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ABSTRACT 
We describe an extension to the Java programming language that 
supports static conformance checking and dynamic debugging of 
object "protocols," i.e., sequencing constraints on the order in which 
methods may be called. Our Java protocols have a statically check- 
able subset embedded in richer descriptions that can be checked at 
run time. The statically checkable subtype conformance relation 
is based on Nierstrasz' proposal for regular (finite-state) process 
types, and is also very close to the conformance relation for archi- 
tectural connectors in the Wright architectural description language 
by Allen and Garlan. Richer sequencing properties, which cannot 
be expressed by regular types alone, can be specified and checked 
at run time by associating predicates with object states. We de- 
scribe the language extensions and their rationale, and the design 
of tool support for static and dynamic checking and debugging. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging---debug- 
ging aids, tracing; D.2.4 [Software Engineering]: Software/Pro- 
gram Verification---assertion checkers; D.3.3 [Programming Lan- 
guages]: Language Constructs and Features---classes and objects 

General Terms 
Debugging, protocols, sequencing constraints 

1. INTRODUCTION 
A repeated pattern in the history of software engineering research is 
development of underlying principles for specifying certain proper- 
ties, then development of specification formalisms and automated 
checks for some part of those properties, and then migration of 
some efficiently checkable part of those specifications to program- 
ming languages. This pattern can be seen in abstract data types, 
eventually (but only partially) realized in module and class con- 
structs of modern languages, and in module interconnection spec- 
ifications which likewise were developed first as extrinsic speci- 
fications but are now at least partly internalized in the "package" 
constructs of Java and Ada. Since there is a long thread of research 
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in specifying the sequences of operations accepted at module in- 
terfaces [9], and more recently development of extrinsic specifi- 
cations of operation sequence protocols in architecture description 
languages [2, 3, 12] as well as the StateChart part of UML [4, 18], it 
is natural to consider whether and to what extent such protocols can 
be incorporated directly into programming languages and checked 
routinely as a part of normal compilation. Recent research in pro- 
gramming language design and semantics has greatly widened the 
class of interface properties that can be captured as part of type 
compatibility, and Nierstrasz has shown in principle how operation 
sequencing can be treated in a type system [13], but to date inves- 
tigations of protocols as object types have been limited to pencil- 
and-paper exercises. In this paper, we describe an extension to the 
Java programming language which supports static protocol confor- 
mance checking and dynamic checking of compatibility between 
actual and declared behavior. The main innovation of the current 
work is in the way the statically-checkable conformance relation 
is embedded in a richer formalism for describing sequencing con- 
straints and combined with dynamic checking of behavior. We have 
implemented the static checking as an extension to the compiler of 
Sun Microsystem's Java Development Kit, Release 1.1.7, and are 
close to completion of the implementation of the support for dy- 
namic checking. 

1.1 Protocols as Part of Types 
The interface specifications described here combine concepts of 
access-right expressions, originally described by Kieburtz and Sil- 
berschatz [9] with the regular object types of Nierstrasz [13]. They 
are interface specifications, distinct and independent from mecha- 
nisms used to implement the synchronization for enforcing a par- 
ticular pattern of operations, such as path expressions [5]. Simi- 
lar to Liskov and Wing's notion of behavioral subtyping [11], we 
extend the subtype relationship with behavioral information. In- 
terface specifications are related to architectural description lan- 
guages (ADLs) such as Wright [2, 3] and Darwin [12]. But while 
ADLs are language independent and capture higher-level architec- 
tural structures, our interface specifications are language specific, 
which allows some static checking and enables the compiler to gen- 
erate code for dynamic monitoring. Our approach is partly based 
on Nierstrasz' regular types for active objects [13]. Similar for- 
mal models have been developed for concurrent objects with asyn- 
chronous message passing [16]. We adapted Nierstrasz' work to 
specifying and type-checking object protocols in Java. Further- 
more, we extended the specification of protocols to allow dynamic 
checks of the actual behavior. 

The type or interface of a class specifies a set of operations or meth- 
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ods provided by a class. Often these methods can be called only in 
a particular order, but the order is not part of the interface and can- 
not be checked by a Java compiler. (The situation is similar for 
other strongly-typed, object-oriented languages.) The well-known 
benefits of static type checking are thus available for such proper- 
ties as the number and order of arguments to each method, but not 
for the sequencing of method calls. Protocols add this sequencing 
information to class and interface declarations and allow a compiler 
to check whether the declared intent of an object making method 
calls is compatible with the sequences supported by the object be- 
ing called. 

An extension of Ada that employs behavioral subtyping and is sim- 
ilar in some ways to our approach has been proposed by Puntigam 
[17]. Our approach differs in two fundamental ways: First, we 
treat a protocol as a contract between individual objects, whereas 
Puntigam's behavioral types specify what a set of objects may do 
collectively. Second, Puntigam's proposal is for static verification 
of actual behavior through program analysis; our more modest and, 
we think, more practical approach combines static verification of 
declarations with dynamic checking of actual behavior. In addition, 
our protocol specifications are somewhat more expressive, support- 
ing non-determinism that cannot be expressed in Puntigam's behav- 
ior specifications. 

1.2 Debugging Support for Protocols 
Since compile-time checks are limited to checking regular (finite- 
state) specifications and are not, in general, capable of determining 
whether actual run-time behavior is consistent with these declara- 
tions of intent, additional checking is necessary at run time. To 
allow this run-time checking, the compiler instruments the gener- 
ated code such that the run-time behavior is communicated to a 
debugging tool that compares the dynamic behavior with the de- 
clared behavior and either logs protocol violations or generates run- 
time errors. For checking the method call sequence, the debugging 
tool employs a labeled transition system, in which each method 
call triggers a state transition. After each state transition predicates 
can be evaluated to check the consistency between actual behavior 
and declared intent. Also, the debugging tool provides support for 
checking whether a labeled transition system is in a final state. 

2. LANGUAGE DESIGN 
2.1 Formulation of the Problem 
Assume we are given a class R andomAcc  e s  s implementing some 
interfaces DataOutput and DataInput. 

class RandomAccess 
implements DataOutput, DataInput { 

// ... 

) 

Now assume that a client of class RandomAccess contains the 
following piece of code. 

/ /  . . .  

DataInput file = new RandomAccess(); 
file.open(); 
x = file.read(); 
file.close(); 
y = file.read(); 
// ... 

This code will compile without errors or warnings. However, it is 
clearly not what was meant by the author of class R a n d o r a k c c e s  s 
A client should not read from a file after it has been closed. What 
is missing in the source code is a description of the order in which 
the methods of a class or an interface must be called. 

2.2 Protocol Declarations 
We introduce a new language construct 1 , a protocol declaration, or, 
briefly, a protocol. A protocol declaration can appear in an interface 
or in a class. Syntactically, a protocol is introduced by the keyword 
" p r o t o c o l "  and contains a block of protocol statements. (We 
are using double quotes to denote literals and symbols.) Unlike 
methods, classes, and interfaces, a protocol does not have a name 
but is associated with its enclosing class or interface. 

In the simplest case, a protocol contains just a single regular expres- 
sion over the alphabet of all public method names. For the interface 
D a t a I n p u t  the protocol might be: 

interface DataInput { 
protocol { open, read*, close; } 
// ... 

} 

This means that an object of a class that implements this interface is 
allowed to call the method o p e n  once, then call the method r e a d  
zero or more times, and then call the method c l o s e  before being 
destroyed (garbage-collected). 

A reasonable protocol for the class R a n d o r o A c c e s s  would be the 
following: 

class RandomAccess 
implements Data0utput, DataInput { 

protocol ( open, (readlwrite)*, close; } 
// ... 

} 

The latter protocol allows more functionality than the former. We 
say that the protocol of class R a n d o m k c c e s s  conforms to that of 
interface D a t a l n p u t .  An object X conforms to an object Y,  if  
X is request substitutable for Y. I.e., if a client of Y expects Y to 
accept a sequence of requests s, and we substitute X for Y, then X 
will accept the same sequence s. (A more formal definition of the 
notion of conformance will be given later, when we describe more 
general types of protocols.) 

The conformance relation is a partial ordering among types. It has 
to be consistent with the subtype relation, i.e., if a class or interface 
X is a subtype of another class or interface Y, then the protocol 
of X must conform to the protocol of Y. Otherwise, the compiler 
should generate an error. If an interface or class X has no protocol 
declaration, the default protocol is a s sumed- -  i.e., methods of such 
a class can be called in any order. Such a protocol represents a 
minimal element with respect to our conformance relation, i.e., it 
conforms to any other protocol. If  we use the symbol -< to mean 
"conforms to," then we have: 

Default ~< RandomAccess -< DataInput 

i ln the initial version we chose to extend the syntax directly. A 
future version may encapsulate the construct in a formal JavaDoc 
comment, as done in iContract [10]. 
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push 

pop 

=(Re~ push, pop 

Figure 1: The LTS for interface Stack 

where De f a u 1 t denotes a default protocol. 

Can the allowed sequences of operations always be expressed as 
a single regular expression? The following example shows that, 
unfortunately, this is not possible. Consider a simple interface for 
a stack. 

interface Stack { 
public void push(int i); 
public int pop(); 

) 

We would like to write a protocol for this class that would allow se- 
quences of requests such as ( p u s h ,  p o p )  or ( p u s h ,  p u s h ,  
p o p ) ,  but would disallow, for example, the sequences of  requests 
( pop )  or ( p u s h ,  p o p ,  p o p ) .  A regular expression or a de- 

terministic finite automaton (DFA) cannot do that since it cannot 
keep track of the number of elements on the stack. Other finite-state 
specifications share the same fundamental limitation in expressive- 
ness. Thus, we would need a richer language, such as a context- 
free grammar. The conformance check for context-free languages, 
however, is undecidable, which makes it unsuitable for use in the 
type system of a programming language. Following the idea intro- 
duced by Nierstrasz [13], we use a labeled transition system (LTS) 
over the alphabet of  all public methods of a class or interface to 
describe the protocols, which, in general can be non-deterministic. 
This allows writing protocols that represent a reasonable approx- 
imation for possible object behaviors and, at the same time, are 
simple enough that the conformance check can be performed at 
compile time. 

Using this approach, we can write the protocol for the interface 
S t a c k  as follows: 

protocol ( 
start final state e; 
final state ne; 
<*> push <ne>; 
<ne> pop <*>; 

} 

Figure 1 shows the LTS defined by this protocol. Clearly, this 
protocol is only an approximation for the stack behavior. It dis- 
allows the sequence (pop)  but still allows the sequence ( p u s h ,  
p o p ,  p o p ) .  Internal non-determinism (as opposed to external 
non-determinism) is introduced as an artifact of modeling, i.e., de- 
terministic choices of the service are modeled as arbitrary choices. 
It is for this reason that the protocol must be modeled as a labeled 
transition system (LTS) with failure semantics, and not as a lan- 
guage acceptor in which non-determinism can be removed by trans- 
formation to a deterministic finite-state acceptor using the subset 
construction (see Section 2.8). Because internal non-determinism 
is an artifact of abstraction in the finite-state model and not a feature 
of  the actual system, these same internal choices are interpreted 
differently in run-time checks. Using these run-time checks, the 

sequence ( p u s h ,  p o p ,  p o p )  can be disallowed as well (see 
Section 2.9). 

A formal protocol syntax specification is given in Figure 2. Below, 
we outline its main features. Some details were intentionally left 
out for the sake of brevity. 

A protocol declaration consists of a series of protocol statements. 
Each protocol statement is either a state declaration, a regular ex- 
pression declaration, or a sequencing statement. 

2.3 State Declarations 
A state declaration declares one or more state identifiers that sub- 
sequently can be used in sequencing statements. Final states can 
be identified with the modifier " f i n a l  ". The start state can be 
identified with the modifier " s t a r t  ". Each state identifier is fol- 
lowed by an optional "="  sign followed by a boolean expression, 
which represents a state predicate. Its meaning will be explained 
later. There are two implicitly defined states - -  the default start 
state and the default final states that are represented by empty state 
expressions on the left side and on the right side, respectively, of  a 
sequencing statement. 

In the S t a c k  example above, we defined two states - -  e and n e  
(corresponding to empty and non-empty states of  the stack). Both 
states are final, which means that an object implementing this in- 
terface is allowed to be destroyed at every state. In the example of 
D a t a I n p u t  there are no explicitly defined states. 

2.4 Regular Expression Declarations 
A regular expression declaration defines one or more names for 
regular expressions. This might be thought of as a macro definition 
and might be useful when writing complex protocols. 

2.5 State Lists 
A state list is either the literal " * "  or a list of one or more identifiers 
separated by commas. The literal " * "  is interpreted as the list of  
all explicitly declared state identifiers. 

2.6 Sequencing Statements 
In the simplest case, a sequencing statement is just a regular ex- 
pression (as in the D a t a I n p u t  example). 

More generally, a sequencing statement consists of  an optional state 
list, followed by a regular expression over the alphabet of  public 
method names, another optional state list, and a semicolon. 

A sequencing statement defines state transition in the LTS defining 
the protocol. An individual regular expression describes a language 
of allowed sequences, and the appropriate semantics for this is lan- 
guage acceptance (also called trace semantics). There is no internal 
non-determinism, so we can use the standard subset construction 
[1, p. 117] to represent each individual regular sequencing state- 
ment as a deterministic acceptor, while still maintaining the failure 
semantics of the protocol LTS as a whole. 

If the left-hand side (LHS) and right-hand side (RHS) state lists 
specify only one state each, the start state of the DFA is the LHS 
state, and the final state of the DFA is the RHS state. An empty 
LHS represents the default start state. An empty RHS represents 
the default final state. If there are multiple LHS states, multiple 
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( ProtocolDeclaration > ::= 

(ProtocolStatement) ::= 

(StateDec) ::= 

(RegExpDec) ::= 

( SeqStatement ) ::= 

(State List) ::= 

(RegExp) ::= 

(MethodCallPattern) ::= 

(PatternArgumentList) ::= 

(PatternArgument} ::= 

" p r o t o c o l  .... { "  { (ProtocolStatement) } " }  " 

(StateOec) I (RegExpOec) I (SeqStatement) 

[ " s t a r t "  ] [ " f i n a l  " ] " s t a t e "  (Javald) [ "=" (JavaBoolExp) ] 
{ " , "  (Javald)[ "=" (JavaBoolExp) ]} ";" 

" r e g e x p "  (Javald "=" (Regexp) { " , "  (Javald) } "=" (RegExp> "; " 

"<" (StateList) ">" ] (RegExp) [ "<" (StateList) ">" ] " ; " 

. . . . .  (]avaZd> { " , "  (Jav.Zd)} 

[ . . . . .  ] " [ "  [(MethodCallPattern) { " , "  (MethodCallPattern) } "]" ] 
(RegExp) ..... I (RegExp) "+" I (Regexp> "? " 
(Regexp> " I" (Regexp) I (RegExp> ", " (Regexp> I " (" (Regexp) ")" 

(Javald> [ ( " [ (PatternArgumentList) ] " ) " ] 

(PatternArgument) { " , "  (PatternArgument) } 

..... [ (JavaType) 

Figure 2: Protocol Grammar Definitions 

RHS states, or both, the sequencing statement is equivalent to a se- 
ries of sequencing statements with the same regular expression and 
all possible LHS-RHS state pairs. The protocol LTS is constructed 
by connecting the DFAs resulting from individual sequencing state- 
ments. 

If a public method of a class or interface is not mentioned in any 
sequencing statement or regular expression definition, it is assumed 
that no restrictions are imposed on its use. In other words, not men- 
tioning a public method f o o  in the protocol declaration is equiva- 
lent to every state in the LTS having a transition on f o o  onto itself. 

2.7 Regular Expressions 
We use a conventional syntax for regular expressions except that 
the comma operator corresponds to concatenation in 1 ex-style reg- 
ular expressions. A vertical bar represents a choice between two 
subprotocols. The operators "* ", "+" ,  and " ? "  denote zero or 
more, one or more, and zero or one occurrences of the regular fac- 
tor, respectively. A list of method call patterns between brackets is 
equivalent to the same list of patterns separated with vertical bars. 
A bracketed list of patterns with the literal ",,~" in front denotes 
the list of all possible method call patterns of any public method of 
the class or interface except the ones listed. Parentheses are used to 
group terms together. 

The simplest method call pattern, an identifier f o o ,  indicates that 
any public method f o o  can be called by a client. By provid- 
ing types as arguments, a smaller set of methods out of the set of 
all overloaded methods can be selected. The literal "*"  inside a 
method call pattern acts as a wild card. 

2.8 Conformance 
How should a conformance relation between two protocols be for- 
mally defined? We employ the principle of request substitutability 
introduced in [13]. Protocol Y conforms to protocol X if all se- 
quences of requests supported by X will be also supported by Y 
and, moreover, that any request refused by Y after accepting one 
of those sequences might also have been refused by X.  More for- 
mally, Y -< X if 

t r a c e s ( X )  C_ t r a c e s ( Y )  (1) 

f a i l u r e s x ( Y )  C_ f a i l u r e s (X)  (2) 

push = ~  push, pop 

Figure 3: The LTS for interface V a r  

E.g., suppose a client makes method calls according to interface 
protocol X on an object implementing the class protocol Y. Condi- 
tion (1) specifies that any sequence of method calls the client might 
make is understood by the object. Condition (2) specifies that i f  af- 
ter accepting a sequence of method calls, the object fails to accept 
the next method call, then this failure is also possible according to 
the interface protocol. 

Without non-determinism, condition (2) is redundant, but i f  internal 
non-determinism is present, as in the case of our S t a c k  example, 
it is necessary to check both conditions. 

As an example, assume we have an interface for an uninitialized 
variable that has two public methods, which we also call p u s h  and 
pop. 

interface Var { 
protocol { 

final start state e; 
final state ne; 
<e> push <ne>; 
<ne> pop I push <ne>; 

} 

public void push(int i); 
public int pop(); 

l 

Figure 3 shows the LTS defined by this protocol. The protocol of 
interface V a r  allows more freedom than that of S t a c k ,  and we 
would expect that v a r  conforms to s t a c k ,  but not vice versa. 
Note though that t r a c e s ( V a r )  = t r a c e s ( S t a c k ) ,  so we cannot 
distinguish between the two protocols by their traces only. How- 
ever, if we compare the failure sequences, the difference between 
the two protocols becomes clear. The protocol of v a r  will always 
accept the call sequence p u s h ,  p o p ,  p o p ,  whereas the proto- 
col of S t a c k  might not. This means that the set of the relative 

53 



failures of Stack with respect to Oar is not a subset of the failure 
set of Var. Hence, Vat -< Stack, but Stack ~ Var. 

In [13], an algorithm for conformance checking between two LTSs 
was given. We use this algorithm as part of the type checking 
phase of the compiler. If a class/interface Y extends/implements 
class/interface x, then the protocol of Y must conform to that of 
x. Otherwise, a compilation error is reported. For example, if  we 
declare interface S t a c k  as extending interface O a r  with the pro- 
tocols described above, we will receive a compilation error saying 
that the protocol of S t a c k  does not conform to that of Var .  

There is a serious deficiency in describing protocols with finite- 
state LTSs - -  they are only approximations of real protocols, as 
seen in the S t a c k  protocol. This protocol does not rule out the se- 
quence of  calls p u s h ,  p o p ,  pop .  It only tells that it might fail. 
As we noted earlier, if we tried to specify protocols more precisely, 
we would not be able to perform the conformance check during 
compile time and their language would become too complicated 
for them to be useful. However, we can do better at run time by 
attaching predicates to the states, choosing among branches of the 
LTS at run time. 

Part or all of the internal non-determinism in protocol specifica- 
tions, which plays a role in static conformance checking, is re- 
moved by evaluating the predicates at run time. The remaining 
non-determinism is interpreted as external choice. While we use 
failure semantics for static checks of  the conformance relation be- 
tween declared protocols, language (trace) acceptance is the appro- 
priate semantics for run-time checks of the consistency between 
actual behavior and declared intent. 

2.9 State Predicates 
A state predicate is a Java boolean expression that is an optional 
part of a state declaration and is associated with a state. It is stored 
in the LTS and is evaluated at run time to choose between several 
non-deterministic transitions in the LTS. A state predicate has class 
scope (syntactically it is the same as an initializer of a class field). 

As an example, we can add another method i s E m p t y  ( ) tO Our 
S t a c k  interface and rewrite the interface as follows: 

interface Stack { 
protocol { 

start final state e = isEmpty{); 
final state ne = !isEmpty(); 

<ne> pop <*>; 

<*> push <ne>; 
} 
public void push(int i); 

public int pop(); 

public boolean isEmpty(); 
} 

The state predicates are only used at run time. They have no effect 
on the compile-time conformance check. Moreover, it is not pos- 
sible for the compiler to check whether they are reasonably imple- 
mented and not self-contradictory. However, they provide essential 
information for debugging. 

2.10 Debugging 
For demonstrating the use of  debugging, consider the following ex- 
ample (from some file f o o .  j a v a )  in which the protocol of inter- 

face S t a c k i s v i o l ~ e d  by cal l ingthe method p o p  on an empty 
Stack: 

Stack a = new StackImplementation(); 

a.push(3); 

int x = a.pop(); 
int y = a.pop(); 

Since, in general, the compiler cannot detect protocol violations 
as in the second call of p o p  ( ), we provide run-time debugging 
support to detect such protocol violations. 

There are two main design issues involving debugging. First there 
is the problem of how to implement the LTS tracing so that it can 
be used in already existing code, and second what action should be 
performed when a protocol violation is detected. 

With respect to the first problem, one alternative would be modi- 
fying the Java Virtual Machine so that it traces the LTS. A second 
alternative would be modifying the compiler so that it inlines ad- 
ditional functionality in the client code. The approach we adopted 
is to introduce a Wrapper (as in the Decorator design pattern [7]) 
in the first line between reference a and the S t a c k r m p l e r a e n t a -  
t i o n  object. In this way, any time there is a method call to object 
a, the W r a p p e r  object can trace the protocol (perform an LTS 
transition) as a side effect, while calling the same method on the 
object of class StackImplementation. We can automate this 
modification and make it invisible to the user by modifying the 
compiler. For every assignment in which the left-hand side type is 
an interface type with a protocol, the compiler inserts a W r a p p e r  
constructor call on the right hand side. This approach has signifi- 
cant run-time overhead but the user does not need a special Java 
Virtual Machine to take advantage of  this functionality. In any 
case, this aspect of the implementation strategy is independent of 
the overall approach to specifying and checking object protocols. 

With respect to the second problem, only the user knows exactly 
what to do in case of a protocol error. For maximum flexibility, 
we provide a mechanism for selecting the error handling behav- 
ior. Following the Strategy design pattern [7], we provide an in- 
terface ~ . r r o r r t a n d l e r ,  in which each method corresponds to a 
possible type of protocol violation, and allow the user to select an 
appropriate implementation of this interface. We provide standard 
error handier implementations for logging protocol violations and 
for raising run-time exceptions. Using a simple API users can write 
custom error handiers. 

Run-time tracing of the protocol can serve at least four purposes. 
It is up to the user to decide what role protocols should play in the 
debugging process: 

• Finding errors in the client's implementation. This is po- 
tentially the most useful application of the run-time checking 
of  protocols. If there is a misuse of  a class or interface, it will 
be reflected in a violation of the protocol of that class or in- 
terface and the user will be able to detect this violation by 
tracing its protocol. 

• Debugging the protocol. The user can write test harnesses 
and check if the LTS generated from the protocol behaves as 
expected at run time. 

• Using exceptions to control the application. By using an 
error handier that throws exceptions in case of a protocol vio- 
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lation and by catching these exceptions in the client, the LTS 
can be (mis)used as part of the control of the application. 

• F inding  errors in the server 's implementation.  Using an 
interface with the same protocol as the class and with appro- 
priate state predicates, it is possible to build a test harness for 
the class such that protocol violations indicate errors in the 
class. 

3. EXAMPLE 
To demonstrate the usefulness of protocols in practice, consider the 
class j ava. util. zip. ZipOutputStream: 

public class ZipOutputStream 
extends DeflaterOutputStream { 

public ZipOutputStream(OutputStreamout); 
public 
public 
public 
public 
public 
public 

public 
public 
public 
public 

static final int DEFLATED; 
static final int STORED; 
void close() throw IOException; 
void closeEntry() throw IOException; 
void finish () throws IOException; 
void putNextEntry(ZipEntry e) 
throws IOException; 
void setComment(String comment); 
void setLevel(int level); 
void setMethod(int method); 
synchronized void 
write(byte[] b, int off, int len) 
throws IOException; 

For using an object of this class properly, the user must invoke its 
methods in a particular order, as described, for example, in the book 
Java in a Nutshell [6]: 

This class is a subclass of DeflaterOutput- 
Stream that writes data in API file format to 
an output stream. Before writing any data to 
the Z i p O u t p u t S t r e a m ,  you must begin an entry 
within the ZIP file with p u t N e x t E n t r y  () .  The 
Z i p E n t r y  object passed to this method should spec- 
ify at least a name for the entry. Once you have be- 
gun an entry with putNextEntry ( ), you can write 
the contents of that entry with the w r i t e  ( ) methods. 
When you reach the end of an entry, you can begin a 
new one by calling p u t N e x t E n t r y  ( ) again, or you 
can close the current entry with c l o s e E n t r y  ( ) ,  or 
you can close the stream itself with c l o s e  ( ). 

Before beginning an entry with p u t N e x t E n t r y  ( ) ,  
you can set the compression method and level with 
setMethod ( ) and setLevel ( ). The constants 
DEFLATED and STORED are the two legal values for 
setMethod(). If you use STORED, the entry is 
stored in the ZIP file without any compression. If you 
use DEFLATED, you can also specify the compression 
speed/strength tradeoff bypassing a number from 1 to 
9 to s e t L e v e l  ( ) ,  where 9 gives the strongest and 
slowest level of compression. You can also use the 
constants Deflater.BESTSPEED, Deflater. 
BEST_COMPRESSION, and Deflater .DEFAULT 

_COMPRESSION with the setLevel ( ) method. 

Not only is this text hard to read, it is also of little use in debugging 
a client of class z i p o u t p u t s t r e a m .  Given the simple protocol 

declaration 

protocol { 
((setMethod I setLevel)*, 
putNextEntry, 
write*, 
closeEntry? 
)*, close; 

} 

the appropriate use of the class becomes much more understand- 
able. Furthermore, by adding an interface and an adapter class with 
this protocol, we enable our debugging tool to detect protocol vio- 
lations, such as a call to w r i t e  ( ) that immediately follows a call 
to setMethod ( ). 

The protocol can be made more precise by using the class states 
DEFLATED and STORED as protocol states: 

protocol { 
start state DEFLATED; 
state STORED; 
final state DONE; 

<DEFLATED> 
putNextEntry, write*, closeEntry? 
<DEFLATED>; 

<STORED> 
putNextEntry, write*, closeEntry? 
<STORED>; 

<DEFLATED,STORED> setMethod 
<DEFLATED,STORED>; 

<STORED> setLevel <STORED>; 
<DEFLATED,STORED> close <DONE>; 

Note that the original verbal description of the protocol failed to 
mention in which state (DEFLATED or STORED) an object of type 
z i p o u t p u t S t r e a m  is originally constructed. A quick glance at 
the source code shows that the start state should be DEFLATED. 
Also, the above protocol should be extended to mention the meth- 
ods s e t C o m m e n t  ( ) and f i n i s h  ( ) ,  whose descriptions have 
been left out of the book. 

4. IMPLEMENTATION 
This section describes the changes we made or plan to make to 
the Java Development Kit, Release 1.1.7 [19] for implementing 
compile-time and run-time support for protocols. The compile- 
time conformance check is implemented and fully functional, also 
in the case of separate compilation. In particular, all the examples 
that we consider in the text would compile with our modified Java 
compiler. However, we did not yet implement support for method 
signatures in method call patterns, negation in regular expressions, 
and regular expression (macro) definitions. The run-time debug- 
ging support is also fully functional. We are currently in the pro- 
cess of finishing the implementation in the compiler of generating 
and instantiating the wrapper classes. 

4.1 Compile-Time Implementation 
The compile-time implementation consists of four main parts 

1. Parsing protocols. We modified the j avac compiler so that 
it recognizes the new keyword p r o t o c o l ,  parses protocols, 
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creates a parse tree for each protocol, and reports syntax er- 
rors. 

2. Semantic analysis. In this stage we generate an LTS from 
the parse tree. Each regular expression is first translated into 
an NFA using Thompson's construction and then this NFA 
is translated into a DFA using the subset construction [1, 
pp. 122, 117]. 2 Then a protocol LTS is built by connecting 
these individual DFAs. This automaton is non-deternfinistic, 
in general. We do not convert it to a DFA, since the con- 
formance relation that we use is not preserved under such 
conversion. The protocol LTS has two types of states - -  the 
states that were generated as a result of conversion of  regular 
expressions to DFAs and the states that were explicitly de- 
fined by the programmer in the protocol. The data structure 
representing the latter type of states contains extra informa- 
tion, such as state predicates and source file line and position 
number. 

3. 

4. 

Conformance checking. If a class or interface extends or 
inherits another class or interface and both of  them have pro- 
tocols, the compiler performs the conformance check be- 
tween the protocols. For this conformance check, we use 
the algorithm proposed by Nierstrasz [13]. Since that algo- 
rithm assumes that all states of the LTS are final, we made 
a simple modification to the algorithm so that it can com- 
pare two LTSs that possibly have non-final states. In the 
worst case, the running time of this algorithm is exponen- 
tial in the number of states. However, in a typical case, it is 
much faster. If the LTSs are deterministic, the running time 
is quadratic [13]. Since we do not expect typical protocols 
to be overly non-deterministic, the exponential worst-case 
behavior should not be a problem. Note that we check the 
conformance of the protocol LTSs without taking state pred- 
icates into account (since the task of conformance checking 
would become undecidable otherwise). If the protocol of  the 
subtype does not conform to the protocol of  the supertype, a 
type error is reported. 

Storing protocols in binary code. If the conformance check 
was successful, then a representation of the protocol LTS is 
stored in the class file as a user-defined class attribute. This 
allows performing the conformance check between protocols 
from different source files, which is necessary for separate 
compilation. The class file so created is readable by a stan- 
dard Java compiler and by a standard Java virtual machine. 
However, only a modified compiler is able to read the proto- 
col LTS back from the class file. 

4.2 Run-Time Implementation 
When a piece of  code (the client code) assigns an object (the server) 
to a reference, and this reference has as type an interface with a 
declared protocol, the tool initializes an LTS that corresponds to 
that protocol. 

For example, if  file f o o .  j a v a  contains the line: 

I a = new C(); 

2Recall that the regular expression parts of protocol specifica- 
tions describe language acceptance, and involve no internal non- 
determinism; converting them (individually) to deterministic au- 
tomata thus gives the correct semantics in the overall LTS repre- 
sentation. 

then an LTS is initialized when the client code f o o .  j a v a  assigns 
the server new C ( ) to the reference a. The initialized LTS corre- 
sponds to the protocol of interface I .  The simulation of  the LTS is 
stopped when the reference is garbage collected. 

The main purpose of  the run-time tool is to detect violations of  
the protocol specified in the interface when calling a method on a 
variable of  the interface type. 

Every time the client code calls a server method through the ref- 
erence, the tool checks if  any of the possible current states of  the 
LTS allows that method call. If  so, a state transition is performed 
in the LTS and the server method is executed. After the server 
returns from executing the method, the LTS states for which the 
corresponding state predicate is false are removed from the set of 
possible states. 

I m p l e m e n t a t i o n  O v e r v i e w  
A w r a p p e r  object is inserted between the reference and the server 
in the statement where the assignment occurs. The client code of 
the previous example is modified as follows: 

I a = new Wrapper(new C() .... ); 

In this way, any call to a method of the server through the refer- 
ence first has to go through a method call on the W r a p p e r  object. 
So far this insertion has to be done manually, but we are working 
on modifying the compiler so the insertion will be done automat- 
ically when the client code is compiled. The W r a p p e r  class is 
tailored to the interface, that is, for each interface 1 there is an 
l _ W r a p p e r  class. We are working on modifying the compiler 
so the wrapper class will be created automatically when compiling 
the interface. The common code among the Wrappers is con- 
tained in the superclass T r a c e r .  Additional data structures are 
the Protocollnformation class, used to store the specifica- 
tion of an LTS, and the T r a c e S t a t e  class, used to store the state 
of  an LTS. Sometimes reporting is desirable after the reference has 
been garbage collected, so a list of T r a c e S t a t e s  is kept sepa- 
rately for that purpose. See Figure 4 for a UML diagram of the 
class hierarchy. 

Below we explain in more detail the components of  the ran-time 
implementation. 

D a t a  S t ruc tures  
The data structures involved in the run-time implementation are: 

Several classes /_Wrapper, one for each interface I that 
contains a protocol declaration. The c l a s s / _ W r a p p e r  will 
be created by the compiler when compiling the interface 1. 

Class Tracer: an instance of  this class simulates an LTS. It 
is a superclass for the W r a p p e r  classes. 

Interface ErrorHandler, which can be implemented by 
the user for controlling protocol error handling and reporting. 
Some standard error handler classes are provided, which can 
be extended by the user. 

Class TraceState: an instance of this class holds the cur- 
rent state and the history of an LTS. 
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Figure  4: Class diagram for the run-time tool 

• Interface TraceFilter, which can be implemented by the 
user to select T r a c e S t a t e s  currently in memory that sat- 
isfy specified conditions. 

• Class P r o t o c o l I n f o r m a t i o n :  an instance of this class 
holds the specification of an LTS at run time. 

Class Wrapper  
The main role of this class is to enrich any method call to the 
server object with operations to help trace the states of the LTS. A 
W r a p p e r  contains code specific to a particular interface. Every- 
thing else is implemented in class T r a c e r ,  which is a superclass 
of the Wrappers. 

The Wrapper alSO creates the run-time description of the protocol 
as a static object of type P r o t o c o l I n f o r m a t i o n .  

Assume that class StackImpl implements the interface Stack 
defined above, and that line 15 of file f o o .  j a v a  contains the fol- 
lowing assignment: 

Stack a = new StackImpl(); 

When compiling file f o o .  j a v a ,  our compiler will (eventually) 
replace the assignment by 

Stack a = new Stack Wrapper(new StackImpl(), 
this, "foo.java: line 15."); 

The class Stack_Wrapper would have been generated previ- 
ously by the compiler when the interface S t a c k  was compiled: 

public class Stack_Wrapper extends Tracer { 
public Stack_Wrapper(Stack server, 

Object client, 
String lineAndFile) {...} 

public void push(int i) {...} 
public int pop() {...} 
public boolean isEmpty() {...} 
public boolean verify() {...} 

) 

T h e / - - W r a p p e r  class for an interface I implements every method 
of that interface as a sequence of three method calls: 

1. A call to the method announce (), which is inherited from 
class T r a c e r ,  to check if the method is valid, i.e., if  there 
are any edges with that method's name out of any of the cur- 
rent states of the LTS. 

2. A call to the corresponding method of the server. 

3. A call to the method a d v a n c e  ( ) ,  which is inherited from 
class T r a c e r ,  to perform the transition in the LTS to the 
new states, and to check state predicates. 

Method p u s h  ( ) of class S t a c k W r a p p e r  is implemented as 

public void push(int i) { 
announce(METHOD_PUSH); 
server.push(i); 
advance(METHODPUSH); 

} 

The method v e r i f y  ( ) removes all the states that do not satisfy 
their state predicates from the list of current states. This method is 
interface dependent because it evaluates the state predicates. 

Class Tracer 
Class Tracer is the simulator of the LTS. The algorithm used to 
simulate the LTS involves three phases: 

• Announce phase. The Wrapper announces to the Tracer 
that a method is going to be called. The Tracer checks if 
any of the current states allows that method call. If there are 
none we say that the method is invalid. 

• Advance phase, After the method has been called on the 
server, the T r a c e r  computes the list of  new current states 
by finding the states that we can jump to from the old states 
by calling that method. Then the T r a c e r  takes off this list 
all the states that do not satisfy their state predicate. If the 
list is now empty we say that the state is invalid. 

• Finalize phase. This phase occurs when the Wrapper is 
garbage-collected. One would like to detect if  the proto- 
col terminated in a final state or not. According to the Java 
Language Specification [8] any method f i n a l i z e  () im- 
plemented in a class is always called by the virtual machine 
when an object of  this class is about to be garbage collected. 
We employ this feature and insert an appropriate algorithm 
in the method finalize ( ) of the Tracer so that when 
the W r a p p e r  is garbage-collected, it checks if  any of the 
current states is a final state. If none of the current states is a 
final state we say that the protocol is not in a final state. 

To allow users to query the state of a protocol at run time, class 
T r a c e r  maintains a static list of protocol states, with an object of 
class T r a c e S t a t e  per wrapper, and provides a general mecha- 
nism to collect and filter information from this list (see Figure 5). 

Class TraceState  
A T r a c e S t a t e  object must contain the information necessary 
to provide a full report of  the state of a protocol even after the 
W r a p p e r  and its T r a c e r  part have been garbage-collected. It 
should contain, for example, the last method calls performed, a ref- 
erence to the protocol specification, error flags and the class names 
of the server and client, as well as the current states the LTS might 
be in. 

The current states of the LTS are represented as an array of type 
b o o l e a n :  if the b o o l e a n  at index i has value t r u e  then the LTS 
might be in state number i. A T r a c e S t a t e  object also contains 
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Figure 5: Objects at run time. 

a reference to the ErrorHandler object that the Tracer uses 
any time it finds an error. 

The information in a TraceState object is updated with each 
LTS transition. The information is queried by error handlers or if 
the users traverses the static list of trace states to dump the infor- 
mation. 

Class ErrorHandler 
The tool is designed to give maximum flexibility as far as error 
handling is concerned. We apply the Strategy design pattern [7] 
in this situation. When the T r a c e r  encounters an error it de- 
fers the error to an object that implements the V . r r o r H a n d l e r  
interface. The user can create classes that implement the interface 
ErrorHandler and pass an error handier object to the Tracer 
through the static method T r a c e r .  S e t D e f a u l t O p t i o n s  () .  
All W r a p p e r s  that are created from then on will defer errors to 
that v . r r o r H a n d l e r  implementation until the next call to that 
method. 

There are three kinds of errors that can be found at run time by the 
Tracer: 

• Invalid method. This error can happen during the announce 
phase. Typically it will by caused by an error in the interface 
protocol or in the client code. 

• Invalid state. This error can happen during the advance 
phase. Typically it will be caused by an error in the server 
code. 

• Not in final state. This error can happen in the finalize 
phase. There are no current states that are final states. Typ- 
ically some method calls on the client code are missing to 
bring the protocol to a closure. 

Class Protocollnformation 
A ProtocolInformation object stores the run-time descrip- 
tion of a protocol. There is only one protocol information object per 
interface with a protocol. It is created statically by the correspond- 
ing W r a p p e r .  This data structure also has to contain information 
about the interface and the protocol necessary for reporting errors: 
it contains the name of the interface, the names of the methods and 
the names of the states. For each state declared in the protocol, 
the declared name of that state is stored. States that were not de- 
clared are named with the line number and character position of the 
regular expression from which the state originates. 

5. CONCLUSIONS 
We have described an extension of Java with a p r o t o c o l  con- 
struct for specifying sequencing constraints on the order in which 
methods may be called. Protocols can be specified as part of a class 
definition or an interface declaration. We have extended the com- 
piler of Sun Microsystem's Java Development Kit, Release 1.1.7, 
to check the conformance of a class protocol to an interface proto- 
col as part of the interface conformance type check and to generate 
wrapper classes for the user code to interface with a debugging 
tool. An alternative implementation would have been to embed 
protocols in formal JavaDoc comments and to implement the con- 
formance check and the wrapper generation in a preprocessor to the 
Java compiler. Using similar implementation strategies, protocols 
could be added to other object-oriented languages. 

We have also described the design of a debugging tool for testing 
the conformance of a client's code to the protocol declared in an in- 
terface. The tool runs a labeled transition system (LTS) generated 
by the compiler from the protocol declaration. For every method 
call by the client, the LTS checks whether the method call is al- 
lowed according to the protocol. For specifying sequencing con- 
straints that cannot be captured by an LTS, we allow associating 
predicates with states of the LTS. By testing these predicates at run 
time, object states can be mapped to LTS states. 

We have illustrated the usefulness of protocols using as an example 
class java. uti i. z ip. ZipOutputStream. We will experi- 
ment with protocols to determine whether finite-state specifications 
and state predicates are sufficiently expressive in practice. Possible 
extensions to the language would need to be designed such that 
there continues to be a finite-state specification as a subset that al- 
lows decidable type-checking. The dynamic checks could then be 
more precise. Another possible extension would be support for ex- 
pressing two-way collaborations between objects or protocols in- 
volving more than two participating objects. 

We will also experiment with the debugging tool to evaluate its 
practicality and benchmark the run-time overhead of the wrappers 
and of running the LTS. 

The run-time debugging tool, as we have described it, only allows 
testing the conformance of the client's code to the protocol speci- 
fied in the interface. The conformance of the class protocol to the 
interface protocol is checked at compile time. What is missing is 
testing the conformance of the class's code to the declared class 
protocol. In future research, we will explore the automatic gener- 
ation of a test harness from the class protocol for testing this latter 
conformance. 

Currently we combine static checking of protocol declarations with 
run-time checking of actual behaviors; there is no static analysis of 
code. While we believe that complete verification of protocol con- 
formance through code analysis, as proposed by Puntigam [17], is 
likely to be too computationally expensive and too conservative to 
be useful, it is possible that program analysis may play a useful role 
in combination with dynamic checking. We will explore how data 
flow analyses, such as those described by Olender and Osterweil for 
checking sequencing constraints [16, 15], can be used to find some 
violations at compile time and reduce the amount of checking left 
for run time. 
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