
Page 1 of 19

Safe Structural Conformance for Java

Konstantin Läufer* Gerald Baumgartner** Vincent F. Russo***

* Department of Mathematical and Computer Sciences
Loyola University Chicago

6525 N. Sheridan Road
Chicago, IL 60626, USA

laufer@cs.luc.edu

** Department of Computer and Information Science
The Ohio State University

395 Dreese Lab., 2015 Neil Ave.
Columbus, OH 43210–1277, USA

gb@cis.ohio-state.edu

*** NobleNet, Inc.
337 Turnpike Road

Southboro, MA 01772–1709, USA
vince@noblenet.com

June 17, 1998

Technical Report OSU-CISRC-6/98-TR20
Computer and Information Science Department, Ohio State University

Abstract

In Java, an interface specifies public abstract methods and associated public constants. Con-
formance of a class to an interface is by name. We propose to allow structural conformance to
interfaces: Any class or interface that declares or implements each method in a target interface
conforms structurally to the interface, and any expression of the source class or interface type
can be used where a value of the target interface type is expected. We argue that structural con-
formance results in a major gain in flexibility in situations that require retroactive abstraction
over types.

Structural conformance requires no additional syntax and only small modifications to the
Java compiler and optionally, for performance reasons, the virtual machine, resulting in a
minor performance penalty. Our extension is type-safe: A cast-free program that compiles
without errors will not have any type errors at run time. Our extension is conservative: Existing
Java programs still compile and run in the same manner as under the original language defini-
tion. Finally, structural conformance works well with recent extensions such as Java remote
method invocation.

We have implemented our extension of Java with structural interface conformance by mod-
ifying the Java Developers Kit 1.1.5 source release for Solaris and Windows 95/NT. We have
also created a test suite for the extension.

Konstantin Läufer* Gerald Baumgartner** Vincent F. Russo*** Safe Structural Conformance for Java

Page 2 of 19

1 Introduction

Java (Gosling et al., 1996) differs from many statically typed object-oriented languages by offering
two separate constructs, the class and the interface, for user-defined abstract types. An interface
contains only public abstract methods and public final fields (constants), but no method imple-
mentations. This separation allows independent class and interface hierarchies and solves some
of the shortcomings of object-oriented languages that use classes for defining both interfaces and
implementations.

We argue that Java is still limited by the requirement that classes must be declared to conform
to their interfaces. A class declared to conform to an interface must provide implementations for
each method in the interface or leave the method abstract. We identify interfaces in Java with sig-
natures, an extension of C++ (Baumgartner and Russo, 1995), and propose allowing a class to con-
form structurally to an interface without explicitly associating the class with the interface.

The remainder of this paper is structured as follows. First, we describe the relevant aspects of
the Java type system. Next, we present our extension of Java with structural conformance. Then
we give examples in the extended language. Thereafter, we describe the implementation of our
extension based on the Java Developers Kit (Sun Microsystems, 1997b). Finally, we discuss the
integration of structural conformance with Java’s Remote Method Invocation (Sun
Microsystems, 1997c) and explore possible future extensions to the language.

2 Classes, Interfaces, and Conformance in Java

In many statically typed object-oriented languages, most notably C++ (Ellis and Stroustrup, 1990),
a single construct, namely the class, is used to define and implement new types and to provide
type abstraction, code reuse, and subtyping (conformance). This overuse of a single construct lim-
its the expressiveness of the type system (Baumgartner and Russo, 1995).

By contrast, Java (Gosling et al., 1996) offers two separate constructs, the class and the interface.
Every class has exactly one immediate superclass and zero or more immediate interfaces. The root
class Object does not have an immediate superclass (represented by a null superclass); the
same is the case for interfaces. Classes that provide only a partial implementation are called
abstract; interfaces are a special case of fully abstract classes without code or data. Java thus pro-
vides single inheritance from classes for the purpose of code reuse, along with a limited form of
multiple inheritance from interfaces for the purpose of specification.

Most object-oriented languages provide some form of conformance, allowing an instance of a
class to be used wherever an instance of the class’s superclass is expected. In Java, this mechanism
is called (implicit) reference conversion and allows conformance not only to superclasses, but also to
(immediate or indirect) interfaces. (An indirect interface is an interface of a superclass or an inter-
face from which an interface of the class was extended.) Since the relationships that entail con-
formance are established by declaration, this kind of conformance is called conformance by name.

Separate type and class hierarchies are possible

The separation of the class and interface constructs overcomes some of the problems caused by
having a single construct (cf. Baumgartner and Russo, 1995). In particular, it is possible in Java to
build abstract type hierarchies separate from the corresponding implementation hierarchies. This
capability is important because the two hierarchies often evolve in opposite directions.

As an example, consider two abstract types Queue and Dequeue for FIFO queues and double-
ended queues, respectively (a similar example was presented by Snyder (1986)). The abstract type
Dequeue provides the same operations as Queue as well as two additional operations for insert-
ing at the head and for removing from the tail of the queue. Therefore, Dequeue conforms to

Konstantin Läufer* Gerald Baumgartner** Vincent F. Russo*** Safe Structural Conformance for Java

Page 3 of 19

Queue. On the other hand, a Dequeue is easily implemented in terms of the array class
java.util.Vector (Sun Microsystems, 1997a), or as a doubly linked list. A Queue is trivially
implemented by extending Dequeue and ignoring the superfluous operations.

interface Queue {
Object dequeueHead();
void enqueueTail(Object x);
boolean isEmpty();

}

interface Dequeue extends Queue {
void enqueueHead(Object x);
Object dequeueTail();

}

class DequeueImpl extends java.util.Vector implements Dequeue {
public final void enqueueHead(Object x) { insertElementAt(x, 0); }
public final Object dequeueHead() {

Object x = firstElement();
removeElementAt(0);
return x;

}
public final void enqueueTail(Object x) { addElement(x); }
public final Object dequeueTail() {

Object x = lastElement();
removeElementAt(size() - 1);
return x;

}
}

class QueueImpl extends DequeueImpl implements Queue {
// We do not want enqueueHead() and dequeueTail() here,
// but there is no way to avoid inheriting them.

}

public class Hierarchies {
public static void main(String[] arg) {

Queue q1 = new QueueImpl();
Dequeue q2 = new DequeueImpl();

q1.enqueueTail("Hello");
q1.enqueueTail("World");
System.out.println(q1.dequeueHead());

q2.enqueueHead("World");
q2.enqueueHead("Hello");
System.out.println(q2.dequeueTail());

}
}

The clause implements Queue in the declaration of the class QueueImpl is redundant, since
its superclass implements an interface that extends Queue. Nevertheless, we retain this clause to
document the intended conformance relationship. Furthermore, because of transitivity, there are
unintended implicit relationships DequeueImpl implements Queue, which is acceptable, and
QueueImpl implements Dequeue, which is undesirable. These relationships are shown in
Figure 1. This example illustrates that a true separation of the abstract type and implementation
hierarchies is not possible in Java since the language does not allow code reuse without defining
a conformance relationship. (Section 6 discusses how structural conformance together with a

Konstantin Läufer* Gerald Baumgartner** Vincent F. Russo*** Safe Structural Conformance for Java

Page 4 of 19

renaming mechanism could be used without introducing unwanted conformance relationships.)

Retroactive type abstraction is hard

The integration of different existing class hierarchies may require abstracting over the types of
these class hierarchies. This usually involves designing a new, common abstract type hierarchy on
top of the existing implementation hierarchies. The problem is that one would have to modify the
sources of the existing hierarchies to declare their classes as implementations of the interfaces of
the new abstract hierarchy. Since class libraries are often available in compiled form only, the
scope of this approach is limited. Retroactive abstraction over existing code was discussed in the
context of a C++ extension (Baumgartner and Russo, 1994 and 1997) and later rediscovered in a
design pattern context (Cleeland et al., 1997).

As an example (Granston and Russo, 1991), consider two class libraries for X-Window widgets.
One hierarchy is rooted at OpenLookObject and the other at MotifObject. Suppose that all
widgets implement the operations display and move. Is it possible to construct a list containing
widgets from both class libraries at the same time? The answer is yes, but the solution would
involve either introducing a discriminated union for the widgets, or using multiple inheritance to
implement a new set of leaf classes in each hierarchy, or building a hierarchy of forwarding
classes. All three solutions are undesirable or problematic: The first one is inelegant and not exten-
sible, while the other two introduce many superfluous class names. Furthermore, Java does not
support multiple inheritance of classes anyway. It does not support templates either, which could
have facilitated the creation of forwarding classes.

In another, perhaps more realistic, scenario that calls for retroactive type abstraction, we want
to abstract over some types from an existing class hierarchy and provide an alternative implemen-
tation in the form of a new class hierarchy. If the existing class hierarchy was not designed to sup-
port this form of reuse or if the alternative implementation uses different data structures, then we
are in the same situation as above.

Within the same scenario, assume that the desired abstractions are similar but less specific
interfaces than the ones of the existing class hierarchy. We could then provide an alternative
implementation with respect to these existing interfaces. For operations that are part of these
interfaces, but not of our desired abstraction, we would provide dummy implementations that
raise a run-time exception. However, this approach defeats strong typing because those opera-
tions are specified in the interface but not really understood by the objects that are supposed to
conform to the interface.

For example, suppose we have an interface File with operations read and write but no
interface for read-only files. If we write a device driver for a CD-ROM that implements the File
interface, applications that use the File interface to write to a device cannot detect statically if the
device is actually a CD-ROM.

Figure 1: Explicit, implicit, and redundant conformance relationships

class QueueImplinterface Dequeue

class DequeueImplinterface Queue

implicit

implicit

redundant

explicit

Konstantin Läufer* Gerald Baumgartner** Vincent F. Russo*** Safe Structural Conformance for Java

Page 5 of 19

3 Structural Class-to-Interface Conformance

We propose to extend Java by allowing structural conformance to interfaces. Specifically, any class
or interface that declares (or implements) each method in a target interface conforms structurally to
the interface, and any expression of the source class or interface type can be used wherever a value
of the target interface type is expected. The source class or interface is no longer required to
declare conformance to the target interface by name. Structural conformance also applies to the
instanceof operator and to casts from the target interface down to a (structurally conforming)
source class or interface.

Concretely, structural conformance applies in three kinds of situations. (We assume that the
class QueueImpl conforms structurally to the interface Queue.)

• Reference conversions from the source class or interface to the target interface:

Queue q = new QueueImpl();

• Casts from the target interface down to the source class or interface:

QueueImpl qi = (QueueImpl) q;

• Expressions involving the instanceof operator between an object of the target interface and
the source class or interface:

if (q instanceof QueueImpl) { /* ... */ }

This case also includes the related methods java.lang.Class.isAssignableFrom and
java.lang.Class.isInstance.

We propose to allow structural conformance to designated interface types as targets because
the purpose of interfaces is to specify behavior without giving an implementation. On the other
hand, we make no attempt to infer class-subclass relationships based on the public methods of a
class because the purpose of subclassing is explicit code reuse at the implementation level. Mech-
anisms for designating which interfaces allow structural conformance are discussed below in the
subsection on accidental conformance.

The proposed extension does not require any changes to the language syntax. Only minor
modifications to the Java compiler and, optionally, the virtual machine are required as described
below. Our extension is type-safe in the sense that any cast-free program that compiles without
type errors will not cause any type errors at run time. Our extension is conservative in the sense
that existing Java programs still compile and execute in the same manner as under the original
language definition.

Formal definition of conformance

In the following definition of conformance, I is an interface, and each of X and Y is either a class
or an interface. Every class other than java.lang.Object has one immediate superclass. Every
class or interface has zero or more immediate interfaces.

X conforms to Y if and only if

• X conforms by name to Y, or

• Y is an interface that allows structural conformance, and X conforms structurally to Y.

X conforms by name to Y if and only if

• X is identical to Y, or

• X’s immediate superclass, if it exists, conforms by name to Y, or

Konstantin Läufer* Gerald Baumgartner** Vincent F. Russo*** Safe Structural Conformance for Java

Page 6 of 19

• some immediate interface I of X conforms by name to Y.

X conforms structurally to I if and only if X conforms by name to I or all of the following three
conditions simultaneously hold:

• I is an interface that allows structural conformance, and

• X overrides each method specified in I, and

• X conforms to each immediate interface of I.

X overrides a method Y.f specified in Y if and only if there is a method f in X that

• is at least as accessible as Y.f,

• has the same type signature as Y.f, and

• throws only checked exceptions that are subclasses of, or the same class as, the checked
exceptions that Y.f throws.

This definition of overriding is equivalent to the one given in the Java language specification
(Gosling et al., 1996) and includes implementing the method as well as leaving it abstract. Fur-
thermore, since I must be an interface, all its methods are public, and those methods in X that
override methods in I must be public as well.

Type safety

For the purpose of this paper, we define type safety as follows:

Any program without casts that compiles correctly will not raise a NoSuchMethodError or any
other type-related error or exception.

The idea behind this definition is that the compiler is able to prove from the type information
available at compile-time that the run-time behavior of a program is safe. Hence we allow a refer-
ence conversion only when the source type provides at least the public methods of the target type.
To be on the safe side, the Java1 compiler verifies that a new class is a suitable implementation of
an interface or a subclass of an existing class at the point where the new class is defined. This is
the conformance-by-name approach.

However, this is not the only way to guarantee type-safe reference conversions. Instead of
requiring an implements declaration between classes and interfaces, it is equally safe but much
more flexible to examine each intended reference conversion individually. Since the compiler
knows both the source type and the target type in a reference conversion, it can check whether the
source type provides at least the public methods required by the expected interface type without
requiring a prior declaration. This is the structural conformance approach.

Controlling accidental conformance

The usual objection to structural conformance is that it creates the possibility of accidental (non-
semantic) conformance. Such conformance occurs when a class provides all the methods required
by an interface, but no semantic relationship between the two is intended. In the following exam-
ple, CardPlayer conforms structurally to Shape, although it makes no sense to treat a Card-
Player as a Shape.

1. Actually, Java is not statically type-safe with respect to the conversion of array types (Gosling
et al., 1996, Cook, 1995), but relies on a run-time type check. This choice was made to support polymorphic
functions on arrays via subtyping in the absence of generic classes (templates).

Konstantin Läufer* Gerald Baumgartner** Vincent F. Russo*** Safe Structural Conformance for Java

Page 7 of 19

interface Shape {
void draw(); // draw the shape on a drawing area

}

class CardPlayer {
public void draw() { /* draw a hand of cards */ }
// ...

}

Marker interfaces are empty interfaces that represent semantic properties. Certain marker inter-
faces have special meanings in Java; for example, java.lang.Cloneable is implemented by
classes that support the clone method, and java.rmi.Remote is extended by interfaces of
remote objects (Sun Microsystems, 1997c). Under structural conformance, every class or interface
would accidentally conform to an empty interface. Therefore, marker interfaces should generally
be excluded from structural conformance.

Clearly, any language with structural conformance needs a way to control accidental conform-
ance. The standard solution is to include properties (America and van der Linden, 1990, Jenks and
Sutor, 1992) in an interface to represent a semantic specification of the interface type. For example,
the Shape interface might include the property Graphical, and the Stack interface might
include the property LIFO. Any shape implementation conforms to the Shape interface only if it
also includes the property Graphical, just as any stack implementation conforms to the interface
Stack only if it also includes the property LIFO. This mechanism is a variant of conformance by
name, where the names are now property names instead of class and interface names. A program-
mer cannot be prevented from putting the LIFO property into a queue implementation, but, on
the other hand, a programmer could also write a queue implementation and say it “implements
Stack”.

In general, the design space for languages with controlled structural conformance can be orga-
nized as follows:

1. Structural conformance is the default, and there is an explicit way to require conformance by
name.

a. Interfaces as properties. Some interfaces play the role of properties and thus require con-
formance by name. There are three choices as to which interfaces are treated as properties:

(i) All empty interfaces.

(ii) Only interfaces immediately extending a special interface, e.g., Property.

(iii) Only interfaces declared with a new keyword, e.g., property.

b. Explicit properties. There are two choices:

(i) Dummy method declarations are used as properties.

(ii) Special syntax is provided for property declarations included in interfaces and classes.

2. Conformance by name is the default, and there is an explicit way to allow structural conform-
ance. This branch involves two orthogonal decisions:

a. Syntax. There are two choices for declaring interfaces to allow structural conformance:

(i) Only interfaces extending a special interface, e.g., Structural.

(ii) Only interfaces declared with a new keyword, e.g., structural.

b. Inheritance. There are two choices for interfaces extending an interface that already allows
structural conformance:

Konstantin Läufer* Gerald Baumgartner** Vincent F. Russo*** Safe Structural Conformance for Java

Page 8 of 19

(i) Such interfaces allow structural conformance as well.

(ii) Such interfaces do not implicitly allow structural conformance.

Our extension to the Java language follows choice 2.a.(i)/b.(i): Structural conformance is
optional and enabled only for interfaces that (immediately or indirectly) extend the special
marker interface java.lang.Structural; conformance by name is required for all other inter-
faces. The main benefit of this approach is that it results in a conservative extension to the language:
All programs that are correct according to standard Java are also correct within our extension; con-
versely, all programs that are incorrect according to standard Java are also incorrect within our
extension. Another benefit is that extension from the interface Structural, like extension from
other interfaces, is transitive. Furthermore, no special case is needed for predefined marker inter-
faces. A potential drawback in practice is that legacy interfaces that do not extend Structural
can never be used with structural conformance, but this is a small price to pay for keeping our
extension conservative.

The following example illustrates our extension. Shape extends Graphical, but Graphical
does not extend Structural. Hence any class or interface intended to conform structurally to
Shape must not only provide a draw method, but also conform by name to Graphical. Conse-
quently, Circle conforms structurally to Shape, but CardPlayer does not.

interface Graphical { /* an (empty) marker interface */ }

interface Shape extends Graphical, Structural {
void draw(); // draw the shape on a drawing area

}

class Circle implements Graphical {
public void draw() { /* ... */ }
// ...

}

class CardPlayer {
public void draw() { /* draw a hand of cards from a deck */ }
// ...

}

Shape s1 = new Circle(); // OK: Circle implements Graphical

Shape s2 = new CardPlayer(); // error: CardPlayer does not implement Graphical

4 Examples

In this section, we present examples illustrating the capabilities of structural conformance.

A simple example: queues revisited

Our first example resembles the queue/double-ended queue example from above, but uses struc-
tural conformance. The interfaces and classes are defined as above, but the classes no longer have
implements clauses.

interface Queue extends Structural {
Object dequeueHead();
void enqueueTail(Object x);
boolean isEmpty();

}

interface Dequeue extends Queue {
void enqueueHead(Object x);

Konstantin Läufer* Gerald Baumgartner** Vincent F. Russo*** Safe Structural Conformance for Java

Page 9 of 19

Object dequeueTail();
}

class DequeueImpl extends java.util.Vector {
// ...

}

class QueueImpl extends DequeueImpl {
}

Now instances of the implementation classes conform structurally to the corresponding inter-
faces:

Queue q3 = new QueueImpl();
Dequeue q4 = new DequeueImpl();
// ...

Alternate implementation of a full interface

A common scenario is that we already have an implementation of a class but would like to pro-
vide alternate implementations with the same interface as the original class. If we need the capa-
bility to switch implementations in the application, all implementation classes must conform to
the same interface.

Consider the example of a class for a random-access file on a local disk, which is provided in
the java.io package:

class RandomAccessFile implements DataOutput, DataInput {
public void close() throws IOException { /* ... */ }
public FileDescriptor getFD() throws IOException { /* ... */ }
public long getFilePointer() throws IOException { /* ... */ }
long length() throws IOException { /* ... */ }
void seek(long pos) throws IOException { /* ... */ }
// implementations of methods from the interfaces DataOutput and DataInput

}

We would like to add an alternate implementation for a remote random-access file, perhaps using
the Proxy pattern (Gamma et al., 1995). We proceed in two steps, as illustrated in Figure 2. First,
we distill the full interface from the existing class. The existing class conforms structurally to this
interface.

interface RandomAccess extends DataInput, DataOutput, Structural {
void close() throws IOException;
FileDescriptor getFD() throws IOException;
long getFilePointer() throws IOException;
long length() throws IOException;
void seek(long pos) throws IOException;

}

Next, we implement the new alternate class. We also state that the new class implements the dis-
tilled interface. Besides serving documentary purposes, this results in early conformance check-
ing at the time the class is defined instead of late checking when an instance of the class is assigned
to an interface variable.

class RemoteRandomAccessFile implements RandomAccess {
// same methods, but with different implementations suitable for remote use

}

Without structural conformance, we would have to write a forwarding class that implements the
interface RandomAccess by name and forwards requests to the class RandomAccessFile.

Konstantin Läufer* Gerald Baumgartner** Vincent F. Russo*** Safe Structural Conformance for Java

Page 10 of 19

Abstraction to a reduced interface

In another scenario, we want to deal uniformly with different existing implementations. This
requires retroactive abstraction over those implementations to a possibly reduced interface.

For example, consider an application that performs read-only random access to databases
located either on a disk drive or on a CD-ROM drive. Again, we access disk files using the class
java.io.RandomAccessFile, but using only the methods for reading from the file, not the
ones for writing to the file. We also provide a class for accessing information on CD-ROM drives.
Since CD-ROM drives are read-only devices, the corresponding class implements only the
java.io.DataInput interface and provides additional methods for random access:

class CDRomDrive implements DataInput {
long length() throws IOException { /* ... */ }
public void seek(long pos) throws IOException { /* ... */ }
// implementation of methods from interface DataInput

}

Besides the methods for reading data, the application uses the random-access method seek. We
therefore abstract retroactively over both classes, with a reduced interface as the result. This pro-
cess is illustrated in Figure 3.

interface ReadOnlyRandomAccess extends DataInput, Structural {
long length() throws IOException;
void seek(long pos) throws IOException;

}

Again, without structural conformance, we would have had to write a forwarding class that
implements the interface ReadOnlyRandomAccess by name and forwards requests to the class
RandomAccessFile.

Structural conformance is also useful in the context of persistent objects. Suppose that we have
some objects of class RandomAccessFile stored on a disk together with a representation of their
type. (Although the example applies to other persistent data structures equally well, files are an
obvious choice because they are commonly stored on disks.) We later realize that the original class

Figure 2: Alternate implementation of a full interface

Figure 3: Abstraction to a reduced interface

RandomAccessFile

RandomAccess

RemoteRandomAccessFile

1) distill interface 2) implement new class

RandomAccessFile

ReadOnlyRandomAccess

CDRomFile

2) reduce interface 1) implement new class

Konstantin Läufer* Gerald Baumgartner** Vincent F. Russo*** Safe Structural Conformance for Java

Page 11 of 19

hierarchy was not well-designed and add an interface ReadOnlyRandomAccess and a class
ReadOnlyRandomAccessFile as a superclass of RandomAccessFile. If conformance by
name is used, we are no longer able to read the old files after the system is upgraded to the new
class and interface hierarchies. By contrast, if the persistent data structure is type-checked struc-
turally (Connor et al., 1990, Morrison et al., 1996), evolving the system in this way does not cause
any problems.

5 Implementation

While the proposed extension requires no changes to the Java syntax at all, it does require subtle
changes to the Java compiler and optionally, for performance reasons, the virtual machine. This
section describes the changes we have made to the Java Developers Kit 1.1.5 source release (Sun
Microsystems, 1997b). In addition, we have developed a test suite for structural conformance
based on the test suite for signatures in the GNU C++ compiler (Baumgartner, 1995). Changes and
test suite are available from http://www.cs.luc.edu/~laufer/papers/Java/. In the remainder of
this section, JAVASRC refers to the installation directory of the source release.

Modifying the compiler front end

We have modified the javac compiler to allow structural conformance for interfaces extending
the new interface java.lang.Structural. The following files are affected:

$JAVASRC/src/share/java/java/lang/Structural.java

• This new file contains the empty marker interface java.lang.Structural.

$JAVASRC/src/share/sun/sun/tools/java/Constants.java

• An identifier for java.lang.Structural has been added.

$JAVASRC/src/share/sun/sun/tools/java/ClassDefinition.java

• The method ClassDefinition.implementedBy represents the conformance relation
between classes or interfaces. This method has been modified to fall back to structural con-
formance if the receiver is an interface that extends Structural. However, interfaces that
do not extend the interface Structural must still be implemented by name.

• The following methods have been added:

ClassDefinition.implementedByNameBy

This method checks for conformance by name and is identical to the original method
ClassDefinition.implementedBy.

ClassDefinition.implementedStructurallyBy

This method checks that each public method of the receiver is provided by the argument.
This requires first checking each public method specified in the receiver itself. Next, the
method checks recursively that each interface of the receiver is also implemented by the
argument.

$JAVASRC/src/share/sun/sun/tools/javac/SourceClass.java

• The method SourceClass.check now uses ClassDefinition.implemented-
ByNameBy to check for cyclical interface definitions. This is necessary because Class-
Definition.implementedBy would allow structural conformance.

Konstantin Läufer* Gerald Baumgartner** Vincent F. Russo*** Safe Structural Conformance for Java

Page 12 of 19

Modifying the virtual machine

In principle, no changes to the Java virtual machine (Lindholm and Yellin, 1996) should be neces-
sary. However, conformance is checked at run time for array elements; consequently, the changes
to the method ClassDefinition.implementedBy must be duplicated in the virtual machine.
Furthermore, as of JDK 1.1, conformance is checked at run time when invoking a method through
an interface; this requires additional changes to the virtual machine. The following files are
affected:

$JAVASRC/src/share/java/runtime/interpreter.c

• The function ImplementsInterface has been changed to fall back to structural con-
formance if the interface allows it. This function gets called indirectly by the function
is_instance_of.

• The following functions have been added in analogy to the new methods in the class
ClassDefinition:

ImplementsInterfaceByName

ImplementsInterfaceStructurally

• The function HasPublicMethod has been added to check whether a class has a method
with a given type signature.

$JAVASRC/src/share/java/runtime/executeJava.c

• In the function ExecuteJava, the branch opc_invokeinterface_quick, which han-
dles the invocation of a method through an interface, checks conformance by name
directly without invoking ImplementsInterface. This branch has been changed to fall
back to structural conformance, if the interface allows it, by invoking ImplementsIn-
terfaceStructurally.

Generating adapter classes

It is possible to add structural conformance to the Java compiler in such a way that the virtual
machine need not be changed at all. Concretely, the modified compiler would generate an adapter
class for each structural conformance relationship between a source class or interface and a target
interface. The adapter class implements the target interface and contains an instance of the source
class or interface. The methods of the target interface are forwarded to the corresponding methods
of the original instance. The adapter class provides a suitable constructor and an accessor method
to the instance.

For example, the following adapter class could be generated for class QueueImpl and inter-
face Queue from the first example in Section 4:

final class QueueImplAsQueue implements Queue {
final QueueImpl orig;
public QueueImplAsQueue(QueueImpl obj) { orig = obj; }
public QueueImpl getOrig() { return orig; }
public Object dequeueHead() { return orig.dequeueHead(); }
public void enqueueTail(Object x) { orig.enqueueTail(x); }
public boolean isEmpty() { return orig.isEmpty(); }

}

For assigning an object of class QueueImpl (the source object) to an interface variable of inter-
face type Queue (the target interface), the object needs to be wrapped by an instance of the adapter
class. This wrapping of objects can be implemented in the compiler as a transformation on syntax
trees as follows:

Konstantin Läufer* Gerald Baumgartner** Vincent F. Russo*** Safe Structural Conformance for Java

Page 13 of 19

• Each reference conversion from the source expression to the target interface is replaced by
wrapping an instance of the adapter class around the source expression. For example,

Queue q = new QueueImpl();

is translated to

Queue q = new QueueImplAsQueue(new QueueImpl());

• Each cast from the target interface back down to the source class is replaced by a cast to the
adapter class followed by an invocation of the accessor method. For example,

QueueImpl qi = (QueueImpl) q;

is translated to

QueueImpl qi = ((QueueImplAsQueue) q).getOrig();

• Each instanceof expression between an object of the target interface and the source class is
replaced by an instanceof expression between the object and the adapter class. For exam-
ple,

if (q instanceof QueueImpl) { /* ... */ }

is translated to

if (q instanceof QueueImplAsQueue) { /* ... */ }

Furthermore, the interface java.lang.Structural is meaningful only at compile time for
deciding when adapter classes are needed. Therefore, any references to this interface are trans-
formed by the compiler in the following way:

• Each occurrence of java.lang.Structural as the type of a variable or parameter is
replaced by the semantically equivalent java.lang.Object.

• Each occurrence of java.lang.Structural in a list of interfaces implemented by a class or
extended by another interface is removed from the list.

The major advantage of this approach is that the code generated by the modified javac com-
piler runs on any existing Java virtual machine, such as the ones embedded in Java-capable
browsers. We are currently incorporating structural conformance based on these adapter classes
into the JDK 1.1.5 source release.

A disadvantage of this approach is the large number of adapter classes needed: potentially one
per interface-class pair and one per interface-interface pair. If code space is at a premium, the com-
piler could generate a single adapter class per interface by using Java's reflection API for imple-
menting the forwarding methods:

final class QueueAdapter implements Queue {
 final Object orig;
 // ...
 public Object dequeueHead() {
 try {
 return

orig.getClass()
 .getMethod("dequeueHead", new Class[] { })
 .invoke(orig, new Object[] { });

} catch (InvocationTargetException e1) {
 throw (RuntimeException) e1.getTargetException();

} catch (Exception e) {
 e.printStackTrace();

}
return null;

Konstantin Läufer* Gerald Baumgartner** Vincent F. Russo*** Safe Structural Conformance for Java

Page 14 of 19

 }
 // ...
}

Such a solution would optimize space at a higher cost of method invocation.
A cast from the target interface back down to the source class and an instanceof expression

would now have to be implemented as

QueueImpl qi = (QueueImpl) ((QueueAdapter q).getOrig();

and

if (((QueueAdapter) q).getOrig() instanceof QueueImpl) ...

respectively.

Efficiency of the modified virtual machine

At compile time, the method ClassDefinition.implementedStructurallyBy is invoked
for each occurrence of structural conformance (reference conversion, instanceof, or downcast).
The resulting overhead per occurrence consists of checking that each method of the target inter-
face is provided by the source class or interface. This overhead is proportional to the total number
of methods and ancestors of the target interface and to the number of methods of the source class
or interface. To avoid repeating the same structural conformance check, pairs of matching target
interfaces and source classes or interfaces could be stored in a cache.

At run time, the virtual machine repeats the structural conformance checks that were already
done by the compiler. Again, caching can be used to avoid repeated structural conformance
checks. The first structural conformance check for each interface-class or interface-interface pair
is, therefore, expensive. Additional structural conformance checks reduce to a table lookup in the
cache, which is the same cost as testing name conformance.

As an additional optimization, the compiler could record all the structural conformance checks
it performed as annotations in the byte code file. The corresponding check in the virtual machine
could then be performed by the class loader instead of at run time. This would result in better tim-
ing behavior for real-time application.

Efficiency when using adapter classes

At compile time, there is overhead for each target interface and source class or interface between
which structural conformance takes place in the program. This overhead consists of checking for
structural conformance and generating a suitable adapter class. It is proportional to the number
of methods in the classes and interfaces.

At run time, overhead is limited to the following:

• The adapter class for each target interface and source class or interface is loaded once, result-
ing in a small amortized overhead.

• For each reference conversion, a new instance of the corresponding adapter class is created on
the heap.

• Each method invocation via the target interface is forwarded through an instance of the
adapter class. This results in an additional interface method or virtual method invocation,
depending on whether the type of the source expression contained in the adapter class is an
interface or a class.

• Expressions involving instanceof do not cause additional overhead.

• For each cast down from the target interface, the enclosed instance is accessed via a final

Konstantin Läufer* Gerald Baumgartner** Vincent F. Russo*** Safe Structural Conformance for Java

Page 15 of 19

method, causing minimal overhead.

6 Possible Extensions

This section discusses several possible extensions and modifications to Java that would make the
language more expressive and integrate well with structural conformance. All three have the
advantage of being conservative extensions. Method renaming and class import add a manage-
able amount of syntactic complexity to the language. Deep structural conformance, however, is
based on contravariance and adds some semantic complexity.

Method renaming

Frequently, we would like to establish structural conformance to an interface when only the types,
but not the names of corresponding methods match. The usual way to deal with this situation is
to write a forwarding class according to the Adapter pattern (Gamma et al., 1995). We could avoid
this unnecessary cluttering of the class name space if we had a mechanism for renaming methods
while establishing structural conformance. Such a mechanism could be included with a cast-like
notation.

The following example shows a general container interface that could be implemented by any
class that allows inserting and removing an element and checking if the container is empty. If we
wanted to use the DoublyLinkedList class as an implementation, we could rename its methods
to the names used in the interface:

interface Queue {
Object dequeueHead();
void enqueueTail(Object x);
boolean isEmpty();

}

interface Dequeue extends Queue {
void enqueueHead(Object x);
Object dequeueTail();

}

class DoublyLinkedList extends Vector {
public final void addFirst(Object x) { /* ... */ }
public final Object removeFirst() { /* ... */ }
public final void addLast(Object x) { /* ... */ }
public final Object removeLast(Object x) { /* ... */ }

}

DoublyLinkedList d1, d2;
// ...
Queue q5 = (Queue { dequeueHead = removeFirst, enqueueTail = addLast }) d1;
Dequeue q6 = (Dequeue { enqueueHead = addFirst, dequeueHead = removeFirst,

enqueueTail = addLast, dequeueTail = removeLast}) d2;

q5.enqueueTail("This string will be added at the end of the queue");

This example shows how structural conformance together with a renaming mechanism could
be used without introducing an unwanted conformance relationship.

Importing classes for code reuse

Some classes combine the functionality of two or more existing classes and are implemented nat-

Konstantin Läufer* Gerald Baumgartner** Vincent F. Russo*** Safe Structural Conformance for Java

Page 16 of 19

urally by reusing the code of the existing classes. This situation occurs, for example, when com-
bining functionality provided by library classes with user-defined class hierarchies. The technique
of incorporating an existing implementation into a new class is called mixin and is usually
expressed through a disciplined use of multiple inheritance. However, to avoid the semantic com-
plexity of multiple inheritance as in C++ (Ellis and Stroustrup, 1990), Java provides code reuse
only in the form of single inheritance. Workarounds for reusing code from more than one class in
languages without multiple inheritance exist, but involve code duplication or forwarding meth-
ods.

For example, suppose that we want to provide a remote version of a class C from an existing
hierarchy. The Java library provides the class java.rmi.server.UnicastRemoteObject that
implements remote objects. We could define a subclass of UnicastRemoteObject and duplicate
the methods of class C. Alternatively, we could define a subclass of our class that contains an
instance of UnicastRemoteObject, to which the relevant methods are forwarded. Using struc-
tural conformance, we can retroactively provide a common interface for the existing class and the
remote class, but we cannot do without code duplication or forwarding methods.

Such workarounds could be avoided if we had a language mechanism for combining multiple
existing classes. Part of the complexity of multiple inheritance arises because inheritance usually
entails conformance of a class to its superclass(es). Instead, a mechanism for importing code with-
out establishing a conformance relationship would support the mixin programming style cleanly
and directly. Structural conformance of an extended class and a mixin class to a common interface
could then be established separately. We claim that this separation between reuse and conform-
ance would make the language simpler yet more flexible.

Concretely, the class construct in Java could be extended to allow importing zero or more
classes.

class C extends D imports E, F, ... implements I, J, ... {
// ...

}

Importing a class would have the same effect as inclusion together with forwarding methods
for all the public methods provided by the included class, but not by the new class. For example,

class RemoteChatServer extends ChatServer imports UnicastRemoteObject {
// methods and variables of RemoteChatServer

}

would be equivalent to

class RemoteChatServer extends ChatServer {
private UnicastRemoteObject remote = new UnicastRemoteObject();
// forwarding methods for each method in UnicastRemoteObject:
public Object clone() throws CloneNotSupportedException {

RemoteChatServer theClone = new RemoteChatServer();
theClone.remote = remote.clone();
// ...
return theClone;

}
public static void exportObject(Remote obj) {

return UnicastRemoteObject.exportObject(obj);
}
// ...
// methods and variables of RemoteChatServer

}

The proposed import mechanism might have the following properties, among others:

• A method defined in the new class takes precedence over imported methods with the same

Konstantin Läufer* Gerald Baumgartner** Vincent F. Russo*** Safe Structural Conformance for Java

Page 17 of 19

signature.

• An imported method may provide an implementation of an abstract method from the
(abstract) superclass or from an interface.

• Java provides field access through a qualified name or by casting this, for example, when
accessing a variable in the superclass shadowed by a variable in the subclass. Casting this
could also be used to disambiguate between methods and variables from imported classes.

• As in Java, the receiver super would provide static access to methods and variables in the
immediate superclass.

• Each imported class would have to provide a default constructor to enable the initialization of
the resulting instance variable.

Flatt, Krishnamurthi, and Felleisen (1998) propose a mixin function construct that maps a class
into an extended class. While their construct is semantically cleaner, we argue that our import con-
struct would be easier to use and more efficient to implement. The mixin construct extends a given
class in a type-safe manner. By contrast, our import construct is a pure code reuse mechanism; any
desired conformance relationships may be established separately via structural conformance.

Deep structural conformance

Our definition of structural conformance requires an exact match between the signature of an
overriding method and the signature of the corresponding method in the interface. This strict
notion of shallow structural conformance sometimes gets in the way of retroactive abstraction. For
example, suppose a class over which we want to abstract has a binary method, that is, a method
whose argument type is the class itself. In the interface distilled from this class, we would change
the argument type of the method to be that interface. However, the class would not conform to
the resulting interface because the signatures of the binary method do not match exactly. (A sim-
ilar mismatch would occur if the method signature contained a different class that we also want
to abstract over.)

The following example illustrates this problem. Suppose we need a unifying abstraction that
supports both graphical and telephone interfaces for menu-based applications. To achieve this
abstraction, we would like to reduce the interfaces of the menu-related Java Abstract Window
Toolkit (Sun Microsystems, 1997a) components to a least common denominator for the two plat-
forms. Among others, we would define interfaces for menus and menu bars:

package common;

interface Menu extends Structural {
// ...

}

interface MenuBar extends Structural {
Menu add(Menu m);
// ...

}

The problem is that neither of the corresponding AWT classes, java.awt.Menu and
java.awt.MenuBar, conform structurally to our common.Menu and common.MenuBar classes,
respectively. The reason is that the argument type of common.MenuBar.add is common.Menu,
while the argument type of java.awt.MenuBar.add is java.awt.Menu.

It is possible to fix this problem by using deep structural conformance instead of shallow struc-
tural conformance. This form of conformance would no longer require an exact match between

Konstantin Läufer* Gerald Baumgartner** Vincent F. Russo*** Safe Structural Conformance for Java

Page 18 of 19

the type signatures of the overriding and overridden methods, but instead would require the type
of the overriding method to conform to the type of the overridden method (Amadio and
Cardelli, 1993).

Deep structural conformance has two disadvantages. First, since it is based on contravariance,
it may be less intuitive than shallow conformance. Second, the rules for method overriding under
deep conformance are not consistent with the current rules for method overloading.

7 Conclusion

We have presented an extension of the Java language that allows structural conformance to inter-
faces. Any source class or interface that declares or implements each method in a target interface
conforms structurally to the interface, and any instance of the source type can be used where a
value of the target type is expected, without having to declare conformance of the class to the
interface.

We have argued that structural conformance makes the type system much more flexible in sit-
uations that require retroactive abstraction over types, and we have given examples to support
this view.

Furthermore, our proposed extension requires no additional syntax and only small modifica-
tions to the Java compiler and optionally, for performance reasons, the virtual machine, resulting
in a minor performance penalty. Our extension is conservative: Existing Java programs still com-
pile and run in the same manner as under the original language definition. Our extension is type-
safe: A program without casts that compiles without errors will not have any type errors at run
time. Finally, our extension works well with Java’s remote method invocation (Sun
Microsystems, 1997c).

A minor drawback of structural conformance is the performance penalty, as discussed in
Section 5. At compile-time, performing structural conformance checks and, optionally, creating
adapter classes results in a minor overhead. If the virtual machine is modified, the run-time over-
head is relatively small. It is mostly due to performing structural conformance checks, which can
be moved out of loops into the class loader. If adapter classes are used to avoid modifying the vir-
tual machine, the run-time overhead is higher. The reason is that memory needs to be allocated
for the adapter objects and that there is an extra indirection for method calls. In either case, how-
ever, the performance penalty only has to be paid if structural conformance is actually used.

References

Amadio, R. M. and Cardelli, L. (1993). Subtyping recursive types. ACM Transactions on
Programming Languages and Systems, 15(4):575–631.

America, P. and van der Linden, F. (1990). A parallel object-oriented language with inheritance
and subtyping. In Proceedings of the OOPSLA ’90 Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 161–168, Ottawa, Canada. Association for Computing
Machinery. ACM SIGPLAN Notices, 25(10), October 1990.

Baumgartner, G. (1995). C++ signature and class-scoping tests. Included in the Cygnus GNU C++
test suite. Available from ftp://ftp.cygnus.com/pub/g++/.

Baumgartner, G. and Russo, V. F. (1994). Implementing signatures for C++. In Proceedings of the
1994 USENIX C++ Conference, pages 37–56, Cambridge, Massachusetts. USENIX Association.

Baumgartner, G. and Russo, V. F. (1995). Signatures: A language extension for improving type
abstraction and subtype polymorphism in C++. Software—Practice & Experience, 25(8):863–889.

Baumgartner, G. and Russo, V. F. (1997). Implementing signatures for C++. ACM Transactions on

Konstantin Läufer* Gerald Baumgartner** Vincent F. Russo*** Safe Structural Conformance for Java

Page 19 of 19

Programming Languages and Systems, 19(1).

Cleeland, C., Schmidt, D. C., and Harrison, T. (1997). External polymorphism – an object
structural pattern for transparently extending C++ concrete data types. Submitted to Pattern
Languages of Programming Languages, Vol. 3.

Connor, R. C. H., Brown, A. B., Cutts, Q. I., Dearle, A., Morrison, R., and Rosenberg, J. (1990). Type
equivalence checking in persistent object systems. In Dearle, A., Shaw, G. M., and Zdonik, S. B.,
editors, Implementing Persistent Object Bases, Principles and Practice, pages 151–164. Morgan
Kaufmann. Available from http://www-fide.dcs.st-and.ac.uk/Publications/
1990.html#type.equiv.

Cook, W. R. (1995). Array subclassing and IncompatibleTypeException. Posted to the java-
interest@java.sun.com mailing list. Available from http://java.sun.com/archives/java-interest/
0463.html.

Ellis, M. and Stroustrup, B. (1990). The Annotated C++ Reference Manual. Addison-Wesley.

Flatt, M., Krishnamurthi, S., and Felleisen, M. (1998). Classes and mixins. In Proceedings of the 25th
Annual ACM Symposium on Principles of Programming Languages (POPL), San Diego, CA.

Gamma, E., Helm, R., Johnson, R. E., and Vlissides, J. M. (1995). Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series. Addison-
Wesley, Reading, Massachusetts.

Gosling, J., Joy, B., and Steele, G. (1996). The Java Language Specification. Sun Microsystems,
Mountain View, California, 1.0 edition. HTML version available from http://java.sun.com/docs/
books/jls/.

Granston, E. D. and Russo, V. F. (1991). Signature-based polymorphism for C++. In Proceedings of
the 1991 USENIX C++ Conference, pages 65–79, Washington, D.C. USENIX Association.

Jenks, R. D. and Sutor, R. S. (1992). AXIOM: The Scientific Computation System. Springer-Verlag,
New York, New York.

Lindholm, T. and Yellin, F. (1996). The Java Virtual Machine Specification. Sun Microsystems,
Mountain View, California. HTML version available from http://java.sun.com/docs/books/
vmspec/.

Morrison, R., Connor, R., Kirby, G., and Munro, D. (1996). Can Java persist? In Proc. Persistent Java
Workshop, Scotland.

Snyder, A. (1986). Encapsulation and inheritance in object-oriented programming languages. In
Proceedings of the OOPSLA ’86 Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 38–45, Portland, Oregon. Association for Computing Machinery. ACM
SIGPLAN Notices, 21(11), November 1986.

Sun Microsystems (1997a). Java API Documentation. Mountain View, California. Current version
available from http://java.sun.com/products/jdk/1.1/docs/api/packages.html.

Sun Microsystems (1997b). Java Developers Kit Release 1.1.5. Available from http://
java.sun.com/products/jdk/1.1/.

Sun Microsystems (1997c). Java Remote Method Invocation. Documentation available from http:/
/java.sun.com/products/jdk/rmi/.

