
Compiler and Tool Support for Debugging Object Protocols

Sergey Butkevich* Marco Renedo*
* Dept. of Computer and Information Science

The Ohio State University
395 Dreese Lab., 2015 Neil Ave.

Columbus, OH 43210-1277
{butkevic,rened,gb} @cis.ohio-state.edu

Gerald Baumgartner* Michal Young'*
• * Dept. of Computer and Information Science

University of Oregon
120 Deschutes Hall

Eugene, OR 97403-1202

michal @cs.uoregon.edu

ABSTRACT
We describe an extension to the Java programming language that
supports static conformance checking and dynamic debugging of
object "protocols," i.e., sequencing constraints on the order in which
methods may be called. Our Java protocols have a statically check-
able subset embedded in richer descriptions that can be checked at
run time. The statically checkable subtype conformance relation
is based on Nierstrasz' proposal for regular (finite-state) process
types, and is also very close to the conformance relation for archi-
tectural connectors in the Wright architectural description language
by Allen and Garlan. Richer sequencing properties, which cannot
be expressed by regular types alone, can be specified and checked
at run time by associating predicates with object states. We de-
scribe the language extensions and their rationale, and the design
of tool support for static and dynamic checking and debugging.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging---debug-
ging aids, tracing; D.2.4 [Software Engineering]: Software/Pro-
gram Verification---assertion checkers; D.3.3 [Programming Lan-
guages]: Language Constructs and Features---classes and objects

General Terms
Debugging, protocols, sequencing constraints

1. INTRODUCTION
A repeated pattern in the history of software engineering research is
development of underlying principles for specifying certain proper-
ties, then development of specification formalisms and automated
checks for some part of those properties, and then migration of
some efficiently checkable part of those specifications to program-
ming languages. This pattern can be seen in abstract data types,
eventually (but only partially) realized in module and class con-
structs of modern languages, and in module interconnection spec-
ifications which likewise were developed first as extrinsic speci-
fications but are now at least partly internalized in the "package"
constructs of Java and Ada. Since there is a long thread of research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGSOFT 2000 (FSE-8) 11100 San Diego, CA, USA
© 2000 ACM ISBN 1-58113-205-0/00/0011...$5.00

in specifying the sequences of operations accepted at module in-
terfaces [9], and more recently development of extrinsic specifi-
cations of operation sequence protocols in architecture description
languages [2, 3, 12] as well as the StateChart part of UML [4, 18], it
is natural to consider whether and to what extent such protocols can
be incorporated directly into programming languages and checked
routinely as a part of normal compilation. Recent research in pro-
gramming language design and semantics has greatly widened the
class of interface properties that can be captured as part of type
compatibility, and Nierstrasz has shown in principle how operation
sequencing can be treated in a type system [13], but to date inves-
tigations of protocols as object types have been limited to pencil-
and-paper exercises. In this paper, we describe an extension to the
Java programming language which supports static protocol confor-
mance checking and dynamic checking of compatibility between
actual and declared behavior. The main innovation of the current
work is in the way the statically-checkable conformance relation
is embedded in a richer formalism for describing sequencing con-
straints and combined with dynamic checking of behavior. We have
implemented the static checking as an extension to the compiler of
Sun Microsystem's Java Development Kit, Release 1.1.7, and are
close to completion of the implementation of the support for dy-
namic checking.

1.1 Protocols as Part of Types
The interface specifications described here combine concepts of
access-right expressions, originally described by Kieburtz and Sil-
berschatz [9] with the regular object types of Nierstrasz [13]. They
are interface specifications, distinct and independent from mecha-
nisms used to implement the synchronization for enforcing a par-
ticular pattern of operations, such as path expressions [5]. Simi-
lar to Liskov and Wing's notion of behavioral subtyping [11], we
extend the subtype relationship with behavioral information. In-
terface specifications are related to architectural description lan-
guages (ADLs) such as Wright [2, 3] and Darwin [12]. But while
ADLs are language independent and capture higher-level architec-
tural structures, our interface specifications are language specific,
which allows some static checking and enables the compiler to gen-
erate code for dynamic monitoring. Our approach is partly based
on Nierstrasz' regular types for active objects [13]. Similar for-
mal models have been developed for concurrent objects with asyn-
chronous message passing [16]. We adapted Nierstrasz' work to
specifying and type-checking object protocols in Java. Further-
more, we extended the specification of protocols to allow dynamic
checks of the actual behavior.

The type or interface of a class specifies a set of operations or meth-

50

ods provided by a class. Often these methods can be called only in
a particular order, but the order is not part of the interface and can-
not be checked by a Java compiler. (The situation is similar for
other strongly-typed, object-oriented languages.) The well-known
benefits of static type checking are thus available for such proper-
ties as the number and order of arguments to each method, but not
for the sequencing of method calls. Protocols add this sequencing
information to class and interface declarations and allow a compiler
to check whether the declared intent of an object making method
calls is compatible with the sequences supported by the object be-
ing called.

An extension of Ada that employs behavioral subtyping and is sim-
ilar in some ways to our approach has been proposed by Puntigam
[17]. Our approach differs in two fundamental ways: First, we
treat a protocol as a contract between individual objects, whereas
Puntigam's behavioral types specify what a set of objects may do
collectively. Second, Puntigam's proposal is for static verification
of actual behavior through program analysis; our more modest and,
we think, more practical approach combines static verification of
declarations with dynamic checking of actual behavior. In addition,
our protocol specifications are somewhat more expressive, support-
ing non-determinism that cannot be expressed in Puntigam's behav-
ior specifications.

1.2 Debugging Support for Protocols
Since compile-time checks are limited to checking regular (finite-
state) specifications and are not, in general, capable of determining
whether actual run-time behavior is consistent with these declara-
tions of intent, additional checking is necessary at run time. To
allow this run-time checking, the compiler instruments the gener-
ated code such that the run-time behavior is communicated to a
debugging tool that compares the dynamic behavior with the de-
clared behavior and either logs protocol violations or generates run-
time errors. For checking the method call sequence, the debugging
tool employs a labeled transition system, in which each method
call triggers a state transition. After each state transition predicates
can be evaluated to check the consistency between actual behavior
and declared intent. Also, the debugging tool provides support for
checking whether a labeled transition system is in a final state.

2. LANGUAGE DESIGN
2.1 Formulation of the Problem
Assume we are given a class R andomAcc e s s implementing some
interfaces DataOutput and DataInput.

class RandomAccess
implements DataOutput, DataInput {

// ...

)

Now assume that a client of class RandomAccess contains the
following piece of code.

/ / . . .

DataInput file = new RandomAccess();
file.open();
x = file.read();
file.close();
y = file.read();
// ...

This code will compile without errors or warnings. However, it is
clearly not what was meant by the author of class R a n d o r a k c c e s s
A client should not read from a file after it has been closed. What
is missing in the source code is a description of the order in which
the methods of a class or an interface must be called.

2.2 Protocol Declarations
We introduce a new language construct 1 , a protocol declaration, or,
briefly, a protocol. A protocol declaration can appear in an interface
or in a class. Syntactically, a protocol is introduced by the keyword
" p r o t o c o l " and contains a block of protocol statements. (We
are using double quotes to denote literals and symbols.) Unlike
methods, classes, and interfaces, a protocol does not have a name
but is associated with its enclosing class or interface.

In the simplest case, a protocol contains just a single regular expres-
sion over the alphabet of all public method names. For the interface
D a t a I n p u t the protocol might be:

interface DataInput {
protocol { open, read*, close; }
// ...

}

This means that an object of a class that implements this interface is
allowed to call the method o p e n once, then call the method r e a d
zero or more times, and then call the method c l o s e before being
destroyed (garbage-collected).

A reasonable protocol for the class R a n d o r o A c c e s s would be the
following:

class RandomAccess
implements Data0utput, DataInput {

protocol (open, (readlwrite)*, close; }
// ...

}

The latter protocol allows more functionality than the former. We
say that the protocol of class R a n d o m k c c e s s conforms to that of
interface D a t a l n p u t . An object X conforms to an object Y, if
X is request substitutable for Y. I.e., if a client of Y expects Y to
accept a sequence of requests s, and we substitute X for Y, then X
will accept the same sequence s. (A more formal definition of the
notion of conformance will be given later, when we describe more
general types of protocols.)

The conformance relation is a partial ordering among types. It has
to be consistent with the subtype relation, i.e., if a class or interface
X is a subtype of another class or interface Y, then the protocol
of X must conform to the protocol of Y. Otherwise, the compiler
should generate an error. If an interface or class X has no protocol
declaration, the default protocol is a s sumed- - i.e., methods of such
a class can be called in any order. Such a protocol represents a
minimal element with respect to our conformance relation, i.e., it
conforms to any other protocol. If we use the symbol -< to mean
"conforms to," then we have:

Default ~< RandomAccess -< DataInput

i ln the initial version we chose to extend the syntax directly. A
future version may encapsulate the construct in a formal JavaDoc
comment, as done in iContract [10].

51

push

pop

=(Re~ push, pop

Figure 1: The LTS for interface Stack

where De f a u 1 t denotes a default protocol.

Can the allowed sequences of operations always be expressed as
a single regular expression? The following example shows that,
unfortunately, this is not possible. Consider a simple interface for
a stack.

interface Stack {
public void push(int i);
public int pop();

)

We would like to write a protocol for this class that would allow se-
quences of requests such as (p u s h , p o p) or (p u s h , p u s h ,
p o p) , but would disallow, for example, the sequences of requests
(pop) or (p u s h , p o p , p o p) . A regular expression or a de-

terministic finite automaton (DFA) cannot do that since it cannot
keep track of the number of elements on the stack. Other finite-state
specifications share the same fundamental limitation in expressive-
ness. Thus, we would need a richer language, such as a context-
free grammar. The conformance check for context-free languages,
however, is undecidable, which makes it unsuitable for use in the
type system of a programming language. Following the idea intro-
duced by Nierstrasz [13], we use a labeled transition system (LTS)
over the alphabet of all public methods of a class or interface to
describe the protocols, which, in general can be non-deterministic.
This allows writing protocols that represent a reasonable approx-
imation for possible object behaviors and, at the same time, are
simple enough that the conformance check can be performed at
compile time.

Using this approach, we can write the protocol for the interface
S t a c k as follows:

protocol (
start final state e;
final state ne;
<*> push <ne>;
<ne> pop <*>;

}

Figure 1 shows the LTS defined by this protocol. Clearly, this
protocol is only an approximation for the stack behavior. It dis-
allows the sequence (pop) but still allows the sequence (p u s h ,
p o p , p o p) . Internal non-determinism (as opposed to external
non-determinism) is introduced as an artifact of modeling, i.e., de-
terministic choices of the service are modeled as arbitrary choices.
It is for this reason that the protocol must be modeled as a labeled
transition system (LTS) with failure semantics, and not as a lan-
guage acceptor in which non-determinism can be removed by trans-
formation to a deterministic finite-state acceptor using the subset
construction (see Section 2.8). Because internal non-determinism
is an artifact of abstraction in the finite-state model and not a feature
of the actual system, these same internal choices are interpreted
differently in run-time checks. Using these run-time checks, the

sequence (p u s h , p o p , p o p) can be disallowed as well (see
Section 2.9).

A formal protocol syntax specification is given in Figure 2. Below,
we outline its main features. Some details were intentionally left
out for the sake of brevity.

A protocol declaration consists of a series of protocol statements.
Each protocol statement is either a state declaration, a regular ex-
pression declaration, or a sequencing statement.

2.3 State Declarations
A state declaration declares one or more state identifiers that sub-
sequently can be used in sequencing statements. Final states can
be identified with the modifier " f i n a l ". The start state can be
identified with the modifier " s t a r t ". Each state identifier is fol-
lowed by an optional "=" sign followed by a boolean expression,
which represents a state predicate. Its meaning will be explained
later. There are two implicitly defined states - - the default start
state and the default final states that are represented by empty state
expressions on the left side and on the right side, respectively, of a
sequencing statement.

In the S t a c k example above, we defined two states - - e and n e
(corresponding to empty and non-empty states of the stack). Both
states are final, which means that an object implementing this in-
terface is allowed to be destroyed at every state. In the example of
D a t a I n p u t there are no explicitly defined states.

2.4 Regular Expression Declarations
A regular expression declaration defines one or more names for
regular expressions. This might be thought of as a macro definition
and might be useful when writing complex protocols.

2.5 State Lists
A state list is either the literal " * " or a list of one or more identifiers
separated by commas. The literal " * " is interpreted as the list of
all explicitly declared state identifiers.

2.6 Sequencing Statements
In the simplest case, a sequencing statement is just a regular ex-
pression (as in the D a t a I n p u t example).

More generally, a sequencing statement consists of an optional state
list, followed by a regular expression over the alphabet of public
method names, another optional state list, and a semicolon.

A sequencing statement defines state transition in the LTS defining
the protocol. An individual regular expression describes a language
of allowed sequences, and the appropriate semantics for this is lan-
guage acceptance (also called trace semantics). There is no internal
non-determinism, so we can use the standard subset construction
[1, p. 117] to represent each individual regular sequencing state-
ment as a deterministic acceptor, while still maintaining the failure
semantics of the protocol LTS as a whole.

If the left-hand side (LHS) and right-hand side (RHS) state lists
specify only one state each, the start state of the DFA is the LHS
state, and the final state of the DFA is the RHS state. An empty
LHS represents the default start state. An empty RHS represents
the default final state. If there are multiple LHS states, multiple

52

(ProtocolDeclaration > ::=

(ProtocolStatement) ::=

(StateDec) ::=

(RegExpDec) ::=

(SeqStatement) ::=

(State List) ::=

(RegExp) ::=

(MethodCallPattern) ::=

(PatternArgumentList) ::=

(PatternArgument} ::=

" p r o t o c o l { " { (ProtocolStatement) } " } "

(StateOec) I (RegExpOec) I (SeqStatement)

[" s t a r t "] [" f i n a l "] " s t a t e " (Javald) ["=" (JavaBoolExp)]
{ " , " (Javald)["=" (JavaBoolExp)]} ";"

" r e g e x p " (Javald "=" (Regexp) { " , " (Javald) } "=" (RegExp> "; "

"<" (StateList) ">"] (RegExp) ["<" (StateList) ">"] " ; "

. (]avaZd> { " , " (Jav.Zd)}

[.] " [" [(MethodCallPattern) { " , " (MethodCallPattern) } "]"]
(RegExp) I (RegExp) "+" I (Regexp> "? "
(Regexp> " I" (Regexp) I (RegExp> ", " (Regexp> I " (" (Regexp) ")"

(Javald> [(" [(PatternArgumentList)] ") "]

(PatternArgument) { " , " (PatternArgument) }

..... [(JavaType)

Figure 2: Protocol Grammar Definitions

RHS states, or both, the sequencing statement is equivalent to a se-
ries of sequencing statements with the same regular expression and
all possible LHS-RHS state pairs. The protocol LTS is constructed
by connecting the DFAs resulting from individual sequencing state-
ments.

If a public method of a class or interface is not mentioned in any
sequencing statement or regular expression definition, it is assumed
that no restrictions are imposed on its use. In other words, not men-
tioning a public method f o o in the protocol declaration is equiva-
lent to every state in the LTS having a transition on f o o onto itself.

2.7 Regular Expressions
We use a conventional syntax for regular expressions except that
the comma operator corresponds to concatenation in 1 ex-style reg-
ular expressions. A vertical bar represents a choice between two
subprotocols. The operators "* ", "+" , and " ? " denote zero or
more, one or more, and zero or one occurrences of the regular fac-
tor, respectively. A list of method call patterns between brackets is
equivalent to the same list of patterns separated with vertical bars.
A bracketed list of patterns with the literal ",,~" in front denotes
the list of all possible method call patterns of any public method of
the class or interface except the ones listed. Parentheses are used to
group terms together.

The simplest method call pattern, an identifier f o o , indicates that
any public method f o o can be called by a client. By provid-
ing types as arguments, a smaller set of methods out of the set of
all overloaded methods can be selected. The literal "*" inside a
method call pattern acts as a wild card.

2.8 Conformance
How should a conformance relation between two protocols be for-
mally defined? We employ the principle of request substitutability
introduced in [13]. Protocol Y conforms to protocol X if all se-
quences of requests supported by X will be also supported by Y
and, moreover, that any request refused by Y after accepting one
of those sequences might also have been refused by X. More for-
mally, Y -< X if

t r a c e s (X) C_ t r a c e s (Y) (1)

f a i l u r e s x (Y) C_ f a i l u r e s (X) (2)

push = ~ push, pop

Figure 3: The LTS for interface V a r

E.g., suppose a client makes method calls according to interface
protocol X on an object implementing the class protocol Y. Condi-
tion (1) specifies that any sequence of method calls the client might
make is understood by the object. Condition (2) specifies that i f af-
ter accepting a sequence of method calls, the object fails to accept
the next method call, then this failure is also possible according to
the interface protocol.

Without non-determinism, condition (2) is redundant, but i f internal
non-determinism is present, as in the case of our S t a c k example,
it is necessary to check both conditions.

As an example, assume we have an interface for an uninitialized
variable that has two public methods, which we also call p u s h and
pop.

interface Var {
protocol {

final start state e;
final state ne;
<e> push <ne>;
<ne> pop I push <ne>;

}

public void push(int i);
public int pop();

l

Figure 3 shows the LTS defined by this protocol. The protocol of
interface V a r allows more freedom than that of S t a c k , and we
would expect that v a r conforms to s t a c k , but not vice versa.
Note though that t r a c e s (V a r) = t r a c e s (S t a c k) , so we cannot
distinguish between the two protocols by their traces only. How-
ever, if we compare the failure sequences, the difference between
the two protocols becomes clear. The protocol of v a r will always
accept the call sequence p u s h , p o p , p o p , whereas the proto-
col of S t a c k might not. This means that the set of the relative

53

failures of Stack with respect to Oar is not a subset of the failure
set of Var. Hence, Vat -< Stack, but Stack ~ Var.

In [13], an algorithm for conformance checking between two LTSs
was given. We use this algorithm as part of the type checking
phase of the compiler. If a class/interface Y extends/implements
class/interface x, then the protocol of Y must conform to that of
x. Otherwise, a compilation error is reported. For example, if we
declare interface S t a c k as extending interface O a r with the pro-
tocols described above, we will receive a compilation error saying
that the protocol of S t a c k does not conform to that of Var .

There is a serious deficiency in describing protocols with finite-
state LTSs - - they are only approximations of real protocols, as
seen in the S t a c k protocol. This protocol does not rule out the se-
quence of calls p u s h , p o p , pop . It only tells that it might fail.
As we noted earlier, if we tried to specify protocols more precisely,
we would not be able to perform the conformance check during
compile time and their language would become too complicated
for them to be useful. However, we can do better at run time by
attaching predicates to the states, choosing among branches of the
LTS at run time.

Part or all of the internal non-determinism in protocol specifica-
tions, which plays a role in static conformance checking, is re-
moved by evaluating the predicates at run time. The remaining
non-determinism is interpreted as external choice. While we use
failure semantics for static checks of the conformance relation be-
tween declared protocols, language (trace) acceptance is the appro-
priate semantics for run-time checks of the consistency between
actual behavior and declared intent.

2.9 State Predicates
A state predicate is a Java boolean expression that is an optional
part of a state declaration and is associated with a state. It is stored
in the LTS and is evaluated at run time to choose between several
non-deterministic transitions in the LTS. A state predicate has class
scope (syntactically it is the same as an initializer of a class field).

As an example, we can add another method i s E m p t y () tO Our
S t a c k interface and rewrite the interface as follows:

interface Stack {
protocol {

start final state e = isEmpty{);
final state ne = !isEmpty();

<ne> pop <*>;

<*> push <ne>;
}
public void push(int i);

public int pop();

public boolean isEmpty();
}

The state predicates are only used at run time. They have no effect
on the compile-time conformance check. Moreover, it is not pos-
sible for the compiler to check whether they are reasonably imple-
mented and not self-contradictory. However, they provide essential
information for debugging.

2.10 Debugging
For demonstrating the use of debugging, consider the following ex-
ample (from some file f o o . j a v a) in which the protocol of inter-

face S t a c k i s v i o l ~ e d by cal l ingthe method p o p on an empty
Stack:

Stack a = new StackImplementation();

a.push(3);

int x = a.pop();
int y = a.pop();

Since, in general, the compiler cannot detect protocol violations
as in the second call of p o p (), we provide run-time debugging
support to detect such protocol violations.

There are two main design issues involving debugging. First there
is the problem of how to implement the LTS tracing so that it can
be used in already existing code, and second what action should be
performed when a protocol violation is detected.

With respect to the first problem, one alternative would be modi-
fying the Java Virtual Machine so that it traces the LTS. A second
alternative would be modifying the compiler so that it inlines ad-
ditional functionality in the client code. The approach we adopted
is to introduce a Wrapper (as in the Decorator design pattern [7])
in the first line between reference a and the S t a c k r m p l e r a e n t a -
t i o n object. In this way, any time there is a method call to object
a, the W r a p p e r object can trace the protocol (perform an LTS
transition) as a side effect, while calling the same method on the
object of class StackImplementation. We can automate this
modification and make it invisible to the user by modifying the
compiler. For every assignment in which the left-hand side type is
an interface type with a protocol, the compiler inserts a W r a p p e r
constructor call on the right hand side. This approach has signifi-
cant run-time overhead but the user does not need a special Java
Virtual Machine to take advantage of this functionality. In any
case, this aspect of the implementation strategy is independent of
the overall approach to specifying and checking object protocols.

With respect to the second problem, only the user knows exactly
what to do in case of a protocol error. For maximum flexibility,
we provide a mechanism for selecting the error handling behav-
ior. Following the Strategy design pattern [7], we provide an in-
terface ~ . r r o r r t a n d l e r , in which each method corresponds to a
possible type of protocol violation, and allow the user to select an
appropriate implementation of this interface. We provide standard
error handier implementations for logging protocol violations and
for raising run-time exceptions. Using a simple API users can write
custom error handiers.

Run-time tracing of the protocol can serve at least four purposes.
It is up to the user to decide what role protocols should play in the
debugging process:

• Finding errors in the client's implementation. This is po-
tentially the most useful application of the run-time checking
of protocols. If there is a misuse of a class or interface, it will
be reflected in a violation of the protocol of that class or in-
terface and the user will be able to detect this violation by
tracing its protocol.

• Debugging the protocol. The user can write test harnesses
and check if the LTS generated from the protocol behaves as
expected at run time.

• Using exceptions to control the application. By using an
error handier that throws exceptions in case of a protocol vio-

54

lation and by catching these exceptions in the client, the LTS
can be (mis)used as part of the control of the application.

• F inding errors in the server 's implementation. Using an
interface with the same protocol as the class and with appro-
priate state predicates, it is possible to build a test harness for
the class such that protocol violations indicate errors in the
class.

3. EXAMPLE
To demonstrate the usefulness of protocols in practice, consider the
class j ava. util. zip. ZipOutputStream:

public class ZipOutputStream
extends DeflaterOutputStream {

public ZipOutputStream(OutputStreamout);
public
public
public
public
public
public

public
public
public
public

static final int DEFLATED;
static final int STORED;
void close() throw IOException;
void closeEntry() throw IOException;
void finish () throws IOException;
void putNextEntry(ZipEntry e)
throws IOException;
void setComment(String comment);
void setLevel(int level);
void setMethod(int method);
synchronized void
write(byte[] b, int off, int len)
throws IOException;

For using an object of this class properly, the user must invoke its
methods in a particular order, as described, for example, in the book
Java in a Nutshell [6]:

This class is a subclass of DeflaterOutput-
Stream that writes data in API file format to
an output stream. Before writing any data to
the Z i p O u t p u t S t r e a m , you must begin an entry
within the ZIP file with p u t N e x t E n t r y () . The
Z i p E n t r y object passed to this method should spec-
ify at least a name for the entry. Once you have be-
gun an entry with putNextEntry (), you can write
the contents of that entry with the w r i t e () methods.
When you reach the end of an entry, you can begin a
new one by calling p u t N e x t E n t r y () again, or you
can close the current entry with c l o s e E n t r y () , or
you can close the stream itself with c l o s e ().

Before beginning an entry with p u t N e x t E n t r y () ,
you can set the compression method and level with
setMethod () and setLevel (). The constants
DEFLATED and STORED are the two legal values for
setMethod(). If you use STORED, the entry is
stored in the ZIP file without any compression. If you
use DEFLATED, you can also specify the compression
speed/strength tradeoff bypassing a number from 1 to
9 to s e t L e v e l () , where 9 gives the strongest and
slowest level of compression. You can also use the
constants Deflater.BESTSPEED, Deflater.
BEST_COMPRESSION, and Deflater .DEFAULT

_COMPRESSION with the setLevel () method.

Not only is this text hard to read, it is also of little use in debugging
a client of class z i p o u t p u t s t r e a m . Given the simple protocol

declaration

protocol {
((setMethod I setLevel)*,
putNextEntry,
write*,
closeEntry?
)*, close;

}

the appropriate use of the class becomes much more understand-
able. Furthermore, by adding an interface and an adapter class with
this protocol, we enable our debugging tool to detect protocol vio-
lations, such as a call to w r i t e () that immediately follows a call
to setMethod ().

The protocol can be made more precise by using the class states
DEFLATED and STORED as protocol states:

protocol {
start state DEFLATED;
state STORED;
final state DONE;

<DEFLATED>
putNextEntry, write*, closeEntry?
<DEFLATED>;

<STORED>
putNextEntry, write*, closeEntry?
<STORED>;

<DEFLATED,STORED> setMethod
<DEFLATED,STORED>;

<STORED> setLevel <STORED>;
<DEFLATED,STORED> close <DONE>;

Note that the original verbal description of the protocol failed to
mention in which state (DEFLATED or STORED) an object of type
z i p o u t p u t S t r e a m is originally constructed. A quick glance at
the source code shows that the start state should be DEFLATED.
Also, the above protocol should be extended to mention the meth-
ods s e t C o m m e n t () and f i n i s h () , whose descriptions have
been left out of the book.

4. IMPLEMENTATION
This section describes the changes we made or plan to make to
the Java Development Kit, Release 1.1.7 [19] for implementing
compile-time and run-time support for protocols. The compile-
time conformance check is implemented and fully functional, also
in the case of separate compilation. In particular, all the examples
that we consider in the text would compile with our modified Java
compiler. However, we did not yet implement support for method
signatures in method call patterns, negation in regular expressions,
and regular expression (macro) definitions. The run-time debug-
ging support is also fully functional. We are currently in the pro-
cess of finishing the implementation in the compiler of generating
and instantiating the wrapper classes.

4.1 Compile-Time Implementation
The compile-time implementation consists of four main parts

1. Parsing protocols. We modified the j avac compiler so that
it recognizes the new keyword p r o t o c o l , parses protocols,

55

creates a parse tree for each protocol, and reports syntax er-
rors.

2. Semantic analysis. In this stage we generate an LTS from
the parse tree. Each regular expression is first translated into
an NFA using Thompson's construction and then this NFA
is translated into a DFA using the subset construction [1,
pp. 122, 117]. 2 Then a protocol LTS is built by connecting
these individual DFAs. This automaton is non-deternfinistic,
in general. We do not convert it to a DFA, since the con-
formance relation that we use is not preserved under such
conversion. The protocol LTS has two types of states - - the
states that were generated as a result of conversion of regular
expressions to DFAs and the states that were explicitly de-
fined by the programmer in the protocol. The data structure
representing the latter type of states contains extra informa-
tion, such as state predicates and source file line and position
number.

3.

4.

Conformance checking. If a class or interface extends or
inherits another class or interface and both of them have pro-
tocols, the compiler performs the conformance check be-
tween the protocols. For this conformance check, we use
the algorithm proposed by Nierstrasz [13]. Since that algo-
rithm assumes that all states of the LTS are final, we made
a simple modification to the algorithm so that it can com-
pare two LTSs that possibly have non-final states. In the
worst case, the running time of this algorithm is exponen-
tial in the number of states. However, in a typical case, it is
much faster. If the LTSs are deterministic, the running time
is quadratic [13]. Since we do not expect typical protocols
to be overly non-deterministic, the exponential worst-case
behavior should not be a problem. Note that we check the
conformance of the protocol LTSs without taking state pred-
icates into account (since the task of conformance checking
would become undecidable otherwise). If the protocol of the
subtype does not conform to the protocol of the supertype, a
type error is reported.

Storing protocols in binary code. If the conformance check
was successful, then a representation of the protocol LTS is
stored in the class file as a user-defined class attribute. This
allows performing the conformance check between protocols
from different source files, which is necessary for separate
compilation. The class file so created is readable by a stan-
dard Java compiler and by a standard Java virtual machine.
However, only a modified compiler is able to read the proto-
col LTS back from the class file.

4.2 Run-Time Implementation
When a piece of code (the client code) assigns an object (the server)
to a reference, and this reference has as type an interface with a
declared protocol, the tool initializes an LTS that corresponds to
that protocol.

For example, if file f o o . j a v a contains the line:

I a = new C();

2Recall that the regular expression parts of protocol specifica-
tions describe language acceptance, and involve no internal non-
determinism; converting them (individually) to deterministic au-
tomata thus gives the correct semantics in the overall LTS repre-
sentation.

then an LTS is initialized when the client code f o o . j a v a assigns
the server new C () to the reference a. The initialized LTS corre-
sponds to the protocol of interface I . The simulation of the LTS is
stopped when the reference is garbage collected.

The main purpose of the run-time tool is to detect violations of
the protocol specified in the interface when calling a method on a
variable of the interface type.

Every time the client code calls a server method through the ref-
erence, the tool checks if any of the possible current states of the
LTS allows that method call. If so, a state transition is performed
in the LTS and the server method is executed. After the server
returns from executing the method, the LTS states for which the
corresponding state predicate is false are removed from the set of
possible states.

I m p l e m e n t a t i o n O v e r v i e w
A w r a p p e r object is inserted between the reference and the server
in the statement where the assignment occurs. The client code of
the previous example is modified as follows:

I a = new Wrapper(new C());

In this way, any call to a method of the server through the refer-
ence first has to go through a method call on the W r a p p e r object.
So far this insertion has to be done manually, but we are working
on modifying the compiler so the insertion will be done automat-
ically when the client code is compiled. The W r a p p e r class is
tailored to the interface, that is, for each interface 1 there is an
l _ W r a p p e r class. We are working on modifying the compiler
so the wrapper class will be created automatically when compiling
the interface. The common code among the Wrappers is con-
tained in the superclass T r a c e r . Additional data structures are
the Protocollnformation class, used to store the specifica-
tion of an LTS, and the T r a c e S t a t e class, used to store the state
of an LTS. Sometimes reporting is desirable after the reference has
been garbage collected, so a list of T r a c e S t a t e s is kept sepa-
rately for that purpose. See Figure 4 for a UML diagram of the
class hierarchy.

Below we explain in more detail the components of the ran-time
implementation.

D a t a S t ruc tures
The data structures involved in the run-time implementation are:

Several classes /_Wrapper, one for each interface I that
contains a protocol declaration. The c l a s s / _ W r a p p e r will
be created by the compiler when compiling the interface 1.

Class Tracer: an instance of this class simulates an LTS. It
is a superclass for the W r a p p e r classes.

Interface ErrorHandler, which can be implemented by
the user for controlling protocol error handling and reporting.
Some standard error handler classes are provided, which can
be extended by the user.

Class TraceState: an instance of this class holds the cur-
rent state and the history of an LTS.

56

< < i n t e r f a c e > >
S t a c k) [T r a c e r ~ - - ~ T r a c e S t a t e ~-- 7

t t T
I Stack-Wrapp I Protocollnforrnation

Figure 4: Class diagram for the run-time tool

• Interface TraceFilter, which can be implemented by the
user to select T r a c e S t a t e s currently in memory that sat-
isfy specified conditions.

• Class P r o t o c o l I n f o r m a t i o n : an instance of this class
holds the specification of an LTS at run time.

Class Wrapper
The main role of this class is to enrich any method call to the
server object with operations to help trace the states of the LTS. A
W r a p p e r contains code specific to a particular interface. Every-
thing else is implemented in class T r a c e r , which is a superclass
of the Wrappers.

The Wrapper alSO creates the run-time description of the protocol
as a static object of type P r o t o c o l I n f o r m a t i o n .

Assume that class StackImpl implements the interface Stack
defined above, and that line 15 of file f o o . j a v a contains the fol-
lowing assignment:

Stack a = new StackImpl();

When compiling file f o o . j a v a , our compiler will (eventually)
replace the assignment by

Stack a = new Stack Wrapper(new StackImpl(),
this, "foo.java: line 15.");

The class Stack_Wrapper would have been generated previ-
ously by the compiler when the interface S t a c k was compiled:

public class Stack_Wrapper extends Tracer {
public Stack_Wrapper(Stack server,

Object client,
String lineAndFile) {...}

public void push(int i) {...}
public int pop() {...}
public boolean isEmpty() {...}
public boolean verify() {...}

)

T h e / - - W r a p p e r class for an interface I implements every method
of that interface as a sequence of three method calls:

1. A call to the method announce (), which is inherited from
class T r a c e r , to check if the method is valid, i.e., if there
are any edges with that method's name out of any of the cur-
rent states of the LTS.

2. A call to the corresponding method of the server.

3. A call to the method a d v a n c e () , which is inherited from
class T r a c e r , to perform the transition in the LTS to the
new states, and to check state predicates.

Method p u s h () of class S t a c k W r a p p e r is implemented as

public void push(int i) {
announce(METHOD_PUSH);
server.push(i);
advance(METHODPUSH);

}

The method v e r i f y () removes all the states that do not satisfy
their state predicates from the list of current states. This method is
interface dependent because it evaluates the state predicates.

Class Tracer
Class Tracer is the simulator of the LTS. The algorithm used to
simulate the LTS involves three phases:

• Announce phase. The Wrapper announces to the Tracer
that a method is going to be called. The Tracer checks if
any of the current states allows that method call. If there are
none we say that the method is invalid.

• Advance phase, After the method has been called on the
server, the T r a c e r computes the list of new current states
by finding the states that we can jump to from the old states
by calling that method. Then the T r a c e r takes off this list
all the states that do not satisfy their state predicate. If the
list is now empty we say that the state is invalid.

• Finalize phase. This phase occurs when the Wrapper is
garbage-collected. One would like to detect if the proto-
col terminated in a final state or not. According to the Java
Language Specification [8] any method f i n a l i z e () im-
plemented in a class is always called by the virtual machine
when an object of this class is about to be garbage collected.
We employ this feature and insert an appropriate algorithm
in the method finalize () of the Tracer so that when
the W r a p p e r is garbage-collected, it checks if any of the
current states is a final state. If none of the current states is a
final state we say that the protocol is not in a final state.

To allow users to query the state of a protocol at run time, class
T r a c e r maintains a static list of protocol states, with an object of
class T r a c e S t a t e per wrapper, and provides a general mecha-
nism to collect and filter information from this list (see Figure 5).

Class TraceState
A T r a c e S t a t e object must contain the information necessary
to provide a full report of the state of a protocol even after the
W r a p p e r and its T r a c e r part have been garbage-collected. It
should contain, for example, the last method calls performed, a ref-
erence to the protocol specification, error flags and the class names
of the server and client, as well as the current states the LTS might
be in.

The current states of the LTS are represented as an array of type
b o o l e a n : if the b o o l e a n at index i has value t r u e then the LTS
might be in state number i. A T r a c e S t a t e object also contains

57

Static
TraceState list

Ia

]

__....._>[Tracer] -]

Iw :pp=-I -I
new I_Wrapper new C

Figure 5: Objects at run time.

a reference to the ErrorHandler object that the Tracer uses
any time it finds an error.

The information in a TraceState object is updated with each
LTS transition. The information is queried by error handlers or if
the users traverses the static list of trace states to dump the infor-
mation.

Class ErrorHandler
The tool is designed to give maximum flexibility as far as error
handling is concerned. We apply the Strategy design pattern [7]
in this situation. When the T r a c e r encounters an error it de-
fers the error to an object that implements the V . r r o r H a n d l e r
interface. The user can create classes that implement the interface
ErrorHandler and pass an error handier object to the Tracer
through the static method T r a c e r . S e t D e f a u l t O p t i o n s () .
All W r a p p e r s that are created from then on will defer errors to
that v . r r o r H a n d l e r implementation until the next call to that
method.

There are three kinds of errors that can be found at run time by the
Tracer:

• Invalid method. This error can happen during the announce
phase. Typically it will by caused by an error in the interface
protocol or in the client code.

• Invalid state. This error can happen during the advance
phase. Typically it will be caused by an error in the server
code.

• Not in final state. This error can happen in the finalize
phase. There are no current states that are final states. Typ-
ically some method calls on the client code are missing to
bring the protocol to a closure.

Class Protocollnformation
A ProtocolInformation object stores the run-time descrip-
tion of a protocol. There is only one protocol information object per
interface with a protocol. It is created statically by the correspond-
ing W r a p p e r . This data structure also has to contain information
about the interface and the protocol necessary for reporting errors:
it contains the name of the interface, the names of the methods and
the names of the states. For each state declared in the protocol,
the declared name of that state is stored. States that were not de-
clared are named with the line number and character position of the
regular expression from which the state originates.

5. CONCLUSIONS
We have described an extension of Java with a p r o t o c o l con-
struct for specifying sequencing constraints on the order in which
methods may be called. Protocols can be specified as part of a class
definition or an interface declaration. We have extended the com-
piler of Sun Microsystem's Java Development Kit, Release 1.1.7,
to check the conformance of a class protocol to an interface proto-
col as part of the interface conformance type check and to generate
wrapper classes for the user code to interface with a debugging
tool. An alternative implementation would have been to embed
protocols in formal JavaDoc comments and to implement the con-
formance check and the wrapper generation in a preprocessor to the
Java compiler. Using similar implementation strategies, protocols
could be added to other object-oriented languages.

We have also described the design of a debugging tool for testing
the conformance of a client's code to the protocol declared in an in-
terface. The tool runs a labeled transition system (LTS) generated
by the compiler from the protocol declaration. For every method
call by the client, the LTS checks whether the method call is al-
lowed according to the protocol. For specifying sequencing con-
straints that cannot be captured by an LTS, we allow associating
predicates with states of the LTS. By testing these predicates at run
time, object states can be mapped to LTS states.

We have illustrated the usefulness of protocols using as an example
class java. uti i. z ip. ZipOutputStream. We will experi-
ment with protocols to determine whether finite-state specifications
and state predicates are sufficiently expressive in practice. Possible
extensions to the language would need to be designed such that
there continues to be a finite-state specification as a subset that al-
lows decidable type-checking. The dynamic checks could then be
more precise. Another possible extension would be support for ex-
pressing two-way collaborations between objects or protocols in-
volving more than two participating objects.

We will also experiment with the debugging tool to evaluate its
practicality and benchmark the run-time overhead of the wrappers
and of running the LTS.

The run-time debugging tool, as we have described it, only allows
testing the conformance of the client's code to the protocol speci-
fied in the interface. The conformance of the class protocol to the
interface protocol is checked at compile time. What is missing is
testing the conformance of the class's code to the declared class
protocol. In future research, we will explore the automatic gener-
ation of a test harness from the class protocol for testing this latter
conformance.

Currently we combine static checking of protocol declarations with
run-time checking of actual behaviors; there is no static analysis of
code. While we believe that complete verification of protocol con-
formance through code analysis, as proposed by Puntigam [17], is
likely to be too computationally expensive and too conservative to
be useful, it is possible that program analysis may play a useful role
in combination with dynamic checking. We will explore how data
flow analyses, such as those described by Olender and Osterweil for
checking sequencing constraints [16, 15], can be used to find some
violations at compile time and reduce the amount of checking left
for run time.

58

Acknowledgments
The effort of Michal Young was sponsored by the Defense Ad-
vanced Research Projects Agency and Rome Laboratory, Air Force
Materiel Command, USAF, under agreement number F30602-97-
2-0034. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes not withstanding any
copyright annotation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research Projects
Agency, Rome Laboratory, or the U.S. Government.

6. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley,
Reading, Massachusetts, 1988.

[2] R. Allen and D. Garlan. Formalizing architectural
connection. In Proceedings of the l Oth ICSE International
Conference on Software Engineering, pages 71-80. IEEE,
1994.

[3] R. Allen and D. Garlan. A formal basis for architectural
connection. ACM Transactions on Software Engineering and
Methodology, 6(3):213-249, July 1997. cf. errata in TOSEM
7(3), July 1998.

[4] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified
Modeling Language User Guide. Addison-Wesley, Reading,
Massachusetts, 1998.

[5] R. H. Campbell and A. N. Habermann. The specification of
process synchronization by path expressions. In E. Gelenbe
and C. Kaiser, editors, Proceedings of the International
Symposium on Operating Systems, volume 16 of Lecture
Notes in Computer Science, pages 89-102, Rocquencourt,
France, 23-25 April 1974. Springer-Verlag, Berlin, New
York.

[6] D. Flanagan. Java in a Nutshell: A Desktop Quick Reference.
O'Reilly & Associates, Sebastopol, California, 2nd edition,
1997.

[7] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional Computing Series.
Addison-Wesley, Reading, Massachusetts, 1995.

[8] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. The Java Series. Addison-Wesley, Reading,
Massachusetts, 1996.

[9] R. B. Kieburtz and A. Silberschatz. Access-right expressions.
ACM Transactions on Programming Languages and Systems,
5(1):78-96, Jan. 1983.

[10] R. Kramer. iContract - the Java design by contract tool. In
Proceedings of the 1998 on Technology of Object-Oriented
Languages and Systems (TOOLS '98), Santa Barbara,
California, 3-7 August 1998.

[11] B. H. Liskov and J. M. Wing. A behavioral notion of
subtyping. ACM Transactions on Programming Languages
and Systems, 16(6): 1811-1841, 1994.

[12] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying
distributed software architectures. In Proceedings of the 5th
European Software Enginering Conference (ESEC 95),
Sitges, Spain, Sept. 1995.

[13] O. Nierstrasz. Regular types for active objects. In
Proceedings of the OOPSLA '93 Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 1-15. Association for Computing
Machinery, 1993. ACM SIGPLAN Notices, 28(10), October
1993.

[14] K. M. Olender and L. J. Osterweil. Cecil: A sequencing
constraint language for automatic static analysis generation.
IEEE Transactions on Software Engineering, 16:268-280,
Mar. 1990.

[15] K.M. Olender and L. J. Osterweil. Interprocedural static
analysis of sequencing constraints. ACM Transactions on
Software Engineering and Methodology, 1(1):21-52, Jan.
1992.

[16] C. Peter and E Puntigam. A concurrent object calculus with
types that express sequences. In Proceedings of the ECOOP
Workshop on Semantics of Objects as Processes (SOAP '99),
Lisbon, Portugal, June 1999.

[17] E Puntigam. Types that reflect changes of object usability. In
S.Gjesing and K.Nygaard, editors, Proceedings of the Joint
Modular Languages Conference (JMLC'97), number 1204 in
Lecture Notes in Computer Science, pages 55-77, Linz,
Austria, Aug. 1994. Springer-Verlag.

[18] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual. Addison-Wesley,
Reading, Massachusetts, 1998.

[19] Sun Microsystems. Java Development Kit, Release 1.1.7.
Available at
< http :// java.sun.com/products/jdk/1.1/ >.

59

