
On the Interaction of Object�Oriented

Design Patterns and Programming Languages

Technical Report CSD�TR�������

Gerald Baumgartner� Konstantin L�aufer�� Vincent F� Russo�

� Department of Computer Sciences

Purdue University

West Lafayette� IN �	��	� U�S�A�

fgb� russog
cs�purdue�edu

�� Department of Mathematical and Computer Sciences

Loyola University

Chicago� IL ������ U�S�A�

laufer
math�luc�edu

February ��� ����

Abstract

Design patterns are distilled from many real systems to catalog common programming practice� We

have analyzed several published design patterns and looked for patterns of working around constraints of

the implementation language� Some object�oriented design patterns are distorted or overly complicated

because of the lack of supporting language constructs or mechanisms� We lay a groundwork of general�

purpose language constructs and mechanisms that� if provided by a statically typed� object�oriented

language� would better support the implementation of design patterns and� thus� bene�t the construction

of many real systems� In particular� our catalog of language constructs includes subtyping separate from

inheritance� lexically scoped closure objects independent of classes� and multimethod dispatch� The

proposed constructs and mechanisms are not radically new� but rather are adopted from a variety of

languages and combined in a new� orthogonal manner� We argue that by describing design patterns in

terms of the proposed constructs and mechanisms� pattern descriptions become simpler and� therefore�

accessible to a larger number of language communities� Constructs and mechanisms lacking in a particular

language can be implemented using paradigmatic idioms�

� Introduction

Design patterns ���� ��� ��� ��� are a distillation of many real systems for the purpose of cataloging and
categorizing common programming and program design practice� With the help of a design pattern catalog� a
programmer can reuse proven design solutions and avoid reinvention� Many of the design patterns described
in the literature� however� are in	uenced by the point of view of a particular programming language� Gamma
et al� ����� the authors of a popular design patterns catalog� make this observation
page ��

The choice of programming language is important because it in�uences one�s point of view� Our
patterns assume Smalltalk�C���level language features� and that choice determines what can
and cannot be implemented easily� If we assumed procedural languages� we might have included

�

design patterns called �Inheritance�� �Encapsulation�� and �Polymorphism�� Similarly� some of
our patterns are supported directly by the less common object�oriented languages�

We believe the in	uence is two�way and that an understanding of the interactions can bene�t both the
pattern and the programming language communities� To understand how an analysis of patterns gives insight
to the language designer� we �rst need to consider the in	uence programming languages have on patterns�

In�uence of Languages on Patterns

The choice of language has a two�fold e�ect on a pattern collection� First� as Gamma et al� observed� some
low�level patterns can be omitted if the programming language supports them directly through a language
construct or mechanism� Second� some patterns are distorted or overly complicated because of the lack of a
supporting language construct or mechanism�
The Singleton pattern ���� is an example of a pattern that merely implements a missing language con�

struct� A Singleton is a class with only one instance and code that ensures that no other instances will be
created� If a language allows the de�nition of a single object without a class� or if it o�ers a module construct
as in Modula�� ���� there is no need for the Singleton pattern�
For examples of patterns that work around a defect in the programming language� consider that most of

the complexity of Coplien�s Handle�Body and Envelope�Letter idioms ���� is due to the need to implement
reference counting since C�� ���� lacks garbage collection� Explicit storage management also complicates
several other idioms in Coplien�s collection� In a language with a garbage�collected heap� these idioms would
be greatly simpli�ed or not needed at all�
Observe that not all design patterns are in	uenced by their implementation language� Some patterns�

such as Producer�Consumer ��� ���� can be described independent of the programming language� The reason
the Producer�Consumer pattern is language�independent is that the language constructs and mechanism it
relies on
arrays or lists and functions� are basic enough that they can be found in any language�
Many design patterns are not so basic and rely on language mechanisms such as inheritance� encapsula�

tion� and polymorphism� This does not mean that such a pattern is not generally applicable� but rather that
in a non�object�oriented language the missing language constructs and mechanisms need to be implemented
in the form of other patterns� The Composite pattern ����� for example� relies on the ability to use the two
classes Leaf and Composite polymorphically� To implement subtype polymorphism in C� all that is needed
is to maintain a dispatch table containing function pointers ����� The Composite pattern can� therefore� be
implemented in C by de�ning structures representing Leaf and Composite together with a function dispatch
table implementation of the Polymorphism pattern� We term a pattern that implements a missing language
construct or mechanism
such as Polymorphism and Singleton� a paradigmatic idiom�
We argue that to increase the audience� object�oriented design patterns should be described in terms of

a richer set of object�oriented language constructs� To implement a pattern in a programming language
that does not o�er the full set of language constructs� it has to be combined with the proper paradigmatic
idioms� as illustrated above�
Increasing the number of constructs taken for granted will simplify many patterns by eliminating dis�

tracting implementation details� Some existing patterns might even be supported by language constructs
directly and� thus� become paradigmatic idioms�

In�uence of Patterns on Languages

From the programming languages point of view� patterns are interesting in that they are a re	ection of
current programming practice� An analysis of patterns� therefore� can indicate which language constructs or
mechanisms would be useful in practice and should be provided by new object�oriented languages�
Returning to the examples above� the Singleton pattern and its frequent appearance in other patterns

indicates that a module construct would be a useful addition to object�oriented programming languages�
Likewise� the complexity of Coplien�s idioms to deal with the lack of an automatically managed heap indicates
the need for garbage collection as a storage management mechanism�

�

For this paper� we have analyzed design patterns from several sources ���� ��� ��� ��� and looked for
patterns of working around constraints of the implementation language� Based on this analysis� we catalog
general�purpose language constructs and mechanisms that� if provided by a statically typed� object�oriented
language� would bene�t design patterns and� transitively� a large body of real systems� We do not invent
radically new language features but rather propose combining language constructs and mechanisms from a
variety of languages in an orthogonal manner�
The language constructs and mechanisms we address in this paper are all related to the object model of

a language and its type system� In particular� we propose that ideal object�oriented languages

� separate code reuse from subtyping by making inheritance a pure code�reuse mechanism and use
interface conformance to de�ne the subtype relationship�

� include syntax for specifying lexically scoped closure objects independent of the class construct� and

� provide both single dispatch and multimethod dispatch�

By separating the subtyping mechanism from the code reuse mechanism� we can strengthen the power
of both� In particular� we advocate a separate language construct for specifying interface types independent
from the construct for de�ning implementations
the class�� We also advocate a separate language mechanism
for determining the conformance between classes and interface types
subtyping� independent from the
mechanism for code reuse
inheritance��
In addition to objects that are instances of classes� we propose lexically scoped� classless closure objects�

Such objects ful�ll the roles that modules� packages� and closures play in other languages� Furthermore� this
notion of objects allows the uniform treatment of a class�s metaclass �elds and methods as an object� By
allowing abstraction over all kinds of objects with explicit interfaces� polymorphism is obtained in a way
that is uniformly applicable to both objects and class instances�
Single dispatch is the appropriate mechanism for adding functionality to software in the form of new

classes while multimethod dispatch is more appropriate for adding new behavior to a set of existing classes�
By providing both forms of dispatch� software can be evolved in both of these ways�
Other important mechanisms and constructs� including garbage collection� synchronization constructs to

support concurrency� and language mechanisms for persistence� distribution� and migration of objects are
not directly related to the object model and type system of a language and� therefore� are beyond the scope
of this paper�
The following catalog of language constructs and mechanisms is presented roughly in a pattern style�

Each section starts by describing a common structuring problem found in patterns� followed by examples
of patterns exhibiting the problem� We then present a solution in the form of a language construct or
mechanism and conclude by showing how the solution simpli�es or replaces existing patterns� The paper
does not intend to present a complete language design� rather� code samples and illustrations of proposed
language constructs are presented in pseudo�C�� syntax for illustrative purposes�

� Explicit Interface Descriptions

It is often desirable to develop a hierarchy of interface types independent from the class hierarchy� which
provides concrete implementations of these interfaces ��� ���� With respect to design� two major problems
arise when class inheritance is co�opted into implementing both the interface and implementation hierarchies
for a system� First� it becomes di�cult to separate logical abstractions
interfaces� from classes implementing
those abstractions and� second� it becomes di�cult or impossible to abstract over existing code for reuse
purposes�
The problem is that most object�oriented languages provide only one abstraction mechanism
 the class�

Implementations of an abstract interface type must explicitly state their adherence to the interface by
inheriting from a class that declares the abstract interface� The need to inherit from such abstract classes
often constrains or forces alterations in implementation hierarchies in order to introduce new interface types�

�

A separate language construct for abstraction that does not rely on classes would leave classes free to be
used solely for implementation speci�cation� If the adherence of a particular class to an abstract interface
type is inferred from the class speci�cation and does not need to be explicitly coded in the class� a cleaner
separation of interface and implementation can be achieved� Stating this adherence explicitly might still be
useful for documentation purposes� but should not be required� A clean� language�supported separation of
interface from implementation also allows the 	exibility of inheritance for code reuse to be strengthened� as
discussed in Section ��

Examples

The need for explicit interface speci�cations is particularly evident in the Bridge� Adapter� Proxy� and
Decorator patterns �����

Bridge and Adapter

The general idea of the Bridge pattern is to support the construction of an abstraction hierarchy paral�
lel to an implementation hierarchy and to avoid a permanent binding between the abstractions and the
implementations of these abstractions�
For example� given the implementation hierarchy�

class Implementor �

public�

void MethodImp��� � ��

void MethodImp��� � ��

	�

class ConcreteImplementorA � public Implementor�

class ConcreteImplementorB � public Implementor�

we might want to create new classes that delegate parts of their behavior to classes from the implementation
hierarchy

class Abstraction �

private�

Implementor
 imp�

public�

void Method��� � imp��MethodImp���� 	

void Method���� � imp��MethodImp���� imp��MethodImp���� 	

	�

class RefinedAbstraction � public Abstraction�

The Adapter pattern is essentially the same as the Bridge pattern� The di�erence is that the Bridge
pattern is used in designs that separate abstractions and implementations� while in the Adapter pattern the
abstraction is added retroactively� We identify the two patterns equating Adaptee with Implementor and
Adapter with Abstraction and choose the name Bridge for both�
The Bridge pattern makes the assumption that all implementation classes are subclassed from the common

abstract superclass Implementor used to de�ne their interface� This can cause problems in the presence of
component libraries that are provided in �binary�only� form� or where we desire to use components that are
already part of a library intended for a di�erent application�
The straightforward solution of subclassing the implementation classes from the abstract superclasses

de�ned by the pattern fails if only header �les and binaries� but no source code� are available for the two
libraries since introducing a new superclass would require access to the source code of the implementation
classes� The only choices remaining are to use a discriminated union in the application that uses the

�

abstractions� to use multiple inheritance to implement a new set of leaf classes in each implementation
hierarchy� or to use a hierarchy of forwarding classes� The former solution is rather inelegant� and the latter
two clutter up the name space with a super	uous set of new class names� Mularz ���� makes a similar
observation when discussing building wrappers to access legacy code�
Even with source code available� if the component classes are already part of another application� altering

their inheritance relationships could break that application� Again� we are forced to derive new classes
through multiple inheritance or to use forwarding classes�

Proxy and Decorator

A more realistic scenario for retroactive abstraction is abstracting the type of an existing class that is only
given in compiled form and providing an alternate implementation of this type� If the original application
was not designed with this form of reuse in mind� or if the alternative implementation uses di�erent data
structures� we end up with a similar problem as above� The Proxy and Decorator patterns illustrate this
problem�
The purpose of the Proxy pattern is to provide a placeholder for an object� For example� an object on

a remote machine might be represented by a proxy on the local machine� The way this is achieved in the
pattern is by subclassing both the proxy class and the subject from the same abstract superclass�

class AbstractSubject�

class Subject � public AbstractSubject�

class Proxy � public AbstractSubject �

private�

Subject
 realSubject�

public�

void Request�� �

 ���

 realSubject��Request���

 ���

 	

	�

The Decorator pattern is identical to the Proxy pattern equating Decoratorwith Proxy� Component with
AbstractSubject� and ConcreteComponentwith Subject� The only di�erence is that while Proxy forwards
to a concrete implementation� Decorator forwards to the abstraction Component� The Decorator pattern
simply allows us to �proxy� multiple possible implementations� We identify the two patterns and use the
name Proxy for both� What distinguishes Proxy from the Bridge pattern is that the proxy has the same
interface as the object it stands in for
the subject� while the Bridge pattern de�nes separate interfaces�
The Proxy pattern would bene�t from interfaces separate from classes since we would not need to intro�

duce AbstractSubject as an abstract superclass� Instead� if the clients of the subject class used an interface
to describe it� a proxy would simply have to implement that interface and delegate methods through a ref�
erence to the subject� The proxy and the subject would not be constrained to the same class inheritance
hierarchy� This can be especially important in cases where the subject class is already in an implementation
hierarchy that might provide �elds to the proxy that it did not need or methods that the client does not
ever need to call�

Solution

As we have alluded to� the standard paradigmatic idiom that implements an interface type hierarchy is a
hierarchy of abstract classes� Achieving interface hierarchies separate from implementation hierarchies is
problematic in traditional object�oriented programming languages� In statically typed languages like C���
the required interface classes are usually de�ned as abstract base classes ����� Multiple inheritance
from
both an implementation class and an interface� can be used to establish the needed type relationships in the
implementation hierarchy�
Linking implementation and interface hierarchies together can lead to type con	icts� Consider an abstract

type Matrix with two subtypes NegativeDefiniteMatrix and OrthogonalMatrix� Assume we wish to have

�

several di�erent implementations of these abstract interface types� namely DenseMatrix� which implements
matrices as two�dimensional arrays� SparseMatrix� which uses lists of triples� and PermutationMatrix�
which is implemented as a special case
subclass� of sparse matrices that takes advantage of permutation
matrices having only one element in each row and column�
If we try to model these types and implementations with a single class hierarchy� we end up either

duplicating code or violating the type hierarchy� While DenseMatrix can be made a subclass of the abstract
classes Matrix� NegativeDefiniteMatrix� and OrthogonalMatrix by using multiple inheritance� we cannot
do the same for SparseMatrix� Since class inheritance normally implies a subtype relationship between
child and parent classes� doing so would make PermutationMatrix� which is a subclass of SparseMatrix�
an indirect subclass and� therefore� a subtype� of NegativeDefiniteMatrix� Since permutation matrices
are positive de�nite� this would violate the type hierarchy� The alternative of having a separate class
SparseNegativeDefiniteMatrix is not satisfying either since it causes code replication�
Similar arguments have been given in the literature to show that the Collection class hierarchy of

Smalltalk��� ���� is not appropriate as a basis for subtyping� While the problem does not arise with dynamic
typing� it becomes an issue when trying to make Smalltalk��� statically typed while retaining most of its
	exibility�
Explicit support for object interfaces has been introduced into some object�oriented languages� For

example� interfaces are supported in Java ���� as an explicit syntactical construct� A type hierarchy can be
created using interfaces� and an implementation hierarchy can be created through class
single� inheritance�
However� Java interfaces are in e�ect only syntactic sugar for abstract superclasses since implementation
classes must explicitly state which interfaces they implement
akin to inheriting from an abstract superclass��
Since this type relation is passed down through the implementation hierarchy� it still can cause the di�culty
described above�
The object form of the Adapter pattern ���� proposes another idiomatic pattern to solve the problem

by using a forwarding class with a single instance variable that references an implementation class� This
solution is workable in most object�oriented languages but introduces the added burden of having to code
the forwarding explicitly along with the associated run�time overhead�
In ��� ��� a conservative extension to C�� is proposed that gives both syntactic and semantic support for

separating interfaces from implementations� The signature construct is much like an abstract superclass
in C��� or an interface in Java� except that a class�s conformance to a signature is inferred by the compiler
rather than having to be explicitly declared� This allows much more 	exibility in the implementation
hierarchies� Also� since the conformance of a class to a signature is inferred rather than explicitly declared�
it would be possible to change the semantics of inheritance
not to imply a subtype relationship� and prevent
problems like the one in the computer algebra example above� We discuss this further in Section ��
Thus� the ideal language construct for separating interfaces from implementations would allow classes

and interfaces both to be specialized through inheritance� and would support inferred subtyping� In other
words� a method invocation on a variable of interface type should be redirected automatically to an instance
of a class implementing the interface� and the conformance of a class to an interface should be checked at
compile time�
For example� given declarations of the form

interface I �

void h���

int g�int��

	�

class C �

 ���

public�

void h���

int g�int��

	�

�

class D �

 ���

public�

void f�char� int� float��

int g�int��

void h���

	�

I
 ip � new C�

ip��h���

ip � new D�

int j � ip��g����

both class C and class D conform to the interface I and� therefore� the assignments are valid� Invocations
should automatically be redirected to the proper method implementing the method�
Stating of the conformance to an interface type explicitly might still be useful for documentation and

compile time checking of completeness� For example� given

class E � implements I �

 ���

public�

void h���

int g�int��

	�

a compiler could check that E does indeed implement all the methods de�ned in I� as it is documented to
do so� However� for the reasons described above this should not be mandatory�
Another useful feature would be to support method renaming� perhaps with some form of cast notation�

For example� in the Bridge pattern ����� one of the libraries may have chosen di�erent method names�

interface Graphic �

public�

void draw���

void move�int� int��

	�

class Graphic� �

public�

void render���

void move�int� int��

	�

Graphic
 g � �rename render to draw� new Graphic��

Renaming is useful since it can obviate the need for the Adapter pattern in cases when the implementation
class simply chose a di�erent name for the method in question than the interface� When a simple renaming
is not su�cient� class or object Adapters ���� can still be used�

Uses

The need for type abstraction separate from implementation is pervasive throughout numerous patterns

in particular the Structural Patterns in Gamma et al� ������ The general observation can be made that
any abstract class that contains no code should be replaced by an interface de�nition instead� For exam�
ple� in the Abstract Factory pattern� the AbstractProduct classes could all be interfaces as would be the
AbstractFactory class itself� in the Builder pattern� the Builder class would be an interface� in the Bridge

�

pattern� the Implementor class would be an interface� in the Decorator pattern� the Component class should
be an interface� etc� Using interfaces instead of classes also better documents the uses of the abstractions�

� Improved Code�Reuse Mechanisms

The construction of a class can frequently be simpli�ed by reusing code from existing classes� Inheritance is
the characteristic reuse mechanism provided by object�oriented languages� In fact� the possibility for code
reuse o�ered by inheritance is one of the reasons for the popularity of object�oriented languages�
Code reuse by inheritance can be grouped into four di�erent patterns
 specializing an existing class�

�lling in missing pieces in a framework� composing a class from existing classes� and creating a new class
from pieces of existing classes��

Specialization For specializing an existing class� a subclass can add new �elds and methods or override
existing methods� In C�� terminology� the mechanisms used for this purpose are public inheritance and
rede�nition of virtual member functions ����� In Smalltalk���� all inheritance is public and all methods are
virtual �����

Template Method A framework is a skeleton of an application or algorithm that implements the control
structure of a class of related applications or algorithms� The framework de�nes an interface for pieces to
be �lled in to create a speci�c instance of such an application or algorithm� Aside from overriding virtual
methods� a mechanism commonly used in frameworks is an abstract method� An abstract method is a
method that can be called by other methods of a framework but is not implemented in the framework class
itself� An implementation has to be provided by a subclass� The Smalltalk��� term for this mechanism
is subclass responsibility� The style of re�ning certain steps of an algorithm is described in the Template
Method pattern in �����

Mixin In the mixin programming style ����� inheritance is used to add functional components to a class�
The same e�ect could be achieved by making the components �elds of the class� However� making the
methods of a component available to clients of the class would require writing forwarding methods� Mixin
inheritance simpli�es the reuse of the components whose public methods should be made available� The
standard mechanisms used for this style of code reuse ismultiple inheritance of
mostly� non�virtual methods�
The import statement in Modula�� ��� serves a similar purpose� except that imported functions are not
automatically re�exported�

Theft In some cases� a class might only inherit part of its superclass
es� or rename inherited methods
purely for reusing existing code without intending any semantic relationship between the superclass
es� and
the subclass� In C��� the mechanism used for this purpose is private inheritance� In Modula��� it is possible
to import functions from a module selectively�

Since inheritance in most object�oriented languages also de�nes a subtype relationship� the possibilities
for code reuse have to be restricted such that the subtype relationship is not broken� In particular� the
de�nition of public inheritance in C�� is slightly limited� which limits the applicability of the Specialization
pattern� Since private inheritance does not de�ne a subtype relationship� the Theft pattern is often avoided�

�To our knowledge� the only form of code reuse that has been published as a pattern is Template Method� The other forms
of code reuse seem to be considered directly supported by a language�s inheritance mechanism� Since inheritance is assumed to
be a basic language mechanism ����� these code reuse patterns are not found in object�oriented design pattern collections� We
suggest to include all four code reuse patterns in pattern collections as a guide for programmers to use inheritance properly�

�

Examples

Since we have interface conformance for de�ning a subtype relationship� we can strengthen inheritance for
code�reuse purposes by breaking the subtype relationship it usually de�nes� This makes the Specialization
pattern more 	exible� as the following example demonstrates� Not having to use inheritance for de�ning a
subtype relationship also allows programmers to use the Theft pattern more often�
To motivate the limitation of public inheritance� suppose we have an implementation of coordinate

points and would like to extend them to color points
this example is based on examples from ���� �����
Class ColorPoint inherits class Point� adds color support� and rede�nes equality to compare the color as
well�

class Point �

protected�

int x� y�

public�

virtual double dist�� � return sqrt �x
 x � y
 y�� 	

virtual int equal�Point � p� � return �x �� p�x� �� �y �� p�y�� 	

virtual Point � closer�Point � p� � return �p�dist�� � dist��� � p �
this� 	

 ���

	�

class ColorPoint � public Point �

protected�

Color c�

public�

virtual int equal�ColorPoint � p� � return �x �� p�x� �� �y �� p�y� �� �c �� p�c�� 	

 ���

	�

ColorPoint � p �

 ���

ColorPoint � q �

 ���

int i � p�equal�q�closer�p���

 type error

The last line results in a compile�time type error� since equal�� expects its argument to be of type
ColorPoint� but the return type of closer�� is of type Point�� By comparing whether q or p is closer to
the origin� we have lost the information that both are color points�
What we would like is a form of inheritance that results in ColorPoint��closer�� having the type

virtual ColorPoint � closer�ColorPoint ���

That is� we would like occurrences of type Point in an parameter type or return type to be changed to
ColorPoint when a method is inherited� C�� does not allow this since changing parameter types in this
fashion would violate the contravariance rule required for subtyping�

Solution

If subtyping is achieved by testing the conformance of a class to an interface� we do not need inheritance for
subtyping purposes� Assume class D is a subclass of C de�ned by C���style public inheritance and overriding
of virtual methods� Since D conforms to any interface that C conforms to� an instance of D can be assigned
to an interface reference wherever an instance of C was assigned before� The run�time dispatch for method
calls through an interface reference gives the same polymorphism as a method dispatch� That is� interface
conformance subsumes any subtype relationship de�ned by inheritance in which only virtual methods are
overridden� The only case where interface conformance cannot be used instead of class inheritance to de�ne
a subtype relationship is when the subclass overrides a non�virtual method of the superclass� This use of
inheritance� however� is usually considered a programming error �����

�

If inheritance does not de�ne a subtype relationship� it can be made more 	exible for code reuse pur�
poses in two ways� By introducing the notion of selftype� it is possible to override methods covariantly�
Furthermore� private inheritance can be used more frequently for code reuse�
The type selftype refers to the receiver�s class type� If a declaration involving selftype is inherited�

selftype is rebound to refer to the subclass� For example� in

class Point �

protected�

int x� y�

public�

virtual double dist�� � return sqrt�x
 x � y
 y�� 	

virtual int equal�Point � p� � return �x �� p�x� �� �y �� p�y�� 	

virtual selftype � closer�selftype � p� � return �p�dist�� � dist��� � p �
this� 	

 ���

	�

selftype� is synonymous with Point�� In class ColorPoint� inheriting class Point results in the parameter
and return types of closer to be synonymous with ColorPoint�� The call to equal in

ColorPoint � p �

 ���

ColorPoint � q �

 ���

int i � p�equal�q�closer�p���

now type�checks correctly� In interface inheritance� selftype refers to the interface type�
Using selftype together with virtual methods gives the programmer more 	exibility in specializing an

existing class at the expense of losing the subtype relationship� For some applications� however� this is the
desired behavior� If a subtype relationship is needed� it can be achieved by declaring parameter and return
types to be of an interface instead of a class type�
For implementing frameworks using the Template Method pattern ����� a subtype relationship between

the abstract class and the concrete class is not required� The concrete class inherits the code of the abstract
class and �lls in the missing methods� The result is that the concrete class conforms to any interface the
abstract class conforms to�
Since both for specializing an existing class and for de�ning a framework virtual methods are more

common� we suggest to use syntax similar to Java�s ����
 methods are virtual by default unless they are
explicitly declared final� Also for specifying abstract methods� a keyword� such as Java�s abstract keyword�
could be used�
To support the mixin programming style� we suggest that object�oriented languages support an import

mechanism related to that found in Modula��� Importing a class works similar to inheritance� except that
all methods of the imported class are treated as non�virtual methods� whether they were declared �nal or
not� In other words� importing a class C is operationally the same as de�ning a �eld of type C and writing
forwarding methods for all of C�s public and protected methods�
To support unstructured code reuse� i�e�� the Theft pattern� we can allow renaming of inherited methods

or only inheriting part of a superclass� For example� with a syntax such as

class CDE �

private C only f�� f��

public D except f�

public E only f� g rename g to E�g�

�

public�

 ���

	�

we could inherit the methods C��f� and C��f� without re�exporting them� inherit everything of class D
except the method D��f� and inherit f and g from class E while renaming E��g to E�g to avoid a name

��

con	ict with D��g� The same syntax can be used for selectively importing a class� Similar syntax has been
proposed in �����
Note that in the above example� the interface of class CDE will conform to the interface of class D if D��f

and E��f have the same type� Interface conformance� therefore� enables us to de�ne subtype relationships
that could not be achieved with inheritance�
If classes D and E in the example above both inherit from class A� an instance of class CDE would have

two copies of the �elds of class A� For classes D and E to share the same A part� in C�� they would need
to use virtual inheritance from class A� We suggest to use sharing constrains similar to those in ML ���� ���
instead� In the above example� we could specify the sharing constraint

sharing D��A �� E��A�

in class CDE� The advantage over virtual inheritance is that its use does not have to be anticipated when
de�ning classes D and E�
Although the proposed forms of inheritance and import do not preclude a traditional dispatch table

implementation of inheritance� they can be implemented more e�ciently and simpler than C���style inher�
itance� Since these forms of inheritance do not allow class instances to be cast up and down the inheritance
hierarchy� and since non�virtual methods cannot be overridden� a compiler can simply copy the code of in�
herited classes and recompile it� The advantages of such an implementation are fourfold� Dispatch tables
are not needed anymore� Object migration in a distributed environment is easier to implement� all the code
that needs to be shipped is readily available without walking the class hierarchy� Generating code for path
expressions ��� or similar mechanisms for synchronizing concurrent method calls becomes simpler since a
method might have di�erent synchronization constraints depending on the class of the receiver� Finally� the
semantics are cleaner than with the complicated table lookup in C���
An implementation of actually copying and recompiling source code has three disadvantages� First� it is

expensive at compile time since inherited methods are repeatedly compiled� Second� it introduces additional
space overhead since the multiple compiled versions of each method are almost identical� Finally� it prohibits
inheriting classes for which only header �les and object �les are provided�
By copying byte code or object code� however� we still have all the advantages compared to an imple�

mentation using dispatch tables without the overhead of recompilation and the necessity of having source
code available� An advantage of copying source code or byte code rather than object code is that it enables
some compiler optimizations such as eliminating unused methods and �elds or more aggressive inlining�

Uses

In most patterns in Gamma et al� ����� inheritance is used to de�ne a subtype relationship by inheriting an
abstract superclass� In these cases� the proper language construct to use would be an interface�
The most common form of code reuse found in design patterns is a framework� The Template Method

pattern explains how to build a framework� Further frameworks are found in Factory Method� Singleton�
Adapter� Mediator� and Observer� The Component and Decorator classes in the Composite and Decorator
patterns also represent frameworks�
The only cases in Gamma et al� of using inheritance to specialize an existing class are in the Decorator and

Mediator patterns� The re�ned abstractions in the Bridge pattern would be implemented as specializations
of an interface�
Only the class adaptor in the Adaptor pattern uses private inheritance as a short�hand for composition�

The object adaptor is structurally much cleaner�
In all cases where inheritance is used both for type abstraction and for code reuse� using interfaces for

the abstractions simpli�es the inheritance structure and makes it unnecessary for inheritance to de�ne a
subtype relationship�

��

� Objects Without Classes

Many applications contain only a single copy of certain components� For example� a compiler contains only
one parser� Even though there might be multiple network interfaces� an operating system contains only one
TCP�IP stack� In the Abstract Factory pattern ����� there is only one product factory�
In languages that only provide classes for constructing objects� it is necessary to ensure that certain

classes get instantiated at most once� This is the purpose of the Singleton pattern �����
In addition to constructing singleton software components� there is a need for packaging components for

program delivery� Some object�oriented languages provide constructs speci�cally for this purpose� Examples
are namespaces in C�� ���� or packages in Java ����� Shaw ���� lists module as a pattern for component
packaging�
Namespaces in C�� and packages in Java provide rudimentary support for packaging but are not 	ex�

ible enough to be used as singleton components� They cannot be parameterized� passed to functions� or
specialized through inheritance�

Examples

The Singleton Pattern

Instead of de�ning a singleton object� using the Singleton pattern ���� allows the programmer to de�ne a
class that has only one instance� To ensure that no more than one instance can be created� it is necessary
to intercept requests to create new objects� Using a named class allows the singleton object to be passed to
functions or to be specialized in subclasses�
In C��� a typical implementation of the Singleton pattern is
from �����

class Singleton �

public�

static Singleton
 Instance���

protected�

Singleton���

private�

static Singleton
 �instance�

	�

By not making the constructor public� the only way for clients to create an instance is through the method
Instance��

Singleton
 Singleton���instance � ��

Singleton
 Singleton��Instance�� �

if ��instance �� �� �

�instance � new Singleton�

	

return �instance�

	

Making Instance�� a class method and storing the single instance in a class �eld ensures that only one in�
stance can be created� Accessing the object indirectly through the Instance��method has the disadvantage
that it precludes static resolution of method calls to the singleton object�

Component Packaging

The Abstract Factory pattern ���� provides an interface for creating families of products� Suppose we need to
create scrollbars and windows of either the Presentation Manager or the Motif product families� A skeleton
of an implementation for these products might look as follows

��

interface AbstractScrollBar�

class PMScrollBar � implements AbstractScrollBar�

class MotifScrollBar � implements AbstractScrollBar�

interface AbstractWindow�

class PMWindow � implements AbstractWindow�

class MotifWindow � implements AbstractWindow�

A concrete factory� would create products from one of the two families� e�g�� MotifScrollBars and Motif�

Windows� AbstractScrollBar and AbstractWindow de�ne common interfaces for both product families�
If an application has to deal with many di�erent product families� the naming conventions for the di�erent

types of products quickly become unmanageable� What is needed is a packaging mechanism that introduces
a new scope and allows grouping� e�g�� ScrollBar and Window into a Motif package�

Solution

The bookkeeping e�ort of explicitly managing the creation of singleton objects can be avoided if the language
provides syntax for constructing objects without requiring a class to be declared� The same syntax would
allow packaging components�

Singleton Objects

A simple language design solution to support the singleton pattern would be to introduce an object construct
with the same syntax as a class construct but without constructors or destructor� In pseudo�C�� syntax�
the declaration

object Singleton� �

public�

 public methods

private�

 private data

	�

could be used to de�ne and initialize the constant Singleton��
With such syntax� it is guaranteed that only one object will be created and� therefore� references to it

can be statically resolved� In addition� unlike namespaces in C�� or packages in Java� these objects can be
extended by inheritance�

object Singleton� � public Singleton� �

public�

 additional public methods

private�

 additional private data

	�

To abstract over singleton objects� we can use the interface construct described earlier� It is not necessary
to provide separate interface constructs for objects and classes� Given an interface type T� a reference of type
T� can then be assigned either a singleton object that provides all the methods speci�ed in T or an instance
of a conforming class

interface T �

 ���

	�

T � p � Singleton��

T
 q � new C�

��

Interface types also allow us to de�ne polymorphic functions that can take as argument any singleton
conforming to the interface�

int f�T ���

int i � f�Singleton���

int j � f�Singleton���

If clients require access to only one of several subobjects of Singleton�� all objects could be encapsulated
in an outer object that exports a reference to only one of the subobjects�

Packages

The object construct described above is related to module constructs as found in Modula�� ��� or ML ���� ����
Unlike modules in these languages� objects are �rst�class values� i�e�� they can be passed to and returned from
functions or assigned to variables� The advantage of modules is that they allow packaging and exporting of
types in addition to variables and functions� Modules can therefore be considered higher�order objects�
Both Modula�� and ML provide di�erent constructs for module interfaces
called INTERFACE in Modula��

and signature in ML� and for the implementation of a module
called MODULE in Modula�� and structure

in ML�� The components exported from the module are those listed in the interface�
In C���style syntax� the interface and implementation parts could be combined into one construct and

labeled with public and private� respectively� Syntactically� a package then looks the same as a singleton
object

object Motif �

public�

class ScrollBar � implements AbstractScrollBar �

 ���

 	�

class Window � implements AbstractWindow �

 ���

 	�

 other public types� data� and methods

private�

 private types� data� and methods

	�

The main di�erence is that packages also export types� i�e�� packages are higher�order objects�
We use
the terms �package� and �singleton object� to distinguish between the two uses of the object construct��
A package interface can be de�ned using the same interface construct as for classes�
In addition to modules� ML provides parameterized modules called functors� In C���like syntax� a

parameterized package could be de�ned as a template

template �T� ComponentClass� T� Package�� object Package� � implements T� �

 ���

	�

Package��C� P� pkg�

 C must conform to T�� P must conform to T�

where T� and T� are interface types constraining the possible argument classes and packages� respectively�
and T� is the interface of the resulting package� For type�checking template parameters and results� package
interfaces can also specify the types that a package must export� Such higher�order interfaces are only useful
for type checking templates�
To allow information hiding� both Modula�� and ML allow exported types to be opaque� An opaque type

is a type whose name is declared in the module interface but whose de�nition is only given in a module
implementation� Clients of a module� which only get access to the name of an opaque type� can declare
variables of the type� initialize them by calling a function of the module� and pass them to other functions�
Clients cannot inspect or alter values of an opaque type� except through functions exported by the module�
The style of programming with modules and opaque types is known as the abstract data type �ADT	

style� The role of opaque types in this programming style corresponds to private �elds in an object�oriented

��

style� In this pseudo�C�� syntax� an opaque type would be a type whose name is declared public but
whose de�nition is private�
Sometimes it is useful for packages to be passed to a function or method by reference
for an example� see

Section ��� However� exporting types complicates the assignment to an object reference� Given a package
interface T� suppose the function �int f�T� P�� takes as argument a package that exports the non�opaque
type t� Inside the function� it would then be possible to declare a variable of type P	t and� since P	t is not
opaque� it would be possible to inspect a value of this type� However� the exact type may not be known at
compile time since it can depend on the actual package being passed� Allowing a function to inspect values
of a non�opaque type would� therefore� require types to be �rst�class values and some type checking to be
done at run�time�
The solution for keeping the language statically typed has traditionally been to make modules second

class� i�e�� to disallow module references� Neither ML nor Modula�� allows passing modules to functions�
The solution for getting the best of both worlds� exported types and �rst�class packages� is to consider

exported types opaque when a package is accessed through an object reference� Such a solution was proposed
as an object�based extension of ML modules by Mitchell et al� ���� and for supporting separate compilation
of ML modules by Harper and Lillibridge �����
As with classes� it is often useful to de�ne new objects by reusing the code of existing objects� as shown in

the de�nition of Singleton� above� Since all of the code reuse patterns in Section � apply to objects as well�
all forms of inheritance and import can be used for de�ning objects� The only exception is selftype� since
singleton objects and packages do not have an implementation type� An object containing an abstract

method would need to be considered an abstract object and could only be used as a parent for object
inheritance�
In summary� to bene�t packaging and pattern implementations� we suggest adding to object�oriented

languages an ML�style module system consisting of
parameterized� packages and package interfaces� As
with classes and class interfaces� the conformance of a package to a package interface could be tested either
structurally or by name� A package that does not export types� i�e�� a singleton object� is a �rst�class value
and can be assigned to references or passed to functions� A package that does export types is a higher�order
object� When passing such as package to functions� all exported types become opaque to make the package
�rst�class� Like classes� packages or singleton objects can be re�ned by inheritance�
The proposed language construct would replace the Singleton pattern and provide superior facilities for

packaging components as compared to C���s namespaces or Java�s packages�

Uses

In a language with singleton objects as described above� the Singleton pattern is no longer needed� An
extended Singleton pattern that allows a variable number of instances can be modeled by controlling the
instantiation of parameterized objects� For languages without classless objects� the Singleton pattern would
be the necessary paradigmatic idiom�
Any pattern that uses the Singleton pattern can be expressed directly using the object construct� In

the Abstract Factory pattern ����� the abstract factory and the abstract product become interfaces� and the
concrete factory becomes an object� Only the concrete products remain classes� Similarly in the Builder
pattern ����� builder and concrete builder become an interface and an object� respectively�
The purpose of the Facade pattern ���� is to package software components� Since usually only one facade

object is required� it could be implemented as a package� Similarly� a Mediator ���� would typically be a
package�
Both the Strategy and the Visitor patterns ���� package only methods� They do not de�ne any new

data structure� Concrete strategies and concrete visitors would therefore be singleton objects� with the
abstract classes Strategy and Visitor being replaced by interfaces� Similarly� each concrete state in the
State pattern ���� would be a singleton object�

��

� Lexically Scoped Closure Objects

Some programming situations call for a �lexical	 closure mechanism for creating behavior on the 	y that can
be invoked at a later time but has access to the lexical environment current when this behavior was created�
Common situations that could bene�t from a closure mechanism are the parameterization of an object by
behavior� the state change of an object from one behavior to another� and the creation of new behavior by
partial application of existing behavior�
Many statically typed object�oriented languages such as C�� ���� or Java ���� neither allow behavior to

be created on the 	y� nor do they give functions or objects access to the surrounding local environment� By
contrast� Smalltalk��� ���� provides blocks as a limited form of closures�

Examples

Specialized behavioral patterns such as Command� Iterator� State� and Strategy ���� are workarounds for
missing language support for lexical closures� The abundance of such patterns has probably emerged due to a
lack of closure support in many object�oriented languages and a failure to identify closures as the underlying
generalized mechanism� We �rst illustrate the need for lexical closures by examining the Iterator pattern�
We then argue that the remaining three patterns can be uni�ed under the concept of behavior encapsulated
in a closure object that has access to the lexical environment current when the object was created�

The Iterator Pattern

The purpose of the Iterator pattern is to support e�cient iteration over a collection without exposing its
internal structure� This pattern allows a collection to be traversed in di�erent ways without requiring the
collection to provide a method for each kind of traversal� Furthermore� the Iterator pattern supports multiple
simultaneous traversals over the same collection�
The Iterator pattern actually describes an external iterator� i�e�� the control 	ow for the traversal is

outside of the iterator or container operations� By contrast� an internal iterator is usually provided as a
method of the container class that takes a visitation function as its argument� For example� the do� method
in the Smalltalk��� collection class hierarchy ���� is an internal iterator parameterized by a block�
The following example shows a typical application of the Iterator pattern for multiple traversal of a

container in C��� Each of the two iterators keeps track of one position in the traversal� The ListIterator
class provides operations for initializing the traversal� accessing the current item� going to the next element�
and checking whether more items follow� The ListIterator class is a friend of the List class to allow direct
access to the representation of the List class�

template �class Item� class List �

public�

 ���

friend class ListIterator�Item��

	�

template �class Item� class ListIterator �

public�

void First���

void Next���

bool IsDone���

Item � CurrentItem���

 ���

	�

List�int� aList�

 ���

��

ListIterator�int� i�aList�� j�aList��

for �i�First��� � i�IsDone��� i�Next��� �

for �j�First��� � j�IsDone��� j�Next���

cout �� setw��� �� i�CurrentItem��
 j�CurrentItem���

cout �� endl�

	

This pattern has a number of weaknesses� First� encapsulation is sacri�ced for e�ciency reasons� since
the iterator class is a friend of the collection class� Second� the user is required to write his or her own control
structure instead of using a method that already encapsulates the control 	ow appropriate for the traversal�
This means that the user must strictly follow a protocol for the order in which the iterator methods are
invoked although this protocol cannot be expressed in the interface of the iterator� For example� invoking
Next after IsDone returns true is probably unde�ned� Finally� robustness becomes an issue with external
iterators because the user can change the container by adding or deleting elements during iteration �����
Internal iterators do not have these problems� but are hard to write in languages like C�� because of

the lack of lexical scoping� External iterators are mostly a workaround for the lack of internal iterators in
such languages ���� The only other advantage of external iterators is that they allow the user to control
the progress of the iteration� This is useful in situations in which it is not desirable to traverse an entire
collection at once
see also the pairwise iteration example in Section ���

The State� Strategy� and Command Patterns

The purpose of the State� Strategy� and Command patterns is to encapsulate behavior in an object�
Speci�cally� the State and Strategy patterns support con�guring objects with one of several possible

behaviors� Both patterns consist of a client class called Context and a behavioral class called State or
Strategy� respectively� The only di�erence between State and Strategy is that State allows dynamic
con�guration� while Strategy usually provides static con�guration� There is also a minor stylistic di�erence
in the C�� code given for the two patterns ����� In the State pattern� the Context class does not use the
State class in its public interface� In the Strategy pattern� by contrast� the constructor of the Context class
is explicitly parameterized by a Strategy class or object� Given the behavioral and structural similarities�
we identify the two patterns and choose the name Strategy for both�
The Command pattern applies the Strategy pattern to encapsulate a request with its receiver� The

pattern consists of a client class called Invoker and a behavioral class called Command�
In all three patterns� the behavioral classes have subclasses ConcreteState� ConcreteStrategy� and

ConcreteCommand� respectively�
Gamma et al� do not establish any relationship between the three patterns other than relating State

and Strategy to the Flyweight pattern ����� Zimmer recognizes the commonalities between these behavioral
patterns and tries to capture them in the Objecti�er pattern ����� which is not signi�cantly di�erent from
the Strategy pattern�
The following example
adopted from ����� illustrates the Strategy pattern� A composition maintains

a collection of textual and graphical components of a document� Upon creation� a composition can be
parameterized with the desired layout strategy to be invoked in the Layout�� method�

class Composition �

public�

Composition�Compositor
��

void Layout���

private�

Compositor
 �compositor�

Component
 �components�

	�

void Composition��Layout�� �

��

CompositionData theCompData�

 ���

�compositor��Compose�theCompData��

 ���

	

The Compositor interface describes layout strategies that determine how the components of a document
should be arranged into lines� A SimpleCompositor looks at components one line at a time to decide where
line breaks should go� An ArrayCompositor breaks the components into lines each containing a �xed number
of components�

interface Compositor �

int Compose�CompositionData � data��

 ���

	�

class SimpleCompositor � implements Compositor �

 ���

 	�

class ArrayCompositor � implements Compositor �

 ���

 	�

Finally� when a new document is created� the desired layout strategy is passed as an argument�

Composition
 quick � new Composition�new SimpleCompositor��

Composition
 table � new Composition�new ArrayCompositor��

In this example� implementations of the Compositor interface are used as behavioral arguments� that is�
as a replacement for closures� which are not directly supported by languages such as C���

Solution

The problems addressed by the patterns discussed in this section and other specialized behavioral patterns are
naturally solved by introducing a closure mechanism for creating new behavior that captures the environment
current at the time this behavior was created� Such behavior comes either in the form of a single function
or an entire object bundling several methods� Functions or objects can then be de�ned in any scope and use
identi�ers de�ned in the current environment� which consists of de�nitions in outer scopes� The key idea is
that the function or object might be passed around and used elsewhere� but retains access to portions of
the current environment� This kind of mechanism is known as �lexical	 closure and is a standard feature
of functional or applicative languages and of some object�oriented languages� including Smalltalk��� �����
CLOS ��� ��� ���� and Cecil ���� ����
Coplien ���� and L�aufer ���� developed a paradigmatic idiom that simulates closures in C�� using classes�

Their approaches fall short of true lexical closures in that closures cannot be anonymous and must capture
explicitly the portions of the environment they use� Breuel ��� describes an extension of C�� that sup�
ports e�cient named lexically scoped functions� We propose further generalizing those ideas by introducing
lexically scoped closure objects�
We use the object construct previously introduced in Section � to express closure objects� A closure

object can be named or anonymous� A closure object can be created on the 	y and captures the surrounding
lexical environment current at the time the object was created� A closure object is allowed to escape the
lexical scope in which it was created and takes the captured environment with it� As in most functional
languages� supporting closures requires allocating on or moving to the heap the activation records of any
functions or methods that allow a closure to escape their scope�
The following example includes an interface Counter for simple counter objects and a function Make�

Counter that creates counter objects with a given initial setting� When a counter object is created� it
captures the variable value from the environment current at that time�

interface Counter �

void Next���

��

int Current���

	�

Counter � MakeCounter�int value� �

return object �

void Next�� � value��� 	

int Current�� � return value� 	

	�

	

Counter � from��� � MakeCounter������

from����Count���

cout �� from����Current���

 prints �����

We observe that a function closure is merely a closure object with a single function call method
e�g��
operator�� in C���� It might be useful to allow function notation as syntactic sugar for this common case�
The next example shows a counter function that increases the counter each time the function is invoked�

typedef int �
 Counter� ���

Counter MakeCounter�int value� �

return int �
� �� � return value��� 	�

	

Counter from��� � MakeCounter������

cout �� from������

 prints �����

cout �� from������

 prints �����

The following is a version of the multiple traversal example that uses internal iterators and closures
instead of external iterators� It is usually hard to perform nested iterations over the same collection using
internal iterators� Using lexical closures� such iterations become easy and natural� The key observation is
that we can pass to the inner iteration a closure that has access to the state of the outer iteration�

template �class Item� interface Action �

void Apply�Item i��

	�

template �class Item� class List �

public�

void ForEach�Action�Item� � a��

 ���

	�

List�int� aList�

aList�ForEach�

object �

void Apply�int i� �

aList�ForEach�

object �

void Apply�int j� � cout �� setw��� �� i
 j� 	

	

�

cout �� endl�

	

	

�

��

Using function notation� the previous example can be rewritten as

aList�ForEach�

void �
� �int i� �

aList�ForEach�void �
� �int j� � cout �� setw��� �� i
 j� 	�

cout �� endl�

	

�

Similar to the iterator example above� many applications of the Strategy pattern and its variations can
be expressed more naturally by creating a function that invokes a method from an object de�ned in the
current environment� The function itself can be invoked from elsewhere�

MyClass
 receiver � new MyClass�

 ���

void aCommand�� � receiver��MyAction��� 	

 ���

otherFunction�aCommand��

Uses

Workarounds for the lack of lexical closures in a language are as pervasive ���� ��� as attempts to introduce
them into languages that lack them ��� ���� Closures and closure objects are useful for any type of behavioral
parameterization� including callbacks in event�driven systems and parameters to applicative versions of
iterators as used in functional languages �����

� Metaclass Objects

Many patterns rely on the ability either to abstract over classes or to parameterize an operation based on an
object�s class� For example� it would be useful to allow object construction to be parameterized by a class
chosen at run time� It is also often desirable to abstract over methods that operate on the class itself rather
than on an instance of the class� An example of such a method is a method accessing a class instantiation
count�
To achieve abstraction over classes� we need an object representing the class at run time� Such metaclass

objects would have �elds and methods associated with the class� such as instantiation counts or constructors�
We could then abstract over metaclass objects with regular interfaces� treat classes as values� and even allow
parameterization by a class�

Examples

Abstract Factory and Factory Method

The Abstract Factory pattern ���� provides an interface for creating families of products without specifying
their concrete classes� Suppose we want to con�gure an application with either the Presentation Manager
or the Motif look�and�feel� When creating widgets such as scrollbars or windows� the application should not
hard�code the names of the widget classes�
Given the following interfaces and classes�

interface AbstractScrollBar�

class PMScrollBar � implements AbstractScrollBar�

class MotifScrollBar � implements AbstractScrollBar�

interface AbstractWindow�

class PMWindow � implements AbstractWindow�

class MotifWindow � implements AbstractWindow�

��

we need to separate from the application the code for instantiating the classes� The application only knows
that the generated objects conform to the interfaces AbstractScrollBar and AbstractWindow� respectively�
The solution suggested by the Abstract Factory pattern is to introduce an interface for factories creating

the widgets�

interface WidgetFactory �

AbstractScrollBar � CreateScrollBar ���

AbstractWindow � CreateWindow ���

	�

In C��� WidgetFactory would be de�ned as an abstract class� For each product family� a concrete factory
class is needed to generate the proper widgets

class PMWidgetFactory � implements WidgetFactory �

public�

AbstractScrollBar � CreateScrollBar �� � return new PMScrollBar� 	

AbstractWindow � CreateWindow �� � return new PMWindow� 	

	�

class MotifWidgetFactory � implements WidgetFactory �

public�

AbstractScrollBar � CreateScrollBar �� � return new MotifScrollBar� 	

AbstractWindow � CreateWindow �� � return new MotifWindow� 	

	�

At startup time� one of the concrete factories is selected� The application refers to the factory through a
reference of type WidgetFactory�
The Factory Method pattern ���� is similar to the Abstract Factory pattern but refers to only one creation

method� In the above example� both CreateScrollBar�� and CreateWindow�� are factory methods� The
structure of the Factory Method pattern is often to make the application a framework class� called Creator�
with the factory method as an abstract method that needs to be supplied by a subclass ConcreteCreator�
The disadvantage of both patterns is that the di�erent product families need to be mirrored by di�erent

concrete factories and concrete creators� respectively� With a run�time representation of the product classes�
we could parameterize both the abstract factory and the creator� with the product class
es� to be instantiated�

Solution

Smalltalk��� ���� supports classes as objects directly and� as discussed in Gamma et al� ����� such metaclasses
greatly simplify cases like the one described above� C�� only supports a limited form of metaclass by allowing
�elds and variables to be declared static� For example�

class A �

private�

static int i�

public�

static int geti�� � return i� 	

A�� �

 ���

 	

 ���

	�

declares that all instances of A share a common �eld i and the method geti��� Such metaclass data is not
encapsulated in an object but rather accessed using the scope resolution syntax� In this example� i and
geti�� are accessed as C��i and C��geti��� respectively�
The problem with static members as an approximation of metaclasses is that C�� does not allow the use

of classes as values� If the static parts were encapsulated in an object� we could assign metaclass objects to

��

references� invoke metaclass methods through these references and� most importantly� abstract over metaclass
objects using interfaces�
Ideally� any syntax for declaring metaclasses should attempt to group the methods and �elds of the

metaclass object and the methods and �elds of instances of the class into one construct in order to localize
class documentation and simplify maintenance� A simple C���like syntax for merging metaclass de�nitions
and instance de�nitions into one construct might be

class A �

meta private�

int i�

meta public�

A � new���

A � new�int i� String s��

int geti�� � return i� 	

public�

int f���

void g�int��

	�

This construct would simultaneously de�ne both the metaclass object and the implementation type of class
instances�
Note that the object constructor becomes the method new�� of the generated metaclass object� Making

the constructor a method of the metaclass object with a well�known name allows us to abstract over object
creation� as needed for the Abstract Factory and Template Method patterns� and to statically type�check
this abstraction�
Abstracting over metaclass objects can be accomplished with interfaces that name the metaclass methods

but not the instance methods� This abstraction is unambiguous� For example� while

interface instanceA �

int f���

void g�int��

	�

abstracts over the instances of class A above�

interface metaA �

instanceA � new���

instanceA � new�int� String��

	�

abstracts over its metaclass object� Note that in this interface the return type of new is instanceA and not
A� This is necessary to enforce the encapsulation provided by class A and to allow the metaA interface type
to abstract over other implementations of the same interface as well�
Consider again the Abstract Factory pattern� Since the ConcreteFactory classes do nothing but create

instances of products from the proper product families� it would be possible to replace them completely with
an AbstractFactory class parameterized by the product family�s classes� With a statically type�checked
metaclass object
as with the object interfaces discussed in Section ��� it is also possible to check that only
the correct Product classes are created by methods of AbstractFactory�
For example� we can de�ne interfaces for the products�

interface AbstractScrollBar �

void handleClick���

	�

��

interface AbstractWindow �

void move�int x� int y��

	�

and then de�ne interfaces for classes that generate objects of types AbstractScrollBar and Abstract�

Window� respectively

interface ScrollBarMaker �

AbstractScrollBar � new�int x� int y� String label��

	�

interface WindowMaker �

AbstractWindow � new�int x� int y� int w� int h��

	

Implementations of the product classes can either implicitly or explicitly implement the product and meta�
class interfaces� as in

class PMScrollBar �

meta public�

PMScrollBar � new�int x� int y� String label� �

 ���

 	

public�

void handleClick�� �

 ���

 	

	�

class PMWindow � implements AbstractWindow �

meta public�

PMWindow � new�int x� int y� int w� int h� �

 ���

 	

public�

void move�int x� int y� �

 ���

 	

	�

class MotifScrollBar � implements AbstractScrollBar �

meta public�

MotifScrollBar � new�int x� int y� String label� �

 ���

 	

public�

void handleClick�� �

 ���

 	

	�

class MotifWindow �

meta public�

MotifWindow � new�int x� int y� int w� int h� �

 ���

 	

public�

void move�int x� int y� �

 ���

 	

	�

A factory is then just a singleton object that is initialized with the product classes to instantiate� For
example�

object WidgetFactory �

private�

ScrollBarMaker � scrollbarMaker�

WindowMaker � windowMaker�

public�

void init�ScrollBarMaker � scrollbars� WindowMaker � windows� �

scrollbarMaker � scrollbars�

��

windowMaker � windows�

	

AbstractScrollBar � makeScrollBar�int x� int y� String label� �

return scrollbarMaker�new�x� y� label��

	

AbstractWindow � makeWindow�int x� int y� int h� int w� �

return windowMaker�new�x� y� h� w��

	

	�

WidgetFactory�init�MotifScrollBar� MotifWindow��

AbstractWindow � win � WidgetFactory�makeWindow��� �� ���� �����

In this example� the singleton object WidgetFactory ful�lls the roles of both abstract and concrete factories
in the pattern� The static type�checking of metaclass interfaces guarantees that only the proper types of
classes will be used as the products� For example� a window class could not be passed in as the scrollbar
class to instantiate in makeScrollBar since a window class would not match the interface required by
ScrollBarMaker�
Using objects to package implementations� we can simplify this pattern even further and allow whole

component libraries to be checked� For example� we can package together all related product implementa�
tions

object Motif �

public�

class ScrollBar �

meta public�

ScrollBar � new�int x� int y� String label� �

 ���

 	

public�

void handleClick�� �

 ���

 	

	�

class Window �

meta public�

Window � new�int x� int y� int w� int h� �

 ���

 	

public�

void move�int x� int y� �

 ���

 	

	�

	�

and then provide an interface description of such a package

interface ProductLibrary �

AbstractScrollBar � ScrollBar�new�int x� int y� String label��

AbstractWindow � Window�new�int x� int y� int w� int h��

	�

using syntax that allows to specify methods of nested classes�
This avoids many problems� ProductLibrary establishes an interface for all component libraries to be

used with the factory� It prevents� for example� Motif scrollbars from being used together with Presentation
Manager windows� The factory simply becomes a singleton object parameterized by the product library
from which to instantiate�

object WidgetFactory �

private�

ProductLibrary � P�

��

public�

void init�ProductLibrary � lib� �

P � lib�

	

AbstractScrollBar � makeScrollBar�int x� int y� String label� �

return P�ScrollBar�new�x� y� label��

	

AbstractWindow � makeWindow�int x� int y� int h� int w� �

return P�Window�new�x� y� h� w��

	

	�

WidgetFactory�init�Motif��

Uses

The Builder pattern ���� can bene�t from metaclasses objects in a similar way as the Abstract Factory
pattern� Instead of writing product�speci�c concrete builder classes� we only need to parameterize the
Builder class by the concrete product to be built�
Interfaces for metaclass objects not only allow us to abstract over object creation but over any method

of the metaclass object� Suppose� we want to maintain instantiation counts for several unrelated classes� We
would de�ne an interface for the methods to access the instantiation count� A function to print or analyze
these instantiation counts could then take as an argument any metaclass object conforming to the interface�

� Method Dispatching on Multiple Parameters

Typical object�oriented programming languages such as Smalltalk��� ���� and C�� ���� use single dispatching
to determine the method invoked� When a method is invoked on a receiver object� a suitable method
implementation is selected dynamically according to the class of the receiver� Other arguments do not
in	uence method selection and are simply passed to the method�
This approach works well for many kinds of methods� especially when the receiver is more important than

the other arguments for determining which method implementation to select� However� for some kinds of
methods� there might be several equally important arguments� and the asymmetry of the single�dispatch style
is not appropriate� Furthermore� it is often cumbersome to add a new method to each class in an otherwise
stable class hierarchy� Dispatch based on multiple arguments would allow de�ning the new method without
modifying the class hierarchy by dispatching on an argument whose type is a class from this hierarchy�
Methods whose selection is based on several arguments are called multimethods as supported in CLOS

��� ��� ��� and Cecil ���� ���� Typical multimethods include binary arithmetic operations� binary equality
testing� and simultaneous iteration over several collections�

Examples

Multimethods are not directly supported by single�dispatching object�oriented languages� but can be simu�
lated by invoking several methods such that each argument that participates in method selection acts as the
receiver once� As soon as the class of an object is known� the class name is encoded in the name of the next
method invoked� This technique is called multiple dispatching ���� or� in the common case of dispatching on
two arguments� double dispatching� Double dispatching is exempli�ed in the Visitor pattern �����

��

The Visitor Pattern

In the Visitor pattern� a visitor represents an operation to be performed on the elements of a structure� This
allows de�ning new operations without changing the classes of the elements to be operated on�
As a typical C�� example of the Visitor pattern� consider abstract syntax trees and operations on these

trees in the context of a compiler
adopted from ������ Abstract syntax trees are built from nodes for
assignments� variable references� expressions� and so on� Operations on abstract syntax trees include type
checking� code generation� 	ow analysis� etc�
If these operations were de�ned as methods for each node class� the code implementing the operations

would be distributed over the node class hierarchy� making it hard to understand and maintain� Furthermore�
adding a new operation would be tedious and would usually require recompiling all node classes�
Instead� the Visitor pattern expects the node classes to have a single method called Accept that takes

a visitor object as an argument� The pattern further relies on separate visitor classes corresponding to the
operations� For each node class XNode� each visitor has a visitation method VisitX that is invoked from
within the Accept method in the node class� This makes it easy to add a new operation� such as a new code
optimization scheme� in the form of a new visitor class�
When the Accept method is invoked� method selection is �rst based on the node class� the name of

the node class is then encoded in the visitation method invoked on the visitor object� �nally� the visitation
method is selected based on the actual visitor class� Hence the Visitor pattern provides the e�ect of double
dispatching�
First� we de�ne the Node interface with various implementation classes�

interface Node �

void Accept�NodeVisitor � v��

 ���

	�

class AssignmentNode � implements Node �

public�

void Accept�NodeVisitor � v� � v�VisitAssignment�this�� 	

 ���

	�

class VariableRefNode � implements Node �

public�

void Accept�NodeVisitor � v� � v�VisitVariableRef�this�� 	

 ���

	�

We de�ne the NodeVisitor interface with implementations TypeCheckingVisitor and CodeGenerating�
Visitor�

interface NodeVisitor �

void VisitAssignment�Node � n��

void VisitVariableRef�Node � n��

 ���

	�

class TypeCheckingVisitor � implements NodeVisitor �

public�

void VisitAssignment�Node � n��

void VisitVariableRef�Node � n��

 ���

	�

��

class CodeGeneratingVisitor � implements NodeVisitor �

public�

void VisitAssignment�Node � n��

void VisitVariableRef�Node � n��

 ���

	�

Several problems arise when using the Visitor pattern� First� it is di�cult to add new element classes�
Each new element class XNode requires de�ning a method VisitX in the interface NodeVisitor and cor�
responding method implementations in each visitor class to be added� This makes the visitor class library
di�cult to maintain when not only operations� but also element classes are added frequently�
Second� the Visitor pattern assumes that the public interface of the Node class is large enough so that

visitors can do their job� This often leads to larger interfaces than otherwise desirable and potentially defeats
encapsulation�
Third� double dispatching is error�prone because it requires method selection to be implemented manually�

This makes it hard to see which argument combination causes the execution of which method�

Solution

Simulated double or multiple dispatching is a standard paradigmatic idiom in languages that do not support
multimethods directly� The Visitor pattern is actually an instance of this idiom�
The problems of the multiple dispatching idiom can be avoided if the language provides multimethods

as a built�in construct� Such a construct allows the programmer to indicate on which arguments method
selection should be based� Instead of specifying method lookup procedurally
as in the idiom�� multimethods
provide a way of specifying method lookup declaratively �����
We argue that multimethods make it easy to de�ne new visitation methods or extend the element and

visitor class hierarchies alike� Using C���like syntax� multimethods can be de�ned as methods in a class or
object� We suggest to perform dynamic dispatching on all arguments whose type is a class reference or class
pointer� Unlike static overloading resolution� dispatching is performed at run�time� although multimethods
can be statically typed ���� ��� ����
By combining multimethods and packages� we can simplify the abstract syntax tree example by bundling

the visitation methods for each tree operation in a package�

object TypeChecker �

public�

void Visit�AssignmentNode � n��

void Visit�VariableRefNode � n��

 ���

	�

object CodeGenerator �

public�

void Visit�AssignmentNode � n��

void Visit�VariableRefNode � n��

 ���

	�

Node � root �

 ���

TypeChecker�Visit�root��

CodeGenerator�Visit�root��

Both node classes and visitor objects can now be added easily� Adding a node class usually requires adding
the corresponding Visit methods in the visitor classes� methods can also be added to existing visitor classes

��

by using inheritance� Adding a visitor class does not require any change to the node classes� however� the
new visitor class must provide a Visit method for each existing node class�
Alternatively� the multimethods for type checker and code generator could have been put into a single

package by dispatching on two arguments� While not useful for this example� having a single package makes
sense in other cases� for example� when binary methods are involved�
The proposed multimethod mechanism follows the general rule that every method invocation must have

a receiver� For a multimethod de�ned in a class� the receiver is an instance of the class� For a multimethod
de�ned in an object� the receiver is the object itself� Syntactically� multimethods appear like statically
overloaded methods in C�� ����� Semantically� multimethods reduce to overloaded methods only when
passed a class pointer or reference�
We propose an exact�match multimethod selection scheme that operates in two steps� First� the method

is dispatched with respect to the receiver� this step determines in which class or object the method is de�ned�
Second� from all methods within the class of the receiver or within the receiver object� a method is selected
based on an exact match on the classes of all arguments� This approach allows the uniform treatment of all
methods as multimethods�
To avoid the complexity of best�match algorithms for multimethod selection� we suggest dispatching

only on parameters that have class reference or class pointer types� If the type of an argument in such a
parameter position is an interface reference or pointer type� then the run�time dispatch mechanism narrows
down the set of suitable method implementations to methods whose parameter type in this position matches
the current class of the argument value� If the type of an argument is a class reference or pointer type�
then the set of suitable method implementations can be narrowed down at compile time to methods with
this type in the given parameter position� This process is repeated for each argument until �nally a single
method is selected to be called�
If all values passed to a method have class types� the method implementation can be fully selected at

compile time� In this case� method selection reduces to static overloading� To avoid the need for complicated
disambiguating rules for which method to select� parameters that have interface reference or pointer types
should not be used for dynamic method selection� and all multimethods with the same name should have
the same type in this parameter position� Since method dispatch is only performed for parameters of a class
type� there can be only one method with a given name whose parameters are all of interface types�
To guarantee that all method invocations can be handled� it is necessary to check statically whether all

combinations of parameter classes and interfaces are provided by a multimethod� Since the proposed object
system achieves subtyping via interface conformance instead of inheritance� an explicit subtype hierarchy
is no longer available at compile time
see Sections � and ��� Therefore� determining statically whether a
multimethod is de�ned for all parameter type combinations is slightly more complicated than in systems with
an explicit subtype hierarchy such as Cecil ���� and would require linker support� The necessary information
could be collected by the linker from the compiler�generated method dispatch tables�
To maintain an object�oriented or data�abstraction�oriented view of multimethods� we could conceptually

consider a multimethod as part of each class for which the method dispatches� It would thus be tempting to
give each multimethod access to the non�public �elds of the parameters on which dispatching is performed�
However� this would compromise encapsulation since anyone could now gain access to the implementation
of an existing class by writing a multimethod that dispatches on a parameter of that class� We propose
separating dispatching and access as a solution to this problem� To grant the multimethod access to non�
public �elds� the class should declare the multimethod or an entire package containing the multimethod as
its friend� Encapsulation problems as encountered in the Visitor pattern thus no longer occur�

Uses

Typical uses of multimethods include binary arithmetic operations� binary equality testing� simultaneous
iteration over several collections� and displaying a shape on an output device
see also ������
For example� a multimethod for iterating simultaneously over two collections could be de�ned as follows�

This method would traverse the two collections in lock step and apply a visitation function to each pair of

��

items visited in each step� Here� we present only the case for iterating over two lists�

void PairDo�List � c�� List � c�� PairVisitor v� �

for �ListIterator i�c��� j�c��� � i�IsDone�� �� � j�IsDone� i�Next��� j�Next���

v�Apply�c��CurrentItem��� c��CurrentItem����

	

� Conclusion

We have examined design patterns� as representatives of common programming practice� and analyzed the
in	uence the choice of implementation language has on pattern design� We believe this analysis bene�ts
both the patterns community and the language communities�

Impact on Design Patterns

Based on our analysis� we have presented several general�purpose language constructs and mechanisms that
would simplify patterns if they were available in object�oriented languages� We argue that even if they are
not available in the chosen implementation language� design patterns should be described in terms of these
constructs and mechanisms� This makes patterns simpler� more succinct� and applicable to a larger set of
language communities�
To use design patterns written in terms of a larger set of constructs and mechanisms than the imple�

mentation language supports� it is necessary to combine these patterns with paradigmatic idioms� which
are patterns implementing the missing language constructs and mechanisms for a particular implementation
language�
With our set of language constructs and mechanisms� it is clearly possible to express all existing patterns

since these constructs and mechanisms are a superset of those found in typical object�oriented languages�
Additional constructs or mechanisms might be bene�cial but would likely be speci�c to individual patterns
and of less general�purpose value�

Impact on Language Design

We suggest that future object�oriented languages provide the language constructs interface� object� and class
and the mechanisms interface conformance� code reuse� lexical scoping� and multimethod dispatch�
The proposed language mechanisms are all orthogonal� none can be simulated by a combination of the

others� These mechanisms extend traditional object�oriented mechanisms� Multimethod dispatch is an
extension of single dispatch� We propose separating the subtyping and code�reuse aspects of inheritance
and� as a result� could strengthen both�
Of the proposed language constructs� interface and object are orthogonal� A class is not orthogonal to

objects since it also creates the metaclass object� Rather a class is syntactic sugar for a combination of
the metaclass object together with a representation type� For orthogonality� it might be desirable to add a
language construct for specifying a representation type directly� Such a construct would be similar to record
in Pascal or struct in C� except that it can also contain methods� However� since the combination of a
representation type together with a metaclass object containing at least the method new is that common�
the class construct subsumes the functionality of a record� Since the class syntax is terser than manually
de�ning a metaclass object together with a representation type� and since it is more conventional� it should
be included with any object�oriented language�
It is up to the language designers to integrate the proposed constructs and mechanisms in an orthogonal

way into the design of an actual language� To our knowledge� there does not yet exist a programming language
that supports the full range of our language constructs and mechanisms� Modern functional languages� such
as ML� have closures and packages but lack classes� Most contemporary object�oriented languages do not
have closures and have only a rudimentary form of packages
e�g�� namespaces in C����

��

A language based on our constructs and mechanisms would bene�t a larger community than just the
object�oriented community� For example� using lexically scoped closure objects allows us to write programs
in an abstract data type style or in a functional style as well as in an object�oriented style�

References

��� Henry G� Baker� Iterators
 Signs of weakness in object�oriented languages� ACM OOPS Messenger�
�
��
������ July �����

��� Gerald Baumgartner and Vincent F� Russo� Implementing signatures for C��� Technical Report CSD�
TR�������� Department of Computer Sciences� Purdue University� August �����

��� Gerald Baumgartner and Vincent F� Russo� Signatures
 A language extension for improving type ab�
straction and subtype polymorphism in C��� Software
Practice � Experience� ��
��
�������� August
�����

��� Daniel G� Bobrow� Linda G� DeMichiel� Richard P� Gabriel� Sonya E� Keene� Gregor Kiczales� and
David A� Moon� Common Lisp object system speci�cation
 X�J�� document ������R� ACM SIGPLAN
Notices� ��
Special Issue�� September �����

��� Thomas M� Breuel� Lexical closures for C��� In Proceedings of the �
�� USENIX C�� Conference�
pages �������� Denver� Colorado� ����� October ����� USENIX Association�

��� Frank Buschmann and Regine Meunier� A system of patterns� In Coplien and Schmidt ����� chapter ���
pages ��������

��� Roy H� Campbell and A� Nico Habermann� The speci�cation of process synchronization by path ex�
pressions� In E� Gelenbe and Claude Kaiser� editors� Proceedings of the International Symposium on
Operating Systems� volume �� of Lecture Notes in Computer Science� pages ������� Rocquencourt�
France� ����� April ����� Springer�Verlag� Berlin� New York�

��� Peter S� Canning� William R� Cook� Walter L� Hill� and Walter G� Oltho�� Interfaces for strongly�typed
object�oriented programming� In Proceedings of the OOPSLA ��
 Conference on Object�Oriented Pro�
gramming Systems� Languages� and Applications� pages �������� New Orleans� Louisiana� ��� October
����� Association for Computing Machinery� ACM SIGPLAN Notices� ��
���� October �����

��� Luca Cardelli� James Donahue� Lucille Glassman� Mick Jordan� Bill Kalsow� and Greg Nelson� Modula��
language de�nition� ACM SIGPLAN Notices� ��
��
������ August �����

���� Giuseppe Castagna� Giorgio Ghelli� and Giuseppe Longo� A calculus for overloaded functions with
subtyping� In Proceedings of the �

� ACM Conference on Lisp and Functional Programming� pages
�������� San Francisco� California� ����� June ����� Association for Computing Machinery� Lisp
Pointers� �
��� January�March �����

���� Craig Chambers� Object�oriented multi�methods in Cecil� In O� Lehrmann Madsen� editor� Proceedings
of the ECOOP �
� European Conference on Object�Oriented Programming� volume ��� of Lecture Notes
in Computer Science� pages ������ Utrecht� The Netherlands� �� June � � July ����� Springer�Verlag�
Berlin� New York�

���� Craig Chambers� The Cecil language
 Speci�cation and rationale� Technical Report ��������� De�
partment of Computer Science and Engineering� University of Washington� Seattle� Washington� March
�����

���� Craig Chambers and Gary T� Leavens� Typechecking and modules for multimethods� ACM Transactions
on Programming Languages and Systems� ��
��
�������� November �����

��

���� Marshall P� Cline and Greg A� Lomow� C�� FAQs� Frequently Asked Questions� Addison�Wesley�
Reading� Massachusetts� �����

���� William R� Cook� Walter L� Hill� and Peter S� Canning� Inheritance is not subtyping� In Proceedings
of the ��th Annual ACM Symposium on Principles of Programming Languages� pages �������� San
Francisco� California� ����� January ����� Association for Computing Machinery�

���� William R� Cook and Jens Palsberg� A denotational semantics of inheritance and its correctness� In
Proceedings of the OOPSLA ��
 Conference on Object�Oriented Programming Systems� Languages� and
Applications� pages �������� New Orleans� Louisiana� ��� October ����� Association for Computing
Machinery� ACM SIGPLAN Notices� ��
���� October �����

���� James O� Coplien� Advanced C�� Programming Styles and Idioms� Addison�Wesley� Reading� Mas�
sachusetts� �����

���� James O� Coplien and Douglas C� Schmidt� editors� Pattern Languages of Program Design� Addison�
Wesley� Reading� Massachusetts� �����

���� Laurent Dami� Software Composition� Towards an Integration of Functional and Object�Oriented Ap�
proaches� PhD thesis� Universit�e de Gen�eve� Gen�eve� Switzerland� April �����

���� Margaret A� Ellis and Bjarne Stroustrup� The Annotated C�� Reference Manual� Addison�Wesley�
Reading� Massachusetts� �����

���� Erich Gamma� Richard Helm� Ralph E� Johnson� and John M� Vlissides� Design Patterns� Elements
of Reusable Object�Oriented Software� Addison�Wesley Professional Computing Series� Addison�Wesley�
Reading� Massachusetts� �����

���� Adele Goldberg and David Robson� Smalltalk���� The Language and Its Implementation� Addison�
Wesley� Reading� Massachusetts� �����

���� Robert Harper and Mark Lillibridge� A type�theoretic approach to higher�order modules with sharing�
In Proceedings of the ��st ACM Symposium on Principles of Programming Languages �POPL	� pages
�������� Portland� Oregon� ����� January ����� Association for Computing Machinery�

���� Daniel H� H� Ingalls� A simple technique for handling multiple polymorphism� In Proceedings of the
OOPSLA ��� Conference on Object�Oriented Programming Systems� Languages� and Applications� pages
�������� Portland� Oregon� �� September � � October ����� Association for Computing Machinery� ACM
SIGPLAN Notices� ��
���� November �����

���� Guy L� Steele Jr� Common Lisp� The Language� Digital Press� Bedford� Massachusetts� �nd edition�
�����

���� Andrew R� Koenig� editor� Working Paper for Draft Proposed International Standard for Information
Systems
 Programming Language C��� Accredited Standards Committee X�� Information Process�
ing Systems� American National Standards Institute� X�J����������� WG���N����� �� April �����
Available from http
��www�cygnus�com�misc�wp�index�html�

���� Thomas Ko	er� Robust iterators for ET � Structured Programming� ��
��
������ �����

���� Thomas K�uhne� Inheritance versus parameterization� In Christine Mingins and Bertrand Meyer�
editors� Proceedings of the �

� Conference on Technology of Object�Oriented Languages and Sys�
tems �TOOLS Paci�c �
�	� pages �������� Melbourne� Australia� ����� Prentice�Hall� The article
in the proceedings was corrupted in typesetting� a correct version can be obtained from the author

kuehne!isa�informatik�th�darmstadt�de��

��

���� Konstantin L�aufer� A framework for higher�order functions in C��� In Proceedings of the USENIX
Conference on Object�Oriented Technologies �COOTS	� pages �������� Monterey� California� �����
June ����� USENIX Association�

���� Regine Meunier� The pipes and �lters architecture� In Coplien and Schmidt ����� chapter ��� pages
��������

���� Robin Milner and Mads Tofte� Commentary on Standard ML� The MIT Press� Cambridge� Mas�
sachusetts� �����

���� Robin Milner� Mads Tofte� and Robert Harper� The De�nition of Standard ML� The MIT Press�
Cambridge� Massachusetts� �����

���� John Mitchell� Sigurd Meldal� and Neel Madhav� An extension of Standard ML modules with subtyping
and inheritance� In Proceedings of the ��th ACM Symposium on Principles of Programming Languages�
pages �������� Orlando� Florida� ����� January ����� Association for Computing Machinery�

���� David A� Moon� Object�oriented programming with �avors� In Proceedings of the OOPSLA ��� Con�
ference on Object�Oriented Programming Systems� Languages� and Applications� pages ���� Portland�
Oregon� �� September � � October ����� Association for Computing Machinery� ACM SIGPLAN No�
tices� ��
���� November �����

���� Diane E� Mularz� Pattern�based integration architectures� In Coplien and Schmidt ����� chapter ���
pages ��������

���� Andreas Paepcke� Object�Oriented Programming� The CLOS Perspective� MIT Press� Cambridge�
Massachusetts� �����

���� Wolfgang Pree� Design Patterns for Object Oriented Software Developers� ACM Press� New York� New
York� �����

���� Fran"cois Rouaix� Safe run�time overloading� In Conference Record of the ��th Annual ACM Symposium
on Principles of Programming Languages �POPL	� pages �������� San Francisco� California� January
����� Association for Computing Machinery�

���� James Rumbaugh� Michael Blaha� William Premerlani� Frederick Eddy� and William Lorensen� Object�
Oriented Modeling and Design� Prentice�Hall� Englewood Cli�s� New Jersey� �����

���� Mary Shaw� Patterns for software architectures� In Coplien and Schmidt ����� chapter ��� pages ��������

���� Sun Microsystems� Mountain View� California� The Java Language Speci�cation� Version ��� Beta�
�� October ����� Available from ftp
��ftp�javasoft�com�docs�javaspec�ps�

���� Walter Zimmer� Relationships between design patterns� In Coplien and Schmidt ����� chapter ��� pages
��������

��

