 1 4 , P ~ ( ( n 1  + n z  + n 3  - A M N - A ) ) l ,  

p13 = if n l  + n z  + n 3 > A  and N > A  

0, otherwise (10) 

and 

PI1 = 1 - P13. (11) 

111. APPROXIMATE SOLUTION  OF THE MODEL 
From (8) and (1 0), we can see that P43 and Pi3 depend  on 

n4 (noting  that n4 = N - n l  - nz - n3) .  That is, we have a 
queueing network in  which some of the  routing probabilities 
depend  on  the  state of the system (in  this case, the  number 
of jobs  in a  particular service facility). 

A .  Algorithm 
Since the  solution  technique  for queueing network models 

with state  dependent  routing probabilities is not available, we 
propose the following algorithm to obtain  the  approximate 
solution. 

Step 1. 

Step 2. 
Step 3. 

Step  4. 

First we assume an initial value for F4, the average 
number of jobs  in  the  think mode. 
U s e 5   t o  calculate P43 and P13 by (8) and  (10). 
Treat P43 and P i 3  as fixed values and solve the  model 
using Buzen’s method [ 131. 
If the new value of G, which is one of the  outputs 
of the model, is very close to its old  value, the 
algorithm  stops.  Otherwise, Steps 2, 3, and  4  are 
repeated. 

We shall examine the  problem of convergence for  the algo- 
rithm. It can  be  shown that  the  output value of2,  (produced 
in  Step  4) increases as the  input value of 2, increases. Note 
that  the  output value of is between 0 and N .  Since  a 
bounded  monotonically increasing (or decreasing) sequence 
will converge, our algorithm will converge. From  our  com- 
putational experience, the algorithm converges to  the same 
point,  independent of its  starting values. 

B. Output of the Model 
At  the time the algorithm stops,  the utilization factor Ui and 

average queue length Q i ( i  = 1, 2, 3,4)  of the  ith service facility 
can  be  calculated  by [ 131. The average time  that a request 
spends in the first three facilities (i.e., the waiting time plus the 
service time) can be derived by Little’s formula [ 141 : 

R i  = Qi/& Ut), i = 1, 2, 3. (12) 
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Fig, 2. Model for multiprocessor and rnultidevice systems. 

Since each  job  has a dedicated  terminal, we have 

R4 = 1/c(4. (13) 
The average system  response time, which is the average time 

the system  takes to serve a user’s request, can be derived by 
considering the average number of times a job passes each 
facility during  one  interaction.  The average number of “swap- 
ping in”  operations  at  the beginning of the  interaction is 

NBEG = P43. (14) 

Following the same argument  in  the derivation for (5), the 
average number of swapping operations per interaction  (not 
including the initial swapping) is 

N W A P  = pi3 /p14. (15) 

From ( l ) ,  ( 9 ,  (14), and  (1 5), the average system  response time 
is 

R = R 3 N B E G + R 1 N C P U + R 2 N D I O + R 3 N S W A P  

=R3P43 +Rl /P14  + R z P i z / P 1 4  +R3P13/P14-  (16) 

Therefore,  the  model can be used to predict the average sys- 
tem response time as well as the  utilization  factor  and  the 
queue  length of an individual  system  resource. 

Iv. MULTICPU AND MULTIDEVICE CASE 

In large interactive  systems, there  are usually many disks 
and sometimes  more  than  one swapping drum and CPU. The 
approach we take  to  model  this case is to treat each device or 
CPU as an  independent server with a  separate  request queue. 
Fig. 2 illustrates  a model using this  approach.  The  solution to 
the  extended model is a simple extension of the original model. 

V. COMPARISON WITH THE CLASSICAL MODEL 
The  model developed in this paper is compared with  the 

classical model (P43 = 1 and P13 = 0) and  with several sets of 
measured data  from a real system. 

The  data were collected at  the  end of August 1974  from  an 
in-house dual-processor PDP-10 system at Digital Equipment 
Corporation, Maynard, Massachusetts. Since this system is 
dedicated to internal uses only,  the system performance may 
not be the same as it is in systems  offered to  the public. 

The model we developed for  the system is similar to  the  one 
shown  in Fig. 2. In  the  actual system, one CPU is used pri- 
marily for processing short  jobs and another CPU for long jobs. 
For simplicity, we treat  them equally so that a request  for CPU 
service has the  equal  probability to be served by either CPU. 
Although the system has  two physical swapping drums, we 
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TABLE I 
COMPARISON OF THE STATE DEPENDENT MODEL WITH THE CLASSICAL MODEL 

model them as one logical drum since that is the way the 
operating  system treats  it.  The  number of disks in  the system 
is six. The disk 1 / 0  requests  are also assumed to be distributed 
with  equal  probabilities over all disks. The disk service time 
is 80 ms, and  the swapping time  (the  time  to swap a job  out 
and another  job  in) is 108 ms. 

Table  I contains five sets of measured data.  Note  that  there 
is a pirameter called overhead  in job switching,  which is the 
overhead associated with each CPU service. Therefore,  in 
using (3) to calculate P14, the value of l/pl should  be  replaced 
by the CPU service time minus the overhead  in job switching. 

These five sets of data are used as input  to  both  our model 
and the classical model, and  the response  times  predicted by 
two models  are compared against the measured data.  In  four 
out of five cases, the values predicted  by our model are closer 
to  the measured data.  In cases 1  and 5 ,  the swapping ac- 
tivities are lower  in our model (P43 < 1 and P13 = 0) than 
that in the classical model (P43 = 1 and PI3 = 0). In cases 3 
and 4, our model  predicts  more  swapping  activities (P43 = 1 
and P13 > 0). Only in case 2 does  the classical model  predict 
better  than  our  model,  but  the  difference  between  the  two 
predicted values is quite small. 
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