On the Interaction of Object-Oriented
Design Patterns and Programming Languages

Technical Report CSD-TR-96-020

Gerald Baumgartner* Konstantin Laufer** Vincent F. Russo*

* Department of Computer Sciences
Purdue University
West Lafayette, IN 47907, U.S.A.
{gb, russo}@cs.purdue.edu

** Department of Mathematical and Computer Sciences
Loyola University
Chicago, 1L 60626, U.S.A.
laufer@math.luc.edu

February 29, 1996

Abstract

Design patterns are distilled from many real systems to catalog common programming practice. We
have analyzed several published design patterns and looked for patterns of working around constraints of
the implementation language. Some object-oriented design patterns are distorted or overly complicated
because of the lack of supporting language constructs or mechanisms. We lay a groundwork of general-
purpose language constructs and mechanisms that, if provided by a statically typed, object-oriented
language, would better support the implementation of design patterns and, thus, benefit the construction
of many real systems. In particular, our catalog of language constructs includes subtyping separate from
inheritance, lexically scoped closure objects independent of classes, and multimethod dispatch. The
proposed constructs and mechanisms are not radically new, but rather are adopted from a variety of
languages and combined in a new, orthogonal manner. We argue that by describing design patterns in
terms of the proposed constructs and mechanisms, pattern descriptions become simpler and, therefore,
accessible to a larger number of language communities. Constructs and mechanisms lacking in a particular
language can be implemented using paradigmatic tdioms.

1 Introduction

Design patterns [21, 18, 37, 17] are a distillation of many real systems for the purpose of cataloging and
categorizing common programming and program design practice. With the help of a design pattern catalog, a
programmer can reuse proven design solutions and avoid reinvention. Many of the design patterns described
in the literature, however, are influenced by the point of view of a particular programming language. Gamma
et al. [21], the authors of a popular design patterns catalog, make this observation (page 4):

The choice of programming language is important because it influences one’s point of view. Our
patterns assume Smalltalk/C++-level language features, and that choice determines what can
and cannot be implemented easily. If we assumed procedural languages, we might have included

design patterns called “Inheritance,” “Encapsulation,” and “Polymorphism.” Similarly, some of
our patterns are supported directly by the less common object-oriented languages.

We believe the influence is two-way and that an understanding of the interactions can benefit both the
pattern and the programming language communities. To understand how an analysis of patterns gives insight
to the language designer, we first need to consider the influence programming languages have on patterns.

Influence of Languages on Patterns

The choice of language has a two-fold effect on a pattern collection. First, as Gamma et al. observed, some
low-level patterns can be omitted if the programming language supports them directly through a language
construct or mechanism. Second, some patterns are distorted or overly complicated because of the lack of a
supporting language construct or mechanism.

The Singleton pattern [21] is an example of a pattern that merely implements a missing language con-
struct. A Singleton is a class with only one instance and code that ensures that no other instances will be
created. If a language allows the definition of a single object without a class, or if it offers a module construct
as in Modula-3 [9], there is no need for the Singleton pattern.

For examples of patterns that work around a defect in the programming language, consider that most of
the complexity of Coplien’s Handle-Body and Envelope-Letter idioms [17] is due to the need to implement
reference counting since C++ [26] lacks garbage collection. Explicit storage management also complicates
several other idioms in Coplien’s collection. In a language with a garbage-collected heap, these idioms would
be greatly simplified or not needed at all.

Observe that not all design patterns are influenced by their implementation language. Some patterns,
such as Producer-Consumer [6, 30], can be described independent of the programming language. The reason
the Producer-Consumer pattern is language-independent is that the language constructs and mechanism it
relies on (arrays or lists and functions) are basic enough that they can be found in any language.

Many design patterns are not so basic and rely on language mechanisms such as inheritance, encapsula-
tion, and polymorphism. This does not mean that such a pattern is not generally applicable, but rather that
in a non-object-oriented language the missing language constructs and mechanisms need to be implemented
in the form of other patterns. The Composite pattern [21], for example, relies on the ability to use the two
classes Leaf and Composite polymorphically. To implement subtype polymorphism in C, all that is needed
is to maintain a dispatch table containing function pointers [39]. The Composite pattern can, therefore, be
implemented in C by defining structures representing Leaf and Composite together with a function dispatch
table implementation of the Polymorphism pattern. We term a pattern that implements a missing language
construct or mechanism (such as Polymorphism and Singleton) a paradigmatic idiom.

We argue that to increase the audience, object-oriented design patterns should be described in terms of
a richer set of object-oriented language constructs. To implement a pattern in a programming language
that does not offer the full set of language constructs, it has to be combined with the proper paradigmatic
idioms, as illustrated above.

Increasing the number of constructs taken for granted will simplify many patterns by eliminating dis-
tracting implementation details. Some existing patterns might even be supported by language constructs
directly and, thus, become paradigmatic idioms.

Influence of Patterns on Languages

From the programming languages point of view, patterns are interesting in that they are a reflection of
current programming practice. An analysis of patterns, therefore, can indicate which language constructs or
mechanisms would be useful in practice and should be provided by new object-oriented languages.

Returning to the examples above, the Singleton pattern and its frequent appearance in other patterns
indicates that a module construct would be a useful addition to object-oriented programming languages.
Likewise, the complexity of Coplien’s idioms to deal with the lack of an automatically managed heap indicates
the need for garbage collection as a storage management mechanism.

For this paper, we have analyzed design patterns from several sources [21, 18, 37, 17] and looked for
patterns of working around constraints of the implementation language. Based on this analysis, we catalog
general-purpose language constructs and mechanisms that, if provided by a statically typed, object-oriented
language, would benefit design patterns and, transitively, a large body of real systems. We do not invent
radically new language features but rather propose combining language constructs and mechanisms from a
variety of languages in an orthogonal manner.

The language constructs and mechanisms we address in this paper are all related to the object model of
a language and its type system. In particular, we propose that ideal object-oriented languages

e separate code reuse from subtyping by making inheritance a pure code-reuse mechanism and use
interface conformance to define the subtype relationship,

¢ include syntax for specifying lexically scoped closure objects independent of the class construct, and
e provide both single dispatch and multimethod dispatch.

By separating the subtyping mechanism from the code reuse mechanism, we can strengthen the power
of both. In particular, we advocate a separate language construct for specifying interface types independent
from the construct for defining implementations (the class). We also advocate a separate language mechanism
for determining the conformance between classes and interface types (subtyping) independent from the
mechanism for code reuse (inheritance).

In addition to objects that are instances of classes, we propose lexically scoped, classless closure objects.
Such objects fulfill the roles that modules, packages, and closures play in other languages. Furthermore, this
notion of objects allows the uniform treatment of a class’s metaclass fields and methods as an object. By
allowing abstraction over all kinds of objects with explicit interfaces, polymorphism is obtained in a way
that is uniformly applicable to both objects and class instances.

Single dispatch is the appropriate mechanism for adding functionality to software in the form of new
classes while multimethod dispatch is more appropriate for adding new behavior to a set of existing classes.
By providing both forms of dispatch, software can be evolved in both of these ways.

Other important mechanisms and constructs, including garbage collection, synchronization constructs to
support concurrency, and language mechanisms for persistence, distribution, and migration of objects are
not directly related to the object model and type system of a language and, therefore, are beyond the scope
of this paper.

The following catalog of language constructs and mechanisms is presented roughly in a pattern style.
Each section starts by describing a common structuring problem found in patterns, followed by examples
of patterns exhibiting the problem. We then present a solution in the form of a language construct or
mechanism and conclude by showing how the solution simplifies or replaces existing patterns. The paper
does not intend to present a complete language design; rather, code samples and illustrations of proposed
language constructs are presented in pseudo-C++ syntax for illustrative purposes.

2 Explicit Interface Descriptions

It is often desirable to develop a hierarchy of interface types independent from the class hierarchy, which
provides concrete implementations of these interfaces [8, 15]. With respect to design, two major problems
arise when class inheritance is co-opted into implementing both the interface and implementation hierarchies
for a system. First, it becomes difficult to separate logical abstractions (interfaces) from classes implementing
those abstractions and, second, it becomes difficult or impossible to abstract over existing code for reuse
purposes.

The problem is that most object-oriented languages provide only one abstraction mechanism: the class.
Implementations of an abstract interface type must explicitly state their adherence to the interface by
inheriting from a class that declares the abstract interface. The need to inherit from such abstract classes
often constrains or forces alterations in implementation hierarchies in order to introduce new interface types.

A separate language construct for abstraction that does not rely on classes would leave classes free to be
used solely for implementation specification. If the adherence of a particular class to an abstract interface
type is inferred from the class specification and does not need to be explicitly coded in the class, a cleaner
separation of interface and implementation can be achieved. Stating this adherence explicitly might still be
useful for documentation purposes, but should not be required. A clean, language-supported separation of
interface from implementation also allows the flexibility of inheritance for code reuse to be strengthened, as
discussed in Section 3.

Examples

The need for explicit interface specifications is particularly evident in the Bridge, Adapter, Proxy, and
Decorator patterns [21].

Bridge and Adapter

The general idea of the Bridge pattern is to support the construction of an abstraction hierarchy paral-
lel to an implementation hierarchy and to avoid a permanent binding between the abstractions and the
implementations of these abstractions.

For example, given the implementation hierarchy,

class Implementor {
public:
void MethodImp1l ()
void MethodImp2()

0;
0;

};

class ConcreteImplementorA : public Implementor;
class ConcreteImplementorB : public Implementor;

we might want to create new classes that delegate parts of their behavior to classes from the implementation
hierarchy:

class Abstraction {
private:
Implementor * imp;
public:
void Methodl() { imp->MethodImpl(); }
void Method12() { imp->MethodImp1(); imp->MethodImp2(); }
I

class RefinedAbstraction : public Abstraction;

The Adapter pattern is essentially the same as the Bridge pattern. The difference is that the Bridge
pattern is used in designs that separate abstractions and implementations, while in the Adapter pattern the
abstraction is added retroactively. We identify the two patterns equating Adaptee with Implementor and
Adapter with Abstraction and choose the name Bridge for both.

The Bridge pattern makes the assumption that all implementation classes are subclassed from the common
abstract superclass Implementor used to define their interface. This can cause problems in the presence of
component libraries that are provided in “binary-only” form, or where we desire to use components that are
already part of a library intended for a different application.

The straightforward solution of subclassing the implementation classes from the abstract superclasses
defined by the pattern fails if only header files and binaries, but no source code, are available for the two
libraries since introducing a new superclass would require access to the source code of the implementation
classes. The only choices remaining are to use a discriminated union in the application that uses the

abstractions, to use multiple inheritance to implement a new set of leaf classes in each implementation
hierarchy, or to use a hierarchy of forwarding classes. The former solution is rather inelegant, and the latter
two clutter up the name space with a superfluous set of new class names. Mularz [35] makes a similar
observation when discussing building wrappers to access legacy code.

Even with source code available, if the component classes are already part of another application, altering
their inheritance relationships could break that application. Again, we are forced to derive new classes
through multiple inheritance or to use forwarding classes.

Proxy and Decorator

A more realistic scenario for retroactive abstraction is abstracting the type of an existing class that is only
given in compiled form and providing an alternate implementation of this type. If the original application
was not designed with this form of reuse in mind, or if the alternative implementation uses different data
structures, we end up with a similar problem as above. The Proxy and Decorator patterns illustrate this
problem.

The purpose of the Proxy pattern is to provide a placeholder for an object. For example, an object on
a remote machine might be represented by a proxy on the local machine. The way this is achieved in the
pattern is by subclassing both the proxy class and the subject from the same abstract superclass.

class AbstractSubject;
class Subject : public AbstractSubject;

class Proxy : public AbstractSubject {
private:
Subject * realSubject;
public:
void Request() { /* ... */ realSubject->Request(); /* ... */ }
s

The Decorator pattern is identical to the Proxy pattern equating Decorator with Proxy, Component with
AbstractSubject, and ConcreteComponent with Subject. The only difference is that while Proxy forwards
to a concrete implementation, Decorator forwards to the abstraction Component. The Decorator pattern
simply allows us to “proxy” multiple possible implementations. We identify the two patterns and use the
name Proxy for both. What distinguishes Proxy from the Bridge pattern is that the proxy has the same
interface as the object it stands in for (the subject) while the Bridge pattern defines separate interfaces.

The Proxy pattern would benefit from interfaces separate from classes since we would not need to intro-
duce AbstractSubject as an abstract superclass. Instead, if the clients of the subject class used an interface
to describe it, a proxy would simply have to implement that interface and delegate methods through a ref-
erence to the subject. The proxy and the subject would not be constrained to the same class inheritance
hierarchy. This can be especially important in cases where the subject class is already in an implementation
hierarchy that might provide fields to the proxy that it did not need or methods that the client does not
ever need to call.

Solution

As we have alluded to, the standard paradigmatic idiom that implements an interface type hierarchy is a
hierarchy of abstract classes. Achieving interface hierarchies separate from implementation hierarchies is
problematic in traditional object-oriented programming languages. In statically typed languages like C++,
the required interface classes are usually defined as abstract base classes [20]. Multiple inheritance (from
both an implementation class and an interface) can be used to establish the needed type relationships in the
implementation hierarchy.

Linking implementation and interface hierarchies together can lead to type conflicts. Consider an abstract
type Matrix with two subtypes NegativeDefiniteMatrix and OrthogonalMatrix. Assume we wish to have

several different implementations of these abstract interface types, namely DenseMatrix, which implements
matrices as two-dimensional arrays, SparseMatrix, which uses lists of triples, and PermutationMatrizx,
which is implemented as a special case (subclass) of sparse matrices that takes advantage of permutation
matrices having only one element in each row and column.

If we try to model these types and implementations with a single class hierarchy, we end up either
duplicating code or violating the type hierarchy. While DenseMatrix can be made a subclass of the abstract
classes Matrix, NegativeDefiniteMatrix, and OrthogonalMatrix by using multiple inheritance, we cannot
do the same for SparseMatrix. Since class inheritance normally implies a subtype relationship between
child and parent classes, doing so would make PermutationMatrix, which is a subclass of SparseMatrix,
an indirect subclass and, therefore, a subtype, of NegativeDefiniteMatrix. Since permutation matrices
are positive definite, this would violate the type hierarchy. The alternative of having a separate class
SparseNegativeDefiniteMatrix is not satisfying either since it causes code replication.

Similar arguments have been given in the literature to show that the Collection class hierarchy of
Smalltalk-80 [22] is not appropriate as a basis for subtyping. While the problem does not arise with dynamic
typing, it becomes an issue when trying to make Smalltalk-80 statically typed while retaining most of its
flexibility.

Explicit support for object interfaces has been introduced into some object-oriented languages. For
example, interfaces are supported in Java [41] as an explicit syntactical construct. A type hierarchy can be
created using interfaces, and an implementation hierarchy can be created through class (single) inheritance.
However, Java interfaces are in effect only syntactic sugar for abstract superclasses since implementation
classes must explicitly state which interfaces they implement (akin to inheriting from an abstract superclass).
Since this type relation is passed down through the implementation hierarchy, it still can cause the difficulty
described above.

The object form of the Adapter pattern [21] proposes another idiomatic pattern to solve the problem
by using a forwarding class with a single instance variable that references an implementation class. This
solution is workable in most object-oriented languages but introduces the added burden of having to code
the forwarding explicitly along with the associated run-time overhead.

In [3, 2], a conservative extension to C++ is proposed that gives both syntactic and semantic support for
separating interfaces from implementations. The signature construct is much like an abstract superclass
in C++, or an interface in Java, except that a class’s conformance to a signature is inferred by the compiler
rather than having to be explicitly declared. This allows much more flexibility in the implementation
hierarchies. Also, since the conformance of a class to a signature is inferred rather than explicitly declared,
it would be possible to change the semantics of inheritance (not to imply a subtype relationship) and prevent
problems like the one in the computer algebra example above. We discuss this further in Section 3.

Thus, the ideal language construct for separating interfaces from implementations would allow classes
and interfaces both to be specialized through inheritance, and would support inferred subtyping. In other
words, a method invocation on a variable of interface type should be redirected automatically to an instance
of a class implementing the interface, and the conformance of a class to an interface should be checked at
compile time.

For example, given declarations of the form

interface I {

void h();
int g(int);
};
class C {
/...
public:
void h();
int g(int);
};

class D {
/...
public:
void f(char, int, float);
int g(int);
void h();
};

I * ip = new C;
ip->h();

ip = new D;

int j = ip->g(7);

both class C and class D conform to the interface I and, therefore, the assignments are valid. Invocations
should automatically be redirected to the proper method implementing the method.

Stating of the conformance to an interface type explicitly might still be useful for documentation and
compile time checking of completeness. For example, given

class E : implements I {

/...
public:

void h();

int g(int);

};

a compiler could check that E does indeed implement all the methods defined in I, as it is documented to
do so. However, for the reasons described above this should not be mandatory.

Another useful feature would be to support method renaming, perhaps with some form of cast notation.
For example, in the Bridge pattern [21], one of the libraries may have chosen different method names.

interface Graphic {
public:

void draw();

void move(int, int);

};

class Graphicl {
public:
void render();
void move(int, int);

s
Graphic * g = (rename render to draw) new Graphicl;

Renaming is useful since it can obviate the need for the Adapter pattern in cases when the implementation
class simply chose a different name for the method in question than the interface. When a simple renaming
is not sufficient, class or object Adapters [21] can still be used.

Uses

The need for type abstraction separate from implementation is pervasive throughout numerous patterns
(in particular the Structural Patterns in Gamma et al. [21]). The general observation can be made that
any abstract class that contains no code should be replaced by an interface definition instead. For exam-
ple, in the Abstract Factory pattern, the AbstractProduct classes could all be interfaces as would be the
AbstractFactory class itself; in the Builder pattern, the Builder class would be an interface; in the Bridge

pattern, the Implementor class would be an interface; in the Decorator pattern, the Component class should
be an interface; etc. Using interfaces instead of classes also better documents the uses of the abstractions.

3 Improved Code-Reuse Mechanisms

The construction of a class can frequently be simplified by reusing code from existing classes. Inheritance is
the characteristic reuse mechanism provided by object-oriented languages. In fact, the possibility for code
reuse offered by inheritance is one of the reasons for the popularity of object-oriented languages.

Code reuse by inheritance can be grouped into four different patterns: specializing an existing class,
filling in missing pieces in a framework, composing a class from existing classes, and creating a new class
from pieces of existing classes.!

Specialization For specializing an existing class, a subclass can add new fields and methods or override
existing methods. In C++ terminology, the mechanisms used for this purpose are public inheritance and
redefinition of virtual member functions [26]. In Smalltalk-80, all inheritance is public and all methods are
virtual [22].

Template Method A framework is a skeleton of an application or algorithm that implements the control
structure of a class of related applications or algorithms. The framework defines an interface for pieces to
be filled in to create a specific instance of such an application or algorithm. Aside from overriding virtual
methods, a mechanism commonly used in frameworks is an abstract method. An abstract method is a
method that can be called by other methods of a framework but is not implemented in the framework class
itself. An implementation has to be provided by a subclass. The Smalltalk-80 term for this mechanism
is subclass responsibility. The style of refining certain steps of an algorithm is described in the Template
Method pattern in [21].

Mixin In the mixin programming style [34], inheritance is used to add functional components to a class.
The same effect could be achieved by making the components fields of the class. However, making the
methods of a component available to clients of the class would require writing forwarding methods. Mixin
inheritance simplifies the reuse of the components whose public methods should be made available. The
standard mechanisms used for this style of code reuse is multiple inheritance of (mostly) non-virtual methods.
The import statement in Modula-3 [9] serves a similar purpose, except that imported functions are not
automatically re-exported.

Theft In some cases, a class might only inherit part of its superclass(es) or rename inherited methods
purely for reusing existing code without intending any semantic relationship between the superclass(es) and
the subclass. In C++, the mechanism used for this purpose is private inheritance. In Modula-3, it is possible
to import functions from a module selectively.

Since inheritance in most object-oriented languages also defines a subtype relationship, the possibilities
for code reuse have to be restricted such that the subtype relationship is not broken. In particular, the
definition of public inheritance in C++ is slightly limited, which limits the applicability of the Specialization
pattern. Since private inheritance does not define a subtype relationship, the Theft pattern is often avoided.

ITo our knowledge, the only form of code reuse that has been published as a pattern is Template Method. The other forms
of code reuse seem to be considered directly supported by a language’s inheritance mechanism. Since inheritance is assumed to
be a basic language mechanism [21], these code reuse patterns are not found in object-oriented design pattern collections. We
suggest to include all four code reuse patterns in pattern collections as a guide for programmers to use inheritance properly.

Examples

Since we have interface conformance for defining a subtype relationship, we can strengthen inheritance for
code-reuse purposes by breaking the subtype relationship it usually defines. This makes the Specialization
pattern more flexible, as the following example demonstrates. Not having to use inheritance for defining a
subtype relationship also allows programmers to use the Theft pattern more often.

To motivate the limitation of public inheritance, suppose we have an implementation of coordinate
points and would like to extend them to color points (this example is based on examples from [16, 15]).
Class ColorPoint inherits class Point, adds color support, and redefines equality to compare the color as
well.

class Point {
protected:
int x, y;
public:
virtual double dist() { return sqrt (x * x + y * y); }
virtual int equal(Point & p) { return (x == p.x) && (y == p.y); }
virtual Point & closer(Point & p) { return (p.dist() < dist()) 7 p : *this; }

/...
};
class ColorPoint : public Point {
protected:
Color c;
public:
virtual int equal(ColorPoint & p) { return (x == p.x) && (y == p.y) && (c == p.c); }
/...
};

ColorPoint & p = // ...
ColorPoint & q = // ...
int i = p.equal(q.closer(p)); // type error

The last line results in a compile-time type error, since equal() expects its argument to be of type
ColorPoint& but the return type of closer () is of type Point&. By comparing whether q or p is closer to
the origin, we have lost the information that both are color points.

What we would like is a form of inheritance that results in ColorPoint: :closer () having the type

virtual ColorPoint & closer(ColorPoint &);

That is, we would like occurrences of type Point in an parameter type or return type to be changed to
ColorPoint when a method is inherited. C++ does not allow this since changing parameter types in this
fashion would violate the contravariance rule required for subtyping.

Solution

If subtyping is achieved by testing the conformance of a class to an interface, we do not need inheritance for
subtyping purposes. Assume class D is a subclass of C defined by C++-style public inheritance and overriding
of virtual methods. Since D conforms to any interface that C conforms to, an instance of D can be assigned
to an interface reference wherever an instance of C was assigned before. The run-time dispatch for method
calls through an interface reference gives the same polymorphism as a method dispatch. That is, interface
conformance subsumes any subtype relationship defined by inheritance in which only virtual methods are
overridden. The only case where interface conformance cannot be used instead of class inheritance to define
a subtype relationship is when the subclass overrides a non-virtual method of the superclass. This use of
inheritance, however, is usually considered a programming error [14].

If inheritance does not define a subtype relationship, it can be made more flexible for code reuse pur-
poses in two ways. By introducing the notion of selftype, it is possible to override methods covariantly.
Furthermore, private inheritance can be used more frequently for code reuse.

The type selftype refers to the receiver’s class type. If a declaration involving selftype is inherited,
selftype is rebound to refer to the subclass. For example, in

class Point {
protected:
int x, y;
public:
virtual double dist() { return sqrt(x * x +y * y); }
virtual int equal(Point & p) { return (x == p.x) && (y == p.y); }
virtual selftype & closer(selftype & p) { return (p.dist() < dist()) 7 p : *this; }
/...
};

selftype& is synonymous with Point&. In class ColorPoint, inheriting class Point results in the parameter
and return types of closer to be synonymous with ColorPoint&. The call to equal in

ColorPoint & p = // ...
ColorPoint & q = // ...
int i = p.equal(q.closer(p));

now type-checks correctly. In interface inheritance, selftype refers to the interface type.

Using selftype together with virtual methods gives the programmer more flexibility in specializing an
existing class at the expense of losing the subtype relationship. For some applications, however, this is the
desired behavior. If a subtype relationship is needed, it can be achieved by declaring parameter and return
types to be of an interface instead of a class type.

For implementing frameworks using the Template Method pattern [21], a subtype relationship between
the abstract class and the concrete class is not required. The concrete class inherits the code of the abstract
class and fills in the missing methods. The result is that the concrete class conforms to any interface the
abstract class conforms to.

Since both for specializing an existing class and for defining a framework virtual methods are more
common, we suggest to use syntax similar to Java’s [41]: methods are virtual by default unless they are
explicitly declared final. Also for specifying abstract methods, a keyword, such as Java’s abstract keyword,
could be used.

To support the mixin programming style, we suggest that object-oriented languages support an import
mechanism related to that found in Modula-3. Importing a class works similar to inheritance, except that
all methods of the imported class are treated as non-virtual methods, whether they were declared final or
not. In other words, importing a class C is operationally the same as defining a field of type C and writing
forwarding methods for all of C’s public and protected methods.

To support unstructured code reuse, i.e., the Theft pattern, we can allow renaming of inherited methods
or only inheriting part of a superclass. For example, with a syntax such as

class CDE :
private C only f1, £2;
public D except f;
public E only f, g rename g to E_g;

{

public:
/...

s

we could inherit the methods C::f1 and C::f2 without re-exporting them, inherit everything of class D
except the method D::f, and inherit £ and g from class E while renaming E: :g to E_g to avoid a name

10

conflict with D: :g. The same syntax can be used for selectively importing a class. Similar syntax has been
proposed in [33].

Note that in the above example, the interface of class CDE will conform to the interface of class D if D: : f
and E: :f have the same type. Interface conformance, therefore, enables us to define subtype relationships
that could not be achieved with inheritance.

If classes D and E in the example above both inherit from class A, an instance of class CDE would have
two copies of the fields of class A. For classes D and E to share the same A part, in C++ they would need
to use virtual inheritance from class A. We suggest to use sharing constrains similar to those in ML [32, 31]
instead. In the above example, we could specify the sharing constraint

sharing D::A == E::A;

in class CDE. The advantage over virtual inheritance is that its use does not have to be anticipated when
defining classes D and E.

Although the proposed forms of inheritance and import do not preclude a traditional dispatch table
implementation of inheritance, they can be implemented more efficiently and simpler than C++-style inher-
itance. Since these forms of inheritance do not allow class instances to be cast up and down the inheritance
hierarchy, and since non-virtual methods cannot be overridden, a compiler can simply copy the code of in-
herited classes and recompile it. The advantages of such an implementation are fourfold. Dispatch tables
are not needed anymore. Object migration in a distributed environment is easier to implement; all the code
that needs to be shipped is readily available without walking the class hierarchy. Generating code for path
expressions [7] or similar mechanisms for synchronizing concurrent method calls becomes simpler since a
method might have different synchronization constraints depending on the class of the receiver. Finally, the
semantics are cleaner than with the complicated table lookup in C++.

An implementation of actually copying and recompiling source code has three disadvantages. First, it is
expensive at compile time since inherited methods are repeatedly compiled. Second, it introduces additional
space overhead since the multiple compiled versions of each method are almost identical. Finally, it prohibits
inheriting classes for which only header files and object files are provided.

By copying byte code or object code, however, we still have all the advantages compared to an imple-
mentation using dispatch tables without the overhead of recompilation and the necessity of having source
code available. An advantage of copying source code or byte code rather than object code is that it enables
some compiler optimizations such as eliminating unused methods and fields or more aggressive inlining.

Uses

In most patterns in Gamma et al. [21], inheritance is used to define a subtype relationship by inheriting an
abstract superclass. In these cases, the proper language construct to use would be an interface.

The most common form of code reuse found in design patterns is a framework. The Template Method
pattern explains how to build a framework. Further frameworks are found in Factory Method, Singleton,
Adapter, Mediator, and Observer. The Component and Decorator classes in the Composite and Decorator
patterns also represent frameworks.

The only cases in Gamma et al. of using inheritance to specialize an existing class are in the Decorator and
Mediator patterns. The refined abstractions in the Bridge pattern would be implemented as specializations
of an interface.

Only the class adaptor in the Adaptor pattern uses private inheritance as a short-hand for composition.
The object adaptor is structurally much cleaner.

In all cases where inheritance is used both for type abstraction and for code reuse, using interfaces for
the abstractions simplifies the inheritance structure and makes it unnecessary for inheritance to define a
subtype relationship.

11

4 Objects Without Classes

Many applications contain only a single copy of certain components. For example, a compiler contains only
one parser. Even though there might be multiple network interfaces, an operating system contains only one
TCP/IP stack. In the Abstract Factory pattern [21], there is only one product factory.

In languages that only provide classes for constructing objects, it is necessary to ensure that certain
classes get instantiated at most once. This is the purpose of the Singleton pattern [21].

In addition to constructing singleton software components, there is a need for packaging components for
program delivery. Some object-oriented languages provide constructs specifically for this purpose. Examples
are namespaces in C++ [26] or packages in Java [41]. Shaw [40] lists module as a pattern for component
packaging.

Namespaces in C++ and packages in Java provide rudimentary support for packaging but are not flex-
ible enough to be used as singleton components. They cannot be parameterized, passed to functions, or
specialized through inheritance.

Examples
The Singleton Pattern

Instead of defining a singleton object, using the Singleton pattern [21] allows the programmer to define a
class that has only one instance. To ensure that no more than one instance can be created, it is necessary
to intercept requests to create new objects. Using a named class allows the singleton object to be passed to
functions or to be specialized in subclasses.

In C++, a typical implementation of the Singleton pattern is (from [21]):

class Singleton {
public:
static Singleton * Instance();
protected:
Singleton();
private:
static Singleton * _instance;

};

By not making the constructor public, the only way for clients to create an instance is through the method
Instance():

Singleton * Singleton::_instance = 0;

Singleton * Singleton::Instance() {
if (_instance == 0) {
_instance = new Singleton;
}

return _instance;

}

Making Instance() a class method and storing the single instance in a class field ensures that only one in-
stance can be created. Accessing the object indirectly through the Instance () method has the disadvantage
that it precludes static resolution of method calls to the singleton object.

Component Packaging

The Abstract Factory pattern [21] provides an interface for creating families of products. Suppose we need to
create scrollbars and windows of either the Presentation Manager or the Motif product families. A skeleton
of an implementation for these products might look as follows:

12

interface AbstractScrollBar;
class PMScrollBar : implements AbstractScrollBar;
class MotifScrollBar : implements AbstractScrollBar;

interface AbstractWindow;
class PMWindow : implements AbstractWindow;
class MotifWindow : implements AbstractWindow;

A concrete factory, would create products from one of the two families, e.g., MotifScrollBars and Motif-
Windows. AbstractScrollBar and AbstractWindow define common interfaces for both product families.

If an application has to deal with many different product families, the naming conventions for the different
types of products quickly become unmanageable. What is needed is a packaging mechanism that introduces
a new scope and allows grouping, e.g., ScrollBar and Window into a Motif package.

Solution

The bookkeeping effort of explicitly managing the creation of singleton objects can be avoided if the language
provides syntax for constructing objects without requiring a class to be declared. The same syntax would
allow packaging components.

Singleton Objects

A simple language design solution to support the singleton pattern would be to introduce an object construct
with the same syntax as a class construct but without constructors or destructor. In pseudo-C++ syntax,
the declaration

object Singletonl {
public:

// public methods
private:

// private data
I

could be used to define and initialize the constant Singletonl.

With such syntax, it is guaranteed that only one object will be created and, therefore, references to it
can be statically resolved. In addition, unlike namespaces in C++ or packages in Java, these objects can be
extended by inheritance.

object Singleton2 : public Singletonl {
public:

// additional public methods
private:

// additional private data
s

To abstract over singleton objects, we can use the interface construct described earlier. It is not necessary
to provide separate interface constructs for objects and classes. Given an interface type T, a reference of type
T& can then be assigned either a singleton object that provides all the methods specified in T or an instance
of a conforming class:

interface T {

/...

T & p = Singletonli;
T * q = new C;

13

Interface types also allow us to define polymorphic functions that can take as argument any singleton
conforming to the interface.

int £(T &);
int i = f(Singletonl);
int j = f(Singleton2);

If clients require access to only one of several subobjects of Singletonl, all objects could be encapsulated
in an outer object that exports a reference to only one of the subobjects.

Packages

The object construct described above is related to module constructs as found in Modula-3 [9] or ML [32, 31].
Unlike modules in these languages, objects are first-class values, i.e., they can be passed to and returned from
functions or assigned to variables. The advantage of modules is that they allow packaging and exporting of
types in addition to variables and functions. Modules can therefore be considered higher-order objects.

Both Modula-3 and ML provide different constructs for module interfaces (called INTERFACE in Modula-3
and signature in ML) and for the implementation of a module (called MODULE in Modula-3 and structure
in ML). The components exported from the module are those listed in the interface.

In C++-style syntax, the interface and implementation parts could be combined into one construct and
labeled with public and private, respectively. Syntactically, a package then looks the same as a singleton
object:

object Motif {

public:
class ScrollBar : implements AbstractScrollBar { /* ... */ };
class Window : implements AbstractWindow { /* ... */ };
// other public types, data, and methods

private:

// private types, data, and methods
};

The main difference is that packages also export types, i.e., packages are higher-order objects. (We use
the terms “package” and “singleton object” to distinguish between the two uses of the object construct.)
A package interface can be defined using the same interface construct as for classes.

In addition to modules, ML provides parameterized modules called functors. In C++-like syntax, a
parameterized package could be defined as a template:

template <T1 ComponentClass, T2 Packagel> object Package2 : implements T3 {
/...
I

Package2<C, P> pkg; // C must conform to T1, P must conform to T2

where T1 and T2 are interface types constraining the possible argument classes and packages, respectively,
and T3 is the interface of the resulting package. For type-checking template parameters and results, package
interfaces can also specify the types that a package must export. Such higher-order interfaces are only useful
for type checking templates.

To allow information hiding, both Modula-3 and ML allow exported types to be opaque. An opaque type
is a type whose name is declared in the module interface but whose definition is only given in a module
implementation. Clients of a module, which only get access to the name of an opaque type, can declare
variables of the type, initialize them by calling a function of the module, and pass them to other functions.
Clients cannot inspect or alter values of an opaque type, except through functions exported by the module.

The style of programming with modules and opaque types is known as the abstract data type (ADT)
style. The role of opaque types in this programming style corresponds to private fields in an object-oriented

14

style. In this pseudo-C++ syntax, an opaque type would be a type whose name is declared public but
whose definition is private.

Sometimes it is useful for packages to be passed to a function or method by reference (for an example, see
Section 6). However, exporting types complicates the assignment to an object reference. Given a package
interface T, suppose the function ‘int f(T& P)’ takes as argument a package that exports the non-opaque
type t. Inside the function, it would then be possible to declare a variable of type P.t and, since P.t is not
opaque, it would be possible to inspect a value of this type. However, the exact type may not be known at
compile time since it can depend on the actual package being passed. Allowing a function to inspect values
of a non-opaque type would, therefore, require types to be first-class values and some type checking to be
done at run-time.

The solution for keeping the language statically typed has traditionally been to make modules second
class, i.e., to disallow module references. Neither ML nor Modula-3 allows passing modules to functions.

The solution for getting the best of both worlds, exported types and first-class packages, is to consider
exported types opaque when a package is accessed through an object reference. Such a solution was proposed
as an object-based extension of ML modules by Mitchell et al. [33] and for supporting separate compilation
of ML modules by Harper and Lillibridge [23].

As with classes, it is often useful to define new objects by reusing the code of existing objects, as shown in
the definition of Singleton2 above. Since all of the code reuse patterns in Section 3 apply to objects as well,
all forms of inheritance and import can be used for defining objects. The only exception is selftype, since
singleton objects and packages do not have an implementation type. An object containing an abstract
method would need to be considered an abstract object and could only be used as a parent for object
inheritance.

In summary, to benefit packaging and pattern implementations, we suggest adding to object-oriented
languages an ML-style module system consisting of (parameterized) packages and package interfaces. As
with classes and class interfaces, the conformance of a package to a package interface could be tested either
structurally or by name. A package that does not export types, i.e., a singleton object, is a first-class value
and can be assigned to references or passed to functions. A package that does export types is a higher-order
object. When passing such as package to functions, all exported types become opaque to make the package
first-class. Like classes, packages or singleton objects can be refined by inheritance.

The proposed language construct would replace the Singleton pattern and provide superior facilities for
packaging components as compared to C++’s namespaces or Java’s packages.

Uses

In a language with singleton objects as described above, the Singleton pattern is no longer needed. An
extended Singleton pattern that allows a variable number of instances can be modeled by controlling the
instantiation of parameterized objects. For languages without classless objects, the Singleton pattern would
be the necessary paradigmatic idiom.

Any pattern that uses the Singleton pattern can be expressed directly using the object construct. In
the Abstract Factory pattern [21], the abstract factory and the abstract product become interfaces, and the
concrete factory becomes an object. Only the concrete products remain classes. Similarly in the Builder
pattern [21], builder and concrete builder become an interface and an object, respectively.

The purpose of the Facade pattern [21] is to package software components. Since usually only one facade
object is required, it could be implemented as a package. Similarly, a Mediator [21] would typically be a
package.

Both the Strategy and the Visitor patterns [21] package only methods. They do not define any new
data structure. Concrete strategies and concrete visitors would therefore be singleton objects, with the
abstract classes Strategy and Visitor being replaced by interfaces. Similarly, each concrete state in the
State pattern [21] would be a singleton object.

15

5 Lexically Scoped Closure Objects

Some programming situations call for a (lexical) closure mechanism for creating behavior on the fly that can
be invoked at a later time but has access to the lexical environment current when this behavior was created.
Common situations that could benefit from a closure mechanism are the parameterization of an object by
behavior, the state change of an object from one behavior to another, and the creation of new behavior by
partial application of existing behavior.

Many statically typed object-oriented languages such as C++ [20] or Java [41] neither allow behavior to
be created on the fly, nor do they give functions or objects access to the surrounding local environment. By
contrast, Smalltalk-80 [22] provides blocks as a limited form of closures.

Examples

Specialized behavioral patterns such as Command, Iterator, State, and Strategy [21] are workarounds for
missing language support for lexical closures. The abundance of such patterns has probably emerged due to a
lack of closure support in many object-oriented languages and a failure to identify closures as the underlying
generalized mechanism. We first illustrate the need for lexical closures by examining the Iterator pattern.
We then argue that the remaining three patterns can be unified under the concept of behavior encapsulated
in a closure object that has access to the lexical environment current when the object was created.

The Iterator Pattern

The purpose of the Iterator pattern is to support efficient iteration over a collection without exposing its
internal structure. This pattern allows a collection to be traversed in different ways without requiring the
collection to provide a method for each kind of traversal. Furthermore, the Iterator pattern supports multiple
simultaneous traversals over the same collection.

The Iterator pattern actually describes an external iterator, i.e., the control flow for the traversal is
outside of the iterator or container operations. By contrast, an internal iterator is usually provided as a
method of the container class that takes a visitation function as its argument. For example, the do: method
in the Smalltalk-80 collection class hierarchy [22] is an internal iterator parameterized by a block.

The following example shows a typical application of the Iterator pattern for multiple traversal of a
container in C++. Each of the two iterators keeps track of one position in the traversal. The ListIterator
class provides operations for initializing the traversal, accessing the current item, going to the next element,
and checking whether more items follow. The ListIterator class is a friend of the List class to allow direct
access to the representation of the List class.

template <class Item> class List {
public:

/...

friend class ListIterator<Item>;

};

template <class Item> class ListIterator {
public:

void First();

void Next();

bool IsDone();

Item & CurrentItem();

/...
};

List<int> alist;
/...

16

ListIterator<int> i(alist), j(alList);
for (i.First(); ! i.IsDone(); i.Next()) {
for (j.First(); ! j.IsDone(); j.Next())
cout << setw(8) << i.CurrentItem() * j.CurrentItem();
cout << endl;
}

This pattern has a number of weaknesses. First, encapsulation is sacrificed for efficiency reasons, since
the iterator class is a friend of the collection class. Second, the user is required to write his or her own control
structure instead of using a method that already encapsulates the control flow appropriate for the traversal.
This means that the user must strictly follow a protocol for the order in which the iterator methods are
invoked although this protocol cannot be expressed in the interface of the iterator. For example, invoking
Next after IsDone returns true is probably undefined. Finally, robustness becomes an issue with external
iterators because the user can change the container by adding or deleting elements during iteration [27].

Internal iterators do not have these problems, but are hard to write in languages like C++ because of
the lack of lexical scoping. External iterators are mostly a workaround for the lack of internal iterators in
such languages [1]. The only other advantage of external iterators is that they allow the user to control
the progress of the iteration. This is useful in situations in which it is not desirable to traverse an entire
collection at once (see also the pairwise iteration example in Section 7).

The State, Strategy, and Command Patterns

The purpose of the State, Strategy, and Command patterns is to encapsulate behavior in an object.

Specifically, the State and Strategy patterns support configuring objects with one of several possible
behaviors. Both patterns consist of a client class called Context and a behavioral class called State or
Strategy, respectively. The only difference between State and Strategy is that State allows dynamic
configuration, while Strategy usually provides static configuration. There is also a minor stylistic difference
in the C++ code given for the two patterns [21]. In the State pattern, the Context class does not use the
State class in its public interface. In the Strategy pattern, by contrast, the constructor of the Context class
is explicitly parameterized by a Strategy class or object. Given the behavioral and structural similarities,
we identify the two patterns and choose the name Strategy for both.

The Command pattern applies the Strategy pattern to encapsulate a request with its receiver. The
pattern consists of a client class called Invoker and a behavioral class called Command.

In all three patterns, the behavioral classes have subclasses ConcreteState, ConcreteStrategy, and
ConcreteCommand, respectively.

Gamma et al. do not establish any relationship between the three patterns other than relating State
and Strategy to the Flyweight pattern [21]. Zimmer recognizes the commonalities between these behavioral
patterns and tries to capture them in the Objectifier pattern [42], which is not significantly different from
the Strategy pattern.

The following example (adopted from [21]) illustrates the Strategy pattern. A composition maintains
a collection of textual and graphical components of a document. Upon creation, a composition can be
parameterized with the desired layout strategy to be invoked in the Layout () method.

class Composition {

public:
Composition(Compositor *);
void Layout();

private:
Compositor * _compositor;
Component * _components;

};

void Composition::Layout() {

17

CompositionData theCompData;
/] ...
_compositor->Compose (theCompData) ;
/] ...
}

The Compositor interface describes layout strategies that determine how the components of a document
should be arranged into lines. A SimpleCompositor looks at components one line at a time to decide where
line breaks should go. An ArrayCompositor breaks the components into lines each containing a fixed number
of components.

interface Compositor {
int Compose(CompositionData & data);

/] ...
I
class SimpleCompositor : implements Compositor { /% ... %/ };
class ArrayCompositor : implements Compositor { /* ... x/ };

Finally, when a new document is created, the desired layout strategy is passed as an argument.

Composition * quick = new Composition(new SimpleCompositor);
Composition * table = new Composition(new ArrayCompositor);

In this example, implementations of the Compositor interface are used as behavioral arguments, that is,
as a replacement for closures, which are not directly supported by languages such as C++.

Solution

The problems addressed by the patterns discussed in this section and other specialized behavioral patterns are
naturally solved by introducing a closure mechanism for creating new behavior that captures the environment
current at the time this behavior was created. Such behavior comes either in the form of a single function
or an entire object bundling several methods. Functions or objects can then be defined in any scope and use
identifiers defined in the current environment, which consists of definitions in outer scopes. The key idea is
that the function or object might be passed around and used elsewhere, but retains access to portions of
the current environment. This kind of mechanism is known as (lexical) closure and is a standard feature
of functional or applicative languages and of some object-oriented languages, including Smalltalk-80 [22],
CLOS [4, 25, 36], and Cecil [11, 12].

Coplien [17] and Laufer [29] developed a paradigmatic idiom that simulates closures in C++ using classes.
Their approaches fall short of true lexical closures in that closures cannot be anonymous and must capture
explicitly the portions of the environment they use. Breuel [5] describes an extension of C++ that sup-
ports efficient named lexically scoped functions. We propose further generalizing those ideas by introducing
lexically scoped closure objects.

We use the object construct previously introduced in Section 4 to express closure objects. A closure
object can be named or anonymous. A closure object can be created on the fly and captures the surrounding
lexical environment current at the time the object was created. A closure object is allowed to escape the
lexical scope in which it was created and takes the captured environment with it. As in most functional
languages, supporting closures requires allocating on or moving to the heap the activation records of any
functions or methods that allow a closure to escape their scope.

The following example includes an interface Counter for simple counter objects and a function Make-
Counter that creates counter objects with a given initial setting. When a counter object is created, it
captures the variable value from the environment current at that time.

interface Counter {
void Next();

18

int Current();

};

Counter & MakeCounter(int value) {
return object {
void Next() { value++; }
int Current() { return value; }

};

Counter & froml00 = MakeCounter (100);
from100.Count () ;
cout << from100.Current(); // prints "101"

We observe that a function closure is merely a closure object with a single function call method (e.g.,
operator () in C++). It might be useful to allow function notation as syntactic sugar for this common case.
The next example shows a counter function that increases the counter each time the function is invoked.

typedef int (* Counter) ();

Counter MakeCounter(int value) {
return int (*) () { return value++; };

}

Counter froml00 = MakeCounter (100);

cout << from100(); // prints "100"
cout << from100(); // prints "101"

The following is a version of the multiple traversal example that uses internal iterators and closures
instead of external iterators. It is usually hard to perform nested iterations over the same collection using
internal iterators. Using lexical closures, such iterations become easy and natural. The key observation is
that we can pass to the inner iteration a closure that has access to the state of the outer iteration.

template <class Item> interface Action {
void Apply(Item i);

};
template <class Item> class List {
public:
void ForEach(Action<Item> & a);
/...
};

List<int> alist;

alist.ForEach(
object {
void Apply(int i) {

alist.ForEach(

object {
void Apply(int j) { cout << setw(8) << i * j; }

}

)

cout << endl;

19

Using function notation, the previous example can be rewritten as

aList.ForEach(
void (*) (int i) {
aList.ForEach(void (*) (int j) { cout << setw(8) << i * j; })
cout << endl;

)

Similar to the iterator example above, many applications of the Strategy pattern and its variations can
be expressed more naturally by creating a function that invokes a method from an object defined in the
current environment. The function itself can be invoked from elsewhere.

MyClass * receiver = new MyClass;

/...

void aCommand() { receiver->MyAction(); }
/...

otherFunction(aCommand) ;

Uses

Workarounds for the lack of lexical closures in a language are as pervasive [17, 29] as attempts to introduce
them into languages that lack them [5, 19]. Closures and closure objects are useful for any type of behavioral
parameterization, including callbacks in event-driven systems and parameters to applicative versions of
iterators as used in functional languages [28].

6 Metaclass Objects

Many patterns rely on the ability either to abstract over classes or to parameterize an operation based on an
object’s class. For example, it would be useful to allow object construction to be parameterized by a class
chosen at run time. It is also often desirable to abstract over methods that operate on the class itself rather
than on an instance of the class. An example of such a method is a method accessing a class instantiation
count.

To achieve abstraction over classes, we need an object representing the class at run time. Such metaclass
objects would have fields and methods associated with the class, such as instantiation counts or constructors.
We could then abstract over metaclass objects with regular interfaces, treat classes as values, and even allow
parameterization by a class.

Examples
Abstract Factory and Factory Method

The Abstract Factory pattern [21] provides an interface for creating families of products without specifying
their concrete classes. Suppose we want to configure an application with either the Presentation Manager
or the Motif look-and-feel. When creating widgets such as scrollbars or windows, the application should not
hard-code the names of the widget classes.

Given the following interfaces and classes,

interface AbstractScrollBar;
class PMScrollBar : implements AbstractScrollBar;
class MotifScrollBar : implements AbstractScrollBar;

interface AbstractWindow;

class PMWindow : implements AbstractWindow;
class MotifWindow : implements AbstractWindow;

20

we need to separate from the application the code for instantiating the classes. The application only knows
that the generated objects conform to the interfaces AbstractScrollBar and AbstractWindow, respectively.

The solution suggested by the Abstract Factory pattern is to introduce an interface for factories creating
the widgets.

interface WidgetFactory {
AbstractScrollBar & CreateScrollBar ();
AbstractWindow & CreateWindow ();

};

In C++, WidgetFactory would be defined as an abstract class. For each product family, a concrete factory
class is needed to generate the proper widgets:

class PMWidgetFactory : implements WidgetFactory {

public:
AbstractScrollBar & CreateScrollBar () { return new PMScrollBar; }
AbstractWindow & CreateWindow () { return new PMWindow; }

};

class MotifWidgetFactory : implements WidgetFactory {

public:
AbstractScrollBar & CreateScrollBar () { return new MotifScrollBar; }
AbstractWindow & CreateWindow () { return new MotifWindow; }

};

At startup time, one of the concrete factories is selected. The application refers to the factory through a
reference of type WidgetFactory.

The Factory Method pattern [21] is similar to the Abstract Factory pattern but refers to only one creation
method. In the above example, both CreateScrollBar() and CreateWindow() are factory methods. The
structure of the Factory Method pattern is often to make the application a framework class, called Creator,
with the factory method as an abstract method that needs to be supplied by a subclass ConcreteCreator.

The disadvantage of both patterns is that the different product families need to be mirrored by different
concrete factories and concrete creators, respectively. With a run-time representation of the product classes,
we could parameterize both the abstract factory and the creator, with the product class(es) to be instantiated.

Solution

Smalltalk-80 [22] supports classes as objects directly and, as discussed in Gamma et al. [21], such metaclasses
greatly simplify cases like the one described above. C++ only supports a limited form of metaclass by allowing
fields and variables to be declared static. For example,

class A {
private:
static int i;
public:
static int geti() { return i; }
AOQ { /% ... %/}
/...
I

declares that all instances of A share a common field i and the method geti(). Such metaclass data is not
encapsulated in an object but rather accessed using the scope resolution syntax. In this example, i and
geti() are accessed as C::i and C: :geti(), respectively.

The problem with static members as an approximation of metaclasses is that C++ does not allow the use
of classes as values. If the static parts were encapsulated in an object, we could assign metaclass objects to

21

references, invoke metaclass methods through these references and, most importantly, abstract over metaclass
objects using interfaces.

Ideally, any syntax for declaring metaclasses should attempt to group the methods and fields of the
metaclass object and the methods and fields of instances of the class into one construct in order to localize
class documentation and simplify maintenance. A simple C++-like syntax for merging metaclass definitions
and instance definitions into one construct might be

class A {
meta private:
int i;

meta public:
A & new();
A & new(int i, String s);
int geti() { return i; }

public:
int £O;
void g(int);
};

This construct would simultaneously define both the metaclass object and the implementation type of class
instances.

Note that the object constructor becomes the method new() of the generated metaclass object. Making
the constructor a method of the metaclass object with a well-known name allows us to abstract over object
creation, as needed for the Abstract Factory and Template Method patterns, and to statically type-check
this abstraction.

Abstracting over metaclass objects can be accomplished with interfaces that name the metaclass methods
but not the instance methods. This abstraction is unambiguous. For example, while

interface instanceA {
int £(Q);
void g(int);

};

abstracts over the instances of class A above,

interface metald {
instanceA & new();
instanceA & new(int, String);

};

abstracts over its metaclass object. Note that in this interface the return type of new is instanceA and not
A. This is necessary to enforce the encapsulation provided by class A and to allow the metaA interface type
to abstract over other implementations of the same interface as well.

Consider again the Abstract Factory pattern. Since the ConcreteFactory classes do nothing but create
instances of products from the proper product families, it would be possible to replace them completely with
an AbstractFactory class parameterized by the product family’s classes. With a statically type-checked
metaclass object (as with the object interfaces discussed in Section 4), it is also possible to check that only
the correct Product classes are created by methods of AbstractFactory.

For example, we can define interfaces for the products,

interface AbstractScrollBar {
void handleClick();
};

22

interface AbstractWindow {
void move(int x, int y);

};

and then define interfaces for classes that generate objects of types AbstractScrollBar and Abstract-
Window, respectively:

interface ScrollBarMaker {
AbstractScrollBar & new(int x, int y, String label);
};

interface WindowMaker {
AbstractWindow & new(int x, int y, int w, int h);

}

Implementations of the product classes can either implicitly or explicitly implement the product and meta-
class interfaces, as in

class PMScrollBar {
meta public:

PMScrollBar & new(int x, int y, String label) { /* ... %/ }
public:
void handleClick() { /* ... */ }

};

class PMWindow : implements AbstractWindow {
meta public:

PMWindow & new(int x, int y, int w, int h) { /* ... x/ }
public:
void move(int x, int y) { /* ... %/ }

};

class MotifScrollBar : implements AbstractScrollBar {
meta public:

MotifScrollBar & new(int x, int y, String label) { /* ... %/ }
public:
void handleClick() { /* ... */ }

};

class MotifWindow {
meta public:

MotifWindow & new(int x, int y, int w, int h) { /*x ... %/ }
public:
void move(int x, int y) { /*x ... */ }

};

A factory is then just a singleton object that is initialized with the product classes to instantiate. For
example,

object WidgetFactory {

private:
ScrollBarMaker & scrollbarMaker;
WindowMaker & windowMaker;

public:

void init(ScrollBarMaker & scrollbars, WindowMaker & windows) {
scrollbarMaker = scrollbars;

23

windowMaker = windows;

}

AbstractScrollBar & makeScrollBar(int x, int y, String label) {
return scrollbarMaker.new(x, y, label);

}
AbstractWindow & makeWindow(int x, int y, int h, int w) {
return windowMaker.new(x, y, h, w);
}
};

WidgetFactory.init (MotifScrollBar, MotifWindow);
AbstractWindow & win = WidgetFactory.makeWindow(0, 0, 100, 100);

In this example, the singleton object WidgetFactory fulfills the roles of both abstract and concrete factories
in the pattern. The static type-checking of metaclass interfaces guarantees that only the proper types of
classes will be used as the products. For example, a window class could not be passed in as the scrollbar
class to instantiate in makeScrollBar since a window class would not match the interface required by
ScrollBarMaker.

Using objects to package implementations, we can simplify this pattern even further and allow whole
component libraries to be checked. For example, we can package together all related product implementa-
tions:

object Motif {
public:
class ScrollBar {
meta public:

ScrollBar & new(int x, int y, String label) { /* ... %/ }
public:
void handleClick() { /* ... */ }

};

class Window {
meta public:

Window & new(int x, int y, int w, int h) { /* ... */ }
public:
void move(int x, int y) { /* ... x/ }

};
};

and then provide an interface description of such a package:

interface ProductLibrary {
AbstractScrollBar & ScrollBar.new(int x, int y, String label);
AbstractWindow & Window.new(int x, int y, int w, int h);

};

using syntax that allows to specify methods of nested classes.

This avoids many problems. ProductLibrary establishes an interface for all component libraries to be
used with the factory. It prevents, for example, Motif scrollbars from being used together with Presentation
Manager windows. The factory simply becomes a singleton object parameterized by the product library
from which to instantiate.

object WidgetFactory {
private:
ProductLibrary & P;

24

public:
void init(ProductLibrary & 1ib) {
P = 1lib;
}

AbstractScrollBar & makeScrollBar(int x, int y, String label) {
return P.ScrollBar.new(x, y, label);

}
AbstractWindow & makeWindow(int x, int y, int h, int w) {
return P.Window.new(x, y, h, w);

¥
};

WidgetFactory.init (Motif);

Uses

The Builder pattern [21] can benefit from metaclasses objects in a similar way as the Abstract Factory
pattern. Instead of writing product-specific concrete builder classes, we only need to parameterize the
Builder class by the concrete product to be built.

Interfaces for metaclass objects not only allow us to abstract over object creation but over any method
of the metaclass object. Suppose, we want to maintain instantiation counts for several unrelated classes. We
would define an interface for the methods to access the instantiation count. A function to print or analyze
these instantiation counts could then take as an argument any metaclass object conforming to the interface.

7 Method Dispatching on Multiple Parameters

Typical object-oriented programming languages such as Smalltalk-80 [22] and C++ [20] use single dispatching
to determine the method invoked. When a method is invoked on a receiver object, a suitable method
implementation is selected dynamically according to the class of the receiver. Other arguments do not
influence method selection and are simply passed to the method.

This approach works well for many kinds of methods, especially when the receiver is more important than
the other arguments for determining which method implementation to select. However, for some kinds of
methods, there might be several equally important arguments, and the asymmetry of the single-dispatch style
is not appropriate. Furthermore, it is often cumbersome to add a new method to each class in an otherwise
stable class hierarchy. Dispatch based on multiple arguments would allow defining the new method without
modifying the class hierarchy by dispatching on an argument whose type is a class from this hierarchy.

Methods whose selection is based on several arguments are called multimethods as supported in CLOS
[4, 25, 36] and Cecil [11, 12]. Typical multimethods include binary arithmetic operations, binary equality
testing, and simultaneous iteration over several collections.

Examples

Multimethods are not directly supported by single-dispatching object-oriented languages, but can be simu-
lated by invoking several methods such that each argument that participates in method selection acts as the
receiver once. As soon as the class of an object is known, the class name is encoded in the name of the next
method invoked. This technique is called multiple dispatching [24] or, in the common case of dispatching on
two arguments, double dispatching. Double dispatching is exemplified in the Visitor pattern [21].

25

The Visitor Pattern

In the Visitor pattern, a visitor represents an operation to be performed on the elements of a structure. This
allows defining new operations without changing the classes of the elements to be operated on.

As a typical C++ example of the Visitor pattern, consider abstract syntax trees and operations on these
trees in the context of a compiler (adopted from [21]). Abstract syntax trees are built from nodes for
assignments, variable references, expressions, and so on. Operations on abstract syntax trees include type
checking, code generation, flow analysis, etc.

If these operations were defined as methods for each node class, the code implementing the operations
would be distributed over the node class hierarchy, making it hard to understand and maintain. Furthermore,
adding a new operation would be tedious and would usually require recompiling all node classes.

Instead, the Visitor pattern expects the node classes to have a single method called Accept that takes
a visitor object as an argument. The pattern further relies on separate visitor classes corresponding to the
operations. For each node class XNode, each visitor has a visitation method VisitX that is invoked from
within the Accept method in the node class. This makes it easy to add a new operation, such as a new code
optimization scheme, in the form of a new visitor class.

When the Accept method is invoked, method selection is first based on the node class; the name of
the node class is then encoded in the visitation method invoked on the visitor object; finally, the visitation
method is selected based on the actual visitor class. Hence the Visitor pattern provides the effect of double
dispatching.

First, we define the Node interface with various implementation classes.

interface Node {
void Accept(NodeVisitor & v);

/...

I

class AssignmentNode : implements Node {

public:
void Accept(NodeVisitor & v) { v.VisitAssignment(this); }
/...

I

class VariableRefNode : implements Node {

public:
void Accept(NodeVisitor & v) { v.VisitVariableRef (this); }
/...

I

We define the NodeVisitor interface with implementations TypeCheckingVisitor and CodeGenerating-
Visitor.

interface NodeVisitor {
void VisitAssignment(Node & n);
void VisitVariableRef(Node & n);
/...

};

class TypeCheckingVisitor : implements NodeVisitor {
public:

void VisitAssignment (Node & n);

void VisitVariableRef (Node & n);

/...
I

26

class CodeGeneratingVisitor : implements NodeVisitor {
public:

void VisitAssignment(Node & n);

void VisitVariableRef(Node & n);

/...
s

Several problems arise when using the Visitor pattern. First, it is difficult to add new element classes.
Each new element class XNode requires defining a method VisitX in the interface NodeVisitor and cor-
responding method implementations in each visitor class to be added. This makes the visitor class library
difficult to maintain when not only operations, but also element classes are added frequently.

Second, the Visitor pattern assumes that the public interface of the Node class is large enough so that
visitors can do their job. This often leads to larger interfaces than otherwise desirable and potentially defeats
encapsulation.

Third, double dispatching is error-prone because it requires method selection to be implemented manually.
This makes it hard to see which argument combination causes the execution of which method.

Solution

Simulated double or multiple dispatching is a standard paradigmatic idiom in languages that do not support
multimethods directly. The Visitor pattern is actually an instance of this idiom.

The problems of the multiple dispatching idiom can be avoided if the language provides multimethods
as a built-in construct. Such a construct allows the programmer to indicate on which arguments method
selection should be based. Instead of specifying method lookup procedurally (as in the idiom), multimethods
provide a way of specifying method lookup declaratively [11].

We argue that multimethods make it easy to define new visitation methods or extend the element and
visitor class hierarchies alike. Using C++-like syntax, multimethods can be defined as methods in a class or
object. We suggest to perform dynamic dispatching on all arguments whose type is a class reference or class
pointer. Unlike static overloading resolution, dispatching is performed at run-time, although multimethods
can be statically typed [38, 10, 13].

By combining multimethods and packages, we can simplify the abstract syntax tree example by bundling
the visitation methods for each tree operation in a package.

object TypeChecker {

public:
void Visit(AssignmentNode & n);
void Visit(VariableRefNode & n);
/] ...

};

object CodeGenerator {

public:
void Visit(AssignmentNode & n);
void Visit(VariableRefNode & n);
/] ...

s

Node & root = // ...

TypeChecker.Visit (root) ;
CodeGenerator.Visit (root);

Both node classes and visitor objects can now be added easily. Adding a node class usually requires adding
the corresponding Visit methods in the visitor classes; methods can also be added to existing visitor classes

27

by using inheritance. Adding a visitor class does not require any change to the node classes; however, the
new visitor class must provide a Visit method for each existing node class.

Alternatively, the multimethods for type checker and code generator could have been put into a single
package by dispatching on two arguments. While not useful for this example, having a single package makes
sense in other cases, for example, when binary methods are involved.

The proposed multimethod mechanism follows the general rule that every method invocation must have
a receiver. For a multimethod defined in a class, the receiver is an instance of the class. For a multimethod
defined in an object, the receiver is the object itself. Syntactically, multimethods appear like statically
overloaded methods in C++ [20]. Semantically, multimethods reduce to overloaded methods only when
passed a class pointer or reference.

We propose an ezact-match multimethod selection scheme that operates in two steps. First, the method
is dispatched with respect to the receiver; this step determines in which class or object the method is defined.
Second, from all methods within the class of the receiver or within the receiver object, a method is selected
based on an exact match on the classes of all arguments. This approach allows the uniform treatment of all
methods as multimethods.

To avoid the complexity of best-match algorithms for multimethod selection, we suggest dispatching
only on parameters that have class reference or class pointer types. If the type of an argument in such a
parameter position is an interface reference or pointer type, then the run-time dispatch mechanism narrows
down the set of suitable method implementations to methods whose parameter type in this position matches
the current class of the argument value. If the type of an argument is a class reference or pointer type,
then the set of suitable method implementations can be narrowed down at compile time to methods with
this type in the given parameter position. This process is repeated for each argument until finally a single
method is selected to be called.

If all values passed to a method have class types, the method implementation can be fully selected at
compile time. In this case, method selection reduces to static overloading. To avoid the need for complicated
disambiguating rules for which method to select, parameters that have interface reference or pointer types
should not be used for dynamic method selection, and all multimethods with the same name should have
the same type in this parameter position. Since method dispatch is only performed for parameters of a class
type, there can be only one method with a given name whose parameters are all of interface types.

To guarantee that all method invocations can be handled, it is necessary to check statically whether all
combinations of parameter classes and interfaces are provided by a multimethod. Since the proposed object
system achieves subtyping via interface conformance instead of inheritance, an explicit subtype hierarchy
is no longer available at compile time (see Sections 2 and 3). Therefore, determining statically whether a
multimethod is defined for all parameter type combinations is slightly more complicated than in systems with
an explicit subtype hierarchy such as Cecil [13] and would require linker support. The necessary information
could be collected by the linker from the compiler-generated method dispatch tables.

To maintain an object-oriented or data-abstraction-oriented view of multimethods, we could conceptually
consider a multimethod as part of each class for which the method dispatches. It would thus be tempting to
give each multimethod access to the non-public fields of the parameters on which dispatching is performed.
However, this would compromise encapsulation since anyone could now gain access to the implementation
of an existing class by writing a multimethod that dispatches on a parameter of that class. We propose
separating dispatching and access as a solution to this problem. To grant the multimethod access to non-
public fields, the class should declare the multimethod or an entire package containing the multimethod as
its friend. Encapsulation problems as encountered in the Visitor pattern thus no longer occur.

Uses

Typical uses of multimethods include binary arithmetic operations, binary equality testing, simultaneous
iteration over several collections, and displaying a shape on an output device (see also [11]).

For example, a multimethod for iterating simultaneously over two collections could be defined as follows.
This method would traverse the two collections in lock step and apply a visitation function to each pair of

28

items visited in each step. Here, we present only the case for iterating over two lists.

void PairDo(List & c1, List & c2, PairVisitor v) {
for (ListIterator i(cl), j(c2); ! i.IsDone() && ! j.IsDone; i.Next(), j.Next())
v.Apply(cl.CurrentItem(), c2.CurrentItem());

8 Conclusion

We have examined design patterns, as representatives of common programming practice, and analyzed the
influence the choice of implementation language has on pattern design. We believe this analysis benefits
both the patterns community and the language communities.

Impact on Design Patterns

Based on our analysis, we have presented several general-purpose language constructs and mechanisms that
would simplify patterns if they were available in object-oriented languages. We argue that even if they are
not available in the chosen implementation language, design patterns should be described in terms of these
constructs and mechanisms. This makes patterns simpler, more succinct, and applicable to a larger set of
language communities.

To use design patterns written in terms of a larger set of constructs and mechanisms than the imple-
mentation language supports, it is necessary to combine these patterns with paradigmatic idioms, which
are patterns implementing the missing language constructs and mechanisms for a particular implementation
language.

With our set of language constructs and mechanisms, it is clearly possible to express all existing patterns
since these constructs and mechanisms are a superset of those found in typical object-oriented languages.
Additional constructs or mechanisms might be beneficial but would likely be specific to individual patterns
and of less general-purpose value.

Impact on Language Design

We suggest that future object-oriented languages provide the language constructs interface, object, and class
and the mechanisms interface conformance, code reuse, lexical scoping, and multimethod dispatch.

The proposed language mechanisms are all orthogonal; none can be simulated by a combination of the
others. These mechanisms extend traditional object-oriented mechanisms. Multimethod dispatch is an
extension of single dispatch. We propose separating the subtyping and code-reuse aspects of inheritance
and, as a result, could strengthen both.

Of the proposed language constructs, interface and object are orthogonal. A class is not orthogonal to
objects since it also creates the metaclass object. Rather a class is syntactic sugar for a combination of
the metaclass object together with a representation type. For orthogonality, it might be desirable to add a
language construct for specifying a representation type directly. Such a construct would be similar to record
in Pascal or struct in C, except that it can also contain methods. However, since the combination of a
representation type together with a metaclass object containing at least the method new is that common,
the class construct subsumes the functionality of a record. Since the class syntax is terser than manually
defining a metaclass object together with a representation type, and since it is more conventional, it should
be included with any object-oriented language.

It is up to the language designers to integrate the proposed constructs and mechanisms in an orthogonal
way into the design of an actual language. To our knowledge, there does not yet exist a programming language
that supports the full range of our language constructs and mechanisms. Modern functional languages, such
as ML, have closures and packages but lack classes. Most contemporary object-oriented languages do not
have closures and have only a rudimentary form of packages (e.g., namespaces in C++).

29

A language based on our constructs and mechanisms would benefit a larger community than just the

object-oriented community. For example, using lexically scoped closure objects allows us to write programs
in an abstract data type style or in a functional style as well as in an object-oriented style.

References

[1]

2]

3]

[4]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

Henry G. Baker. Iterators: Signs of weakness in object-oriented languages. ACM OOPS Messenger,
4(3):18-25, July 1993.

Gerald Baumgartner and Vincent F. Russo. Implementing signatures for C++. Technical Report CSD-
TR-95-025, Department of Computer Sciences, Purdue University, August 1995.

Gerald Baumgartner and Vincent F. Russo. Signatures: A language extension for improving type ab-
straction and subtype polymorphism in C++. Software—Practice & Ezperience, 25(8):863-889, August
1995.

Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor Kiczales, and
David A. Moon. Common Lisp object system specification: X3J13 document 88-002R. ACM SIGPLAN
Notices, 23(Special Issue), September 1988.

Thomas M. Breuel. Lexical closures for C++. In Proceedings of the 1988 USENIX C++ Conference,
pages 293-304, Denver, Colorado, 17-21 October 1988. USENIX Association.

Frank Buschmann and Regine Meunier. A system of patterns. In Coplien and Schmidt [18], chapter 17,
pages 325-343.

Roy H. Campbell and A. Nico Habermann. The specification of process synchronization by path ex-
pressions. In E. Gelenbe and Claude Kaiser, editors, Proceedings of the International Symposium on
Operating Systems, volume 16 of Lecture Notes in Computer Science, pages 89-102, Rocquencourt,
France, 23-25 April 1974. Springer-Verlag, Berlin, New York.

Peter S. Canning, William R. Cook, Walter L. Hill, and Walter G. Olthoff. Interfaces for strongly-typed
object-oriented programming. In Proceedings of the OOPSLA ’89 Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, pages 457-467, New Orleans, Louisiana, 1-6 October
1989. Association for Computing Machinery. ACM SIGPLAN Notices, 24(10), October 1989.

Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and Greg Nelson. Modula-3
language definition. ACM SIGPLAN Notices, 27(8):15-43, August 1992.

Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for overloaded functions with
subtyping. In Proceedings of the 1992 ACM Conference on Lisp and Functional Programming, pages
182-192, San Francisco, California, 22-24 June 1992. Association for Computing Machinery. Lisp
Pointers, 5(1), January-March 1992.

Craig Chambers. Object-oriented multi-methods in Cecil. In O. Lehrmann Madsen, editor, Proceedings
of the ECOOP °92 European Conference on Object-Oriented Programming, volume 615 of Lecture Notes
in Computer Science, pages 33-56, Utrecht, The Netherlands, 29 June - 3 July 1992. Springer-Verlag,
Berlin, New York.

Craig Chambers. The Cecil language: Specification and rationale. Technical Report 93-03-05, De-
partment of Computer Science and Engineering, University of Washington, Seattle, Washington, March
1993.

Craig Chambers and Gary T. Leavens. Typechecking and modules for multimethods. ACM Transactions
on Programming Languages and Systems, 17(6):805-843, November 1995.

30

[14] Marshall P. Cline and Greg A. Lomow. C++ FAQs: Frequently Asked Questions. Addison-Wesley,
Reading, Massachusetts, 1995.

[15] William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is not subtyping. In Proceedings
of the 17th Annual ACM Symposium on Principles of Programming Languages, pages 125-135, San
Francisco, California, 17-19 January 1990. Association for Computing Machinery.

[16] William R. Cook and Jens Palsberg. A denotational semantics of inheritance and its correctness. In
Proceedings of the OOPSLA °89 Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 433-443, New Orleans, Louisiana, 1-6 October 1989. Association for Computing
Machinery. ACM SIGPLAN Notices, 24(10), October 1989.

[17] James O. Coplien. Advanced C++ Programming Styles and Idioms. Addison-Wesley, Reading, Mas-
sachusetts, 1992.

[18] James O. Coplien and Douglas C. Schmidt, editors. Pattern Languages of Program Design. Addison-
Wesley, Reading, Massachusetts, 1995.

[19] Laurent Dami. Software Composition: Towards an Integration of Functional and Object-Oriented Ap-
proaches. PhD thesis, Université de Geneve, Geneve, Switzerland, April 1994.

[20] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-Wesley,
Reading, Massachusetts, 1990.

[21] Erich Gamma, Richard Helm, Ralph E. Johnson, and John M. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series. Addison-Wesley,
Reading, Massachusetts, 1995.

[22] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Implementation. Addison-
Wesley, Reading, Massachusetts, 1983.

[23] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules with sharing.
In Proceedings of the 21st ACM Symposium on Principles of Programming Languages (POPL), pages
123-137, Portland, Oregon, 17-21 January 1994. Association for Computing Machinery.

[24] Daniel H. H. Ingalls. A simple technique for handling multiple polymorphism. In Proceedings of the
OOPSLA 86 Conference on Object-Oriented Programming Systems, Languages, and Applications, pages
347-349, Portland, Oregon, 29 September - 2 October 1986. Association for Computing Machinery. ACM
SIGPLAN Notices, 21(11), November 1986.

[25] Guy L. Steele Jr. Common Lisp: The Language. Digital Press, Bedford, Massachusetts, 2nd edition,
1990.

[26] Andrew R. Koenig, editor. Working Paper for Draft Proposed International Standard for Information
Systems — Programming Language C++. Accredited Standards Committee X3, Information Process-
ing Systems, American National Standards Institute, X3J16/95-0087, WG21/N0687, 28 April 1995.
Available from http://www.cygnus.com/misc/wp/index.html.

[27] Thomas Kofler. Robust iterators for ET++. Structured Programming, 14(2):62-85, 1993.

[28] Thomas Kiithne. Inheritance versus parameterization. In Christine Mingins and Bertrand Meyer,
editors, Proceedings of the 1994 Conference on Technology of Object-Oriented Languages and Sys-
tems (TOOLS Pacific ’94), pages 235-245, Melbourne, Australia, 1995. Prentice-Hall. The article
in the proceedings was corrupted in typesetting; a correct version can be obtained from the author
(kuehne@isa.informatik.th-darmstadt.de).

31

[29] Konstantin Laufer. A framework for higher-order functions in C++. In Proceedings of the USENIX
Conference on Object-Oriented Technologies (COOTS), pages 103-116, Monterey, California, 26-29
June 1995. USENIX Association.

[30] Regine Meunier. The pipes and filters architecture. In Coplien and Schmidt [18], chapter 22, pages
427-440.

[31] Robin Milner and Mads Tofte. Commentary on Standard ML. The MIT Press, Cambridge, Mas-
sachusetts, 1991.

[32] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. The MIT Press,
Cambridge, Massachusetts, 1990.

[33] John Mitchell, Sigurd Meldal, and Neel Madhav. An extension of Standard ML modules with subtyping
and inheritance. In Proceedings of the 18th ACM Symposium on Principles of Programming Languages,
pages 270-278, Orlando, Florida, 21-23 January 1991. Association for Computing Machinery.

[34] David A. Moon. Object-oriented programming with flavors. In Proceedings of the OOPSLA ’86 Con-
ference on Object-Oriented Programming Systems, Languages, and Applications, pages 1-8, Portland,
Oregon, 29 September - 2 October 1986. Association for Computing Machinery. ACM SIGPLAN No-
tices, 21(11), November 1986.

[35] Diane E. Mularz. Pattern-based integration architectures. In Coplien and Schmidt [18], chapter 23,
pages 441-452.

[36] Andreas Paepcke. Object-Oriented Programming: The CLOS Perspective. MIT Press, Cambridge,
Massachusetts, 1993.

[37] Wolfgang Pree. Design Patterns for Object Oriented Software Developers. ACM Press, New York, New
York, 1994.

[38] Francois Rouaix. Safe run-time overloading. In Conference Record of the 17th Annual ACM Symposium
on Principles of Programming Languages (POPL), pages 355-366, San Francisco, California, January
1990. Association for Computing Machinery.

[39] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen. Object-
Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

[40] Mary Shaw. Patterns for software architectures. In Coplien and Schmidt [18], chapter 24, pages 453-462.

[41] Sun Microsystems, Mountain View, California. The Java Language Specification, Version 1.0 Beta,
30 October 1995. Available from ftp://ftp.javasoft.com/docs/javaspec.ps.

[42] Walter Zimmer. Relationships between design patterns. In Coplien and Schmidt [18], chapter 18, pages
345-364.

32

