
The Organic Grid: Self-Organizing Computation
on a Peer-to-Peer Network

Arjav J. Chakravarti Gerald Baumgartner Mario Lauria
Dept. of Computer and Information Science

The Ohio State University
395 Dreese Lab., 2015 Neil Ave.
Columbus, OH 43210–1277, USA

Email: �arjav, gb, lauria�@cis.ohio-state.edu

Abstract— Desktop grids have recently been used to perform
some of the largest computations in the world and have the
potential to grow by several more orders of magnitude. However,
current approaches to utilizing desktop resources require either
centralized servers or extensive knowledge of the underlying
system, limiting their scalability.

We propose a biologically inspired and fully-decentralized
approach to the organization of computation that is based on
the autonomous scheduling of strongly mobile agents on a peer-
to-peer network. In a radical departure from current models, we
envision large-scale desktop grids in which agents autonomously
organize themselves so as to maximize resource utilization.

By encapsulating computation and behavior into agents, the
organization of the computation can be customized for different
classes of applications. At the same time, the design of the un-
derlying infrastructure is greatly simplified, resulting in a system
that naturally lends itself to a true peer-to-peer implementation
where each node can be at the same time provider and user of
the computing utility infrastructure.

We demonstrate this concept with a reduced-scale proof-
of-concept implementation that executes a data-intensive
independent-task application on a set of heterogeneous, geo-
graphically distributed machines. We present a detailed explo-
ration of the design space of our system and a performance
evaluation of our implementation using metrics appropriate for
assessing self-organizing desktop grids.

I. I NTRODUCTION

Some of the largest computations in the world have been
carried out on collections of PCs and workstations over the
Internet. Tera-flop levels of computational power have been
achieved by systems composed of heterogeneous computing
resources that number in the hundreds-of-thousands to the
millions. These large distributed systems that allowInternet
Computing are often referred to asDesktop Grids, and allow
scientists to run applications at unprecedented scales and at
greatly reduced costs. While impressive, these efforts only use
a tiny fraction of the desktops connected to the Internet. Order
of magnitude improvements could be achieved if novel sys-
tems of organization of the computation were to be introduced
that overcome the limits of present systems.

In this paper, we describe a novel infrastructure designed
from scratch to maximize the utilization of large desktop grids.
The questions we have tried to answer are:

� What is the best model of utilization of a system based
on the harvesting of idle cycles of hundreds-of-thousands
to millions of PCs?

� How should the system be designed in order to make it
consistent with the grid computing ideals of computation
as a ubiquitous and easily accessible utility?

The planetary scale of Internet computing cannot be handled
by traditional grid scheduling models [1], [2], [3], [4], and goes
beyond the range of current centralized and master/worker
solutions [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. A
new approach is needed that can organize computation accord-
ing to a completely decentralized model. Given the different
requirements of different classes of applications, such a model
must be easily customizable and deployable. In addition, due
to the extremely dynamic nature of the underlying system, any
realistic solution must be capable of autonomously adapting
to current system conditions.

Nature provides numerous examples of complex systems
comprising millions of organisms that organize themselves in
an autonomous, adaptive way to produce complex patterns. In
these systems, the emergence of complex patterns derives from
the superposition of a large number of interactions between
organisms that have relatively simple behavior. In order to
apply this approach to the task of organizing computation
over complex systems such as desktop grids, one would have
to devise a way of breaking a large computation into small
autonomous chunks, and then endowing each chunk with the
appropriate behavior.

Our approach is to encapsulate computation and behavior
into mobile agents. A similar concept was first explored by
Montresor et al. [15] in a project showing how an ant algo-
rithm could be used to solve the problem of dispersing tasks
uniformly over a network. In our approach, the behavior is
designed to produce desirable patterns of execution according
to current grid engineering principles. More specifically, the
pattern of computation resulting from the synthetic behavior of
our agents reflects some general concepts about autonomous
grid scheduling protocols studied by Kreaseck et al. [16]. Our
approach extends previous results by showing i) how the basic
concepts can be extended to accommodate highly dynamic
systems, and ii) a practical implementation of these concepts.

One consequence of the encapsulation of behavior and
computation into agents is that they can be easily customized
for different classes of applications. Another desirable con-
sequence is that the underlying support infrastructure for our
system is extremely simple. Therefore, our approach naturally
lends itself to a true peer-to-peer implementation, where each
node can be at the same time provider and user of the
computing utility infrastructure. Our scheme can be easily
adapted to the case where the source of computation (the node
initiating a computing job) is different from the source of the
data.



The main contributions of this paper are: i) the description
of a new organization principle for desktop grids which
combines biologically inspired models of organization, au-
tonomous scheduling, and strongly mobile agents, ii) the
demonstration of these principles as a working proof-of-
concept prototype, iii) a detailed exploration of the design
space of our system, and iv) the performance evaluation of our
design using metrics appropriate for assessing self-organizing
desktop grids.

The purpose of this work is the initial exploration of a
novel concept, and as such it is not intended to give a
quantitative assessment of all aspects and implications of our
new approach. In particular, detailed evaluations of scalability,
degree of tolerance to faults and adaptivity to rapidly changing
systems, have been left for future studies.

II. BACKGROUND AND RELATED WORK

A. Peer-to-Peer and Internet Computing

The goal of utilizing the CPU cycles of idle machines
was first realized by the Worm project [17] at Xerox PARC.
Further progress was made by academic projects such as
Condor [9]. The growth of the Internet made large-scale efforts
like GIMPS [5], SETI@home [6] and folding@home [7]
feasible. Recently, commercial solutions such as Entropia [8]
and United Devices [18] have also been developed.

The idea of combining Internet and peer-to-peer computing
is attractive because of the potential for almost unlimited
computational power, low cost, ease and universality of access
— the dream of a true Computational Grid. Among the
technical challenges posed by such an architecture, scheduling
is one of the most formidable — how to organize computation
on a highly dynamic system at a planetary scale while relying
on a negligible amount of knowledge about its state.

B. Scheduling

Decentralized scheduling is a field that has recently attracted
considerable attention. Two-level scheduling schemes have
been considered [19], [20], but these are not scalable enough
for the Internet. In the scheduling heuristic described by
Leangsuksun et al. [21], every machine attempts to map tasks
on to itself as well as itsK best neighbors. This appears to
require that each machine have an estimate of the execution
time of subtasks on each of its neighbors, as well as of the
bandwidth of the links to these other machines. It is not
clear that their scheme is practical in large-scale and dynamic
environments.

G-Commerce was a study of dynamic resource allocation
on the Grid in terms of computational market economies
in which applications must buy resources at a market price
influenced by demand [22]. While conceptually decentralized,
if implemented this scheme would require the equivalent of
centralized commodity markets (or banks, auction houses, etc.)
where offer and demand meet, and commodity prices can be
determined.

Recently, a new autonomous and decentralized approach to
scheduling has been proposed to address specifically the needs
of large grid and peer-to-peer platforms. In this bandwidth-
centric protocol, the computation is organized around a tree-
structured overlay network with the origin of the tasks at
the root [16]. Each node in the system sends tasks to and

receives results from itsK best neighbors, according to band-
width constraints. One shortcoming of this scheme is that the
structure of the tree, and consequently the performance of
the system, depends completely on the initial structure of the
overlay network. This lack of dynamism is bound to affect the
performance of the scheme and might also limit the number
of machines that can participate in a computation.

C. Self-Organization of Complex Systems

The organization of many complex biological and social
systems has been explained in terms of the aggregations of a
large number of autonomous entities that behave according to
simple rules. According to this theory, complicated patterns
can emerge from the interplay of many agents — despite
the simplicity of the rules [23], [24]. The existence of this
mechanism, often referred to asemergence, has been proposed
to explain patterns such as shell motifs, animal coats, neural
structures, and social behavior. In particular, certain complex
behaviors of social insects such as ants and bees have been
studied in detail, and their applications to the solution of spe-
cific computer science problems has been proposed [15], [25].
In a departure from the methodological approach followed in
previous projects, we did not try to accurately reproduce a
naturally occurring behavior. Rather, we started with a problem
and then designed a completely artificial behavior that would
result in a satisfactory solution to it. Our work was inspired
by a particular version of the emergence principle called Local
Activation, Long-range Inhibition (LALI), which was recently
shown to be responsible for the formation of a complex pattern
using a clever experiment on ants [26].

D. Strongly Mobile Agents

To make progress in the presence of frequent reclamations
of desktop machines, current systems rely on different forms
of checkpointing: automatic, e.g., SETI@home, or voluntary,
e.g., Legion. The storage and computational overheads of
checkpointing put constraints on the design of a system.
To avoid this drawback, desktop grids need to support the
asynchronous and transparent migration of processes across
machine boundaries.

Mobile agents [27] have relocation autonomy. These agents
offer a flexible means of distributing data and code around
a network, of dynamically moving between hosts as resource
availability varies, and of carrying multiple threads of exe-
cution to simultaneously perform computation, decentralized
scheduling, and communication with other agents.

The majority of the mobile agent systems that have been
developed until now are Java-based. However, the execution
model of the Java Virtual Machine does not permit an agent to
access its execution state, which is why Java-based mobility
libraries can only provideweak mobility [28]. Weak mobility
forces programmers to use a difficult programming style.

By contrast, agent systems withstrong mobility provide the
abstraction that the execution of the agent is uninterrupted,
even as its location changes. Applications where agents mi-
grate from host to host while communicating with one another,
are severely restricted by the absence of strong mobility.
Strong mobility also allows programmers to use a far more
natural programming style.

The ability of a system to support the migration of an agent
at any time by an external thread, is termedforced mobility.



This is essential in desktop grid systems, because owners
need to be able to reclaim their resources. Forced mobility
is difficult to implement without strong mobility.

We provide strong and forced mobility for the full Java
programming language by using a preprocessor that translates
strongly mobile source code into weakly mobile source code
[29], [30]. The generated weakly mobile code maintains a
movable execution state for each thread at all times.

III. A UTONOMIC SCHEDULING

A. Agent Behavior Design

The organization of computation on a distributed system
must account for the specific communication pattern of an
application. For the initial exploration of our scheme we
selected a parameter-sweep template application, a class of
applications that has been frequently studied in the context
of Grid scheduling and for which a number of results are
available.

One of the works that inspired our project was the
bandwidth-centric protocol proposed by Kreaseck et al. [16],
in which a Grid computation is organized around a tree-
structured overlay network with the origin of the tasks at the
root. A tree overlay network represents a natural and intuitive
way of distributing tasks and collecting results. The drawback
of the original scheme is that the performance and the degree
of utilization of the system depend entirely on the initial
assignment of the overlay network.

In contrast, we have developed our systems to be adaptive in
the absence of any knowledge about machine configurations,
connection bandwidths, network topology, and assuming only
a minimal amount of initial information. While our scheme
is also based on a tree, our overlay network keeps changing
to adapt to system conditions. Our tree adaptation mechanism
is driven by the perceived performance of a node’s children,
measured passively as part of the ongoing computation [31].
From the point of view of network topology, our system starts
with a small amount of knowledge in the form of a “friends
list”, and then keeps building its own overlay network on
the fly. Information from each node’s “friends list” is shared
with other nodes so the initial configuration of the lists is not
critical. The only assumption we rely upon is that a “friends
list” is available initially on each node to prime the system;
solutions for the construction of such lists have been developed
in the context of peer-to-peer file-sharing [32], [33] and will
not be addressed in this paper.

The Local Activation, Long-range Inhibition (LALI) rule
is based on two types of interactions: a positive, reinforcing
one that works over a short range, and a negative, destructive
one that works over longer distances. We retain the LALI
principle but in a different form: we use a definition of
distance which is based on a performance-based metric. In
our experiment, distance is based on the perceived throughput
which is some function of communication bandwidth and
computational throughput. Nodes are initially recruited using
the “friends list” in a way that is completely oblivious of
distance, therefore propagating computation on distant nodes
with same probability as close ones. During the course of the
computation agents behavior encourages the propagation of
computation among well-connected nodes while discouraging
the inclusion of distant (i.e. less responsive) agents.

The methodology we followed to design the agent behavior
is as follows. Using an engineering approach, we selected
a tree-structured overlay network as the desirable pattern of
execution. We empirically determined the simplest behavior
that would organize the communication and task distribution
among mobile agents according to that pattern. We then
augmented the basic behavior in a way that introduced other
desirable properties. With the total computation time as the
performance metric, every addition to the basic scheme was
separately evaluated and its contribution to total performance,
quantitatively assessed.

One such property is constant adaptation. The overlay tree
is incrementally restructured during the computation so as to
adjust it to the performance of the nodes. Another property
is the performance monitoring of child nodes. We assumed
that no knowledge is available on the system, therefore child
performance is determined using feedback. Other functions
that were found to be critical for performance were the
automatic determination of parameters such as prefetching and
task size, the detection of cycles, the detection of dead nodes
and the end of the computation.

Although our scheme is general enough to accommodate
several different classes of applications, we focus on the
solution to one particular problem in this paper: the scheduling
of the independent, identical subtasks of an independent-task
application (ITA) whose data initially resides at one location.
The size of individual subtasks and of their results is large, and
so transfer times cannot be neglected. The application that we
have used for our experiments is NCBI’s nucleotide-nucleotide
sequence comparison tool BLAST [34].

B. Basic Agent Design

A large computational task is written as a strongly mo-
bile agent. This task should be divisible into a number of
independent subtasks. A user starts up the computation agent
on his/her machine. One thread of the agent begins executing
subtasks sequentially. The agent is also prepared to receive
requests for work from other machines. If the machine has any
uncomputed subtasks, and receives a request for work from
another machine, it sends a clone of itself to the requesting
machine. The requester is now this machine’schild.

The clone asks its parent for a certain number of subtasks
to work on,s. A thread begins to compute the subtasks. Other
threads are created — when required — to communicate
with the parent or other machines. When work requests are
received, the agent dispatches its own clone to the requester.
The computation spreads in this manner. The topology of the
resulting overlay network is a tree with the originating machine
at the root node.

An agent requests its parent for more work when it has
executed its own subtasks. Even if the parent does not have
the requested number of subtasks, it will respond and send its
child what it can. The parent keeps a record of the number of
subtasks that remain to be sent, and sends a request to its own
parent. Every time a node of the tree obtainsr results, either
computed by itself or obtained from a child, it sends them
to its parent. This message includes a request for all pending
subtasks.



C. Maintenance of Child-lists

A node cannot have an arbitrarily large number of children.
Since the data transfer times of the subtasks are large, a node
might have to wait for a very long time for its request to be
satisfied. Therefore, each node has a fixed number of children,
c. The number of children also should not be too small so as
to avoid deep trees and long delays in data propagation.

These children are ranked on the basis of their performance.
The performance metric is application-dependent. For an ITA,
a child is evaluated on the basis of the rate at which it sends in
results. When a child sendsr results, the node measures the
time-interval since the last time it sentr results. The final
result-rate of this child is calculated as an average of the
last R such time-intervals. This ranking is a reflection of the
performance of not just a child, but of the entire subtree with
the child node at its root.

In addition toc children, a node can also be the parent ofp
potential children. These are children which this node has not
yet been able to evaluate. When a potential child does send
enough results to this node, it is added to the list of the node’s
children. If the node now has more thanc children, the slowest
child, sc, is removed from the child-list. As described below,
sc is then given a list of other nodes, which it can contact to try
and get back into the tree. The current node keeps a record
of the last o former children, andsc is now placed in this
list. Nodes are removed from this list once a sufficient, user-
defined time period elapses. For that interval of time, messages
from sc will be ignored. This avoids thrashing and excessive
dynamism in the tree.

D. Restructuring of the Overlay Network

The topology of the overlay network is a tree and it is
desirable for the best-performing nodes to be close to the root.
This principle is applicable down the entire tree. In the case of
an ITA, this minimizes the communication delay between the
root and the best nodes, i.e., the overlay network is structured
so that the nodes with the highest throughput are close to the
root, pushing those with low throughput towards the leaves.

A node periodically informs its parent about its best-
performing child. The parent then checks whether its grand-
child is present in its list of former children. If not, it adds the
grandchild to its list of potential children and tells this node
that it is willing to consider the grandchild. The node then
instructs its child to contact its grandparent directly.

When a node updates its child-list and decides to remove
its slowest child,sc, it does not simply discard the child.
It prepares a list of its children in descending order of
performance, i.e., slowest node first. The list is sent tosc,
which attempts to contact those nodes in turn. Since the first
nodes that are contacted are the slower ones, the tree is sought
to be kept balanced.

E. Size of Result Burst

Each agent of an ITA ranks its children on the basis of the
time taken to send some results to this node. The time required
to obtain just one result-burst, or a result-burst of size 1, might
not be a good measure of the performance of a child. Nodes
might make poor decisions about which children to keep and
discard. The child propagation algorithm benefits from using
the average ofR result-burst intervals and from settingr, the

result-burst burst size, to be greater than 1. A better measure
for the performance of a child is the time taken by a node to
obtainr*(R+1) results. However,r andR should not be set to
very large values because the overlay network would take too
much time to take form and to get updated.

F. Fault Tolerance

If the parent of a node were to become inaccessible due
to machine or link failures, the node and its own descendants
would be disconnected from the tree. A node must be able to
contact its parent’s ancestors if necessary. Every node keeps
a list of a of its ancestors. This list is updated every time its
parent sends it a message.

A child waits a certain user-defined time for a response after
sending a message to its parent — thea-th node in its ancestor-
list. If the parent is able to respond, it will. The child will
receive the response, check whether its request was satisfied
with any subtasks, and begin waiting again if that is not the
case. If no response is obtained within the timeout period, the
child sends a message to the (a - 1)-th node in that list. This
goes on until an ancestor responds to this node’s request. The
ancestor becomes the parent of the current node and normal
operation resumes. If a node’s ancestor-list goes down to size
0, the computation agent on that node self-destructs and a
stationary agent begins to send out requests for work to a list
of friends.

G. Cycles in the Overlay Network

Even though the overlay network should be a tree, failures
could cause the formation of a cycle of nodes. This cycle of
nodes will eventually run out of subtasks to compute. This
situation is avoided by having each node examine its ancestor
list on receiving it from its parent. If a node finds itself in that
list, it knows that a cycle has occurred and its computation
agent self-destructs.

If the cycle involves a very large number of nodes, the
ancestor-list may be too small to include the current node.
A node also keeps track of the total time that has elapsed
since it last received a subtask. If that time exceeds a user-
defined limit, a cycle is assumed to have taken shape and the
computation agent on the node destroys itself.

H. Termination

The root of the tree determines when the computation has
terminated. It sends a termination message to each of its
actual, potential and former children. The computation agent
on the root then self-destructs. The children of the root do the
same. Termination messages spread down to the leaves and
the computation terminates. There are two scenarios in which
termination could be incomplete:

� A termination message might not reach a node. The
situation is the same as that described in Subsection III-F.

� Consider that computation agents are executing on nodes
n1 and n2. n1 receives a termination message, butn2
does not because of a failure. The agent onn1 destroys
itself. n1 now sends request messages to its friends. If
one of these isn2, a clone of n2’s agent is sent to
n1. An unchecked spread of computation will not occur
because agents send out clones only if they do not have
any uncomputed subtasks.n1 andn2 will eventually run
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Parameter Name Parameter Value

Maximum children 5
Maximum potential children 5
Result-burst size 3
Self-adjustment linear
Number of subtasks 1
initially requested
Child-propagation On

TABLE I

ORIGINAL PARAMETERS

out of subtasks and destroy themselves as explained in
Subsection III-F.

I. Self-adjustment of Task List Size

A node always requests a certain number of subtasks and
obtains their results before requesting more subtasks to work
on. However, in an ITA-type application, the utilization of a
high-performance machine may be poor because it is only
requesting a fixed number of subtasks at a time.

A node may request more subtasks in order to increase the
utilization of its resources. A node requests a certain number
of subtasks,t, that it will compute itself. Once it has finished
computing thet subtasks, it compares the average time to
compute a subtask on this run to that of the previous run.
Depending on whether it performed better, worse or about the
same, the node requestsi(t), d(t) or t subtasks for its next
run, wherei and d are increasing and decreasing functions,
respectively.

J. Prefetching

A node determines that it should requestt subtasks from
its parent. It also makes an optimistic prediction of how many
subtasks it might require in future by using thei function that
is used for self-adjustment.t+i(t) subtasks are then requested
from the parent. When a node finishes computing one set of
subtasks, more subtasks are readily available for it to work on,
even as a request is submitted to the parent.

While prefetching will reduce the delay in obtaining new
subtasks to work on, it also increases the amount of data that
needs to be transferred at a time from the root to the current
node, thus increasing the synchronization delay and data
transfer time. This is why excessively aggressive prefetching
will result in a performance degradation.

IV. M EASUREMENTS

We have conducted experiments to evaluate the performance
of each aspect of our scheduling scheme. The experiments
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Fig. 2. Final Node Organization, Result-burst size=3, Good Initial Config-
uration

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0 50 100 150 200 250 300 350 400

N
um

be
r 

of
 N

od
es

Time(sec)

Fig. 3. Code Ramp-up

were performed on a cluster of eighteen heterogeneous ma-
chines at different locations around Ohio. The machines ran
theAglets weak mobility agent environment on top of either
Linux or Solaris.

The application we used to test our system was the gene
sequence similarity search tool, NCBI’s nucleotide-nucleotide
BLAST [34]: an independent-task application. The task was
to match a 256KB sequence against 320 data chunks, each
of size 512KB. Each subtask was to match the sequence
against one chunk. All eighteen machines would have offered
good performance as they all had fast connections to the
Internet, high processor speeds and large memories. In order to
obtain more heterogeneity in their performance, we introduced
delays in the application code so that we could simulate the
effect of slower machines and slower network connections. We
divided the machines into fast, medium and slow categories
by introducing delays in the application code.

As shown in Figure 4, the nodes were initially organized
randomly. The dotted arrows indicate the directions in which
request messages for work were sent to friends. The only thing
a machine knew about a friend was itsURL. We ran the com-
putation with the parameters described in Table I. Linear self-
adjustment means that the increasing and decreasing functions
of the number of subtasks requested at each node are linear.
The time required for the code and the first subtask to arrive
at the different nodes can be seen in Figure 3. This is the same
for all the experiments.

A. Comparison with Knowledge-based Scheme

The purpose of these tests is to evaluate the quality of
the configuration which is autonomously determined by our
scheme for different initial conditions.
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Configuration Running
Time (sec)

original 2294
good 1781

TABLE II

EFFECT OFPRIOR KNOWLEDGE

Scheme Running
Time (sec)

With 2294
Without 3035

TABLE III

EFFECT OFCHILD PROPAGATION

Two experiments were conducted using the parameters in
Table I. In the first, we manually created a good initial
configuration assuming a priori knowledge of system param-
eters. We then ran the application, and verified that the final
configuration did not substantially depart from the initial one.
We consider a good configuration to be one in which fast nodes
are nearer the root. Figures 1 and 2 represent the start and end
of this experiment. The final tree configuration shows that fast
nodes are kept near the root and that the system is constantly
re-evaluating every node for possible relocation (as shown by
the three rightmost children which are under evaluation by the
root).

We began the second experiment with the completely ran-
dom configuration shown in Figure 4. The resulting configu-
ration shown in Figure 5 is substantially similar to the good
configurations of the previous experiment; if the execution
time had been longer, the migration towards the root of the
two fast nodes at depths 2 and 3 would have been complete.

B. Effect of Child Propagation

We performed our computation with the child-propagation
aspect of the scheduling scheme disabled. Comparisons of the
running times and topologies are in Table III and Figures 5 and
6. The child-propagation mechanism results in a 32% improve-
ment in the running time. The reason for this improvement is
the difference in the topologies. With child-propagation turned
on, the best-performing nodes are closer to the root. Subtasks
and results travel to and from these nodes at a faster rate, thus
improving system throughput.

C. Result-burst size

The experimental setup in Table I was again used. We
then ran the experiment with different result-burst sizes. The
running times have been tabulated in Table IV. The child
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Fig. 6. Final Node Organization, Result-burst size=3, No Child Propagation

evaluations that are made by nodes on the basis of one result
are poor. The nodes’ child-lists change frequently and are far
from ideal, as in Figure 7.

There is a qualitative improvement in the child-lists as
the result-burst size increases. The structure of the resulting
overlay networks for result-burst sizes 3 is in Figures 5.
However, with very large result-bursts, it takes longer for
the tree overlay to form and adapt, thus slowing down the
experiment. This can be seen in Figure 8.

D. Prefetching and Initial Task Size

The data ramp-up time is the time required for subtasks to
reach every single node. Prefetching has a positive effect on
this. The minimum number of subtasks that each node requests
also affects the data ramp-up. The greater this number, the
greater the amount of data that needs to be sent to each node,
and the slower the data ramp-up. This can be seen in Table V.

Prefetching does improves the ramp-up, but of paramount
importance is its effect on the overall running time of an exper-
iment. This is also closely related to the minimum number of
subtasks requested by each node. Prefetching improves system
throughput when the minimum number of subtasks requested
is one. As the minimum number of subtasks requested by a
node increases, more data needs to be transferred at a time
from the root to this node, and the effect of prefetching be-
comes negligible. As this number increases further, prefetching
actually causes a degradation in throughput. Table V and
Figure 9 summarize these results.



Result-burst Size Running Time (sec)

1 3050
3 2294
8 3020

TABLE IV

EFFECT OFRESULT-BURSTSIZE
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Fig. 7. Node Organization, Result-burst size=1

E. Self-Adjustment

We ran an experiment using the configuration in Table I
and then did the same using constant and exponential self-
adjustment functions instead of the linear one. The data ramp-
ups have been compared in Table VI. The ramp-up with
exponential self-adjustment is appreciably faster than that with
linear or constant self-adjustment. The aggressive approach
performs better because nodes prefetch a larger amount of
subtasks, and subtasks quickly reach the nodes farthest from
the root.

We also compared the running times of the three runs which
are in Table VI. Interestingly, the run with the exponential self-
adjustment performed poorly with respect to the other runs.
This is due to nodes prefetching extremely large numbers
of subtasks. Nodes now spend more time waiting for their
requests to be satisfied, resulting in a degradation in the
throughput at that node.

The linear case was expected to perform better than the
constant one, but the observed difference was insignificant.
We expect this difference to be more pronounced with longer
experimental runs and a larger number of subtasks.

F. Number of children

We experimented with different child-list sizes and found
that the data ramp-up time with the maximum number of
children set to 5 was less than that with the maximum number
of children set to 10 or 20. These results are in Table VII. The
root is able to take on more children in the latter cases and
the spread of subtasks to nodes that were originally far from
the root takes less time.

Instead of exhibiting better performance, the runs where
large numbers of children were allowed, had approximately
the same total running time as the run with the maximum
number of children set to 5. This is because children have to
wait for a longer time for their requests to be satisfied.

In order to obtain a better idea of the effect of several
children waiting for their requests to be satisfied, we ran
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Fig. 8. Node Organization, Result-burst size=8

No. of Ramp-up Ramp-up Running Running
Subtasks Time (sec) Time (sec) Time (sec) Time (sec)

Prefetching No prefetching Prefetching No prefetching

1 406 590 2308 2520
2 825 979 2302 2190
5 939 1575 2584 2197

TABLE V

EFFECT OFPREFETCHING ANDMINIMUM NUMBER OF SUBTASKS

two experiments: one with the good initial configuration of
Figure 1, and the other using a star topology — every non-
root node was adjacent to the root at the beginning of the
experiment itself. The maximum sizes of the child-lists were
set to 5 and 20, respectively. Since the overlay networks
were already organized such that there would be little change
in their topology as the computation progressed, there was
minimal impact of these changes on the overall running time.
The effect of the size of the child-list was then clearly observed
as in Table VIII. Similar results were observed even when the
child-propagation mechanisms were turned off.

V. CONCLUSIONS ANDFUTURE WORK

We have designed an autonomic scheduling algorithm in
which multi-threaded agents with strong mobility form a tree-
structured overlay network. The structure of this tree is varied
dynamically such that the nodes that currently exhibit good
performance are brought closer to the root, thus improving
the performance of the system.

We experimented with scheduling a massively parallel appli-
cation whose data initially resides at one location, and whose
subtasks have considerable data transfer times. The experi-
ments were conducted on a set of machines distributed across
Ohio. Nodes were evaluated on the basis of their throughput.
Extensive analysis of the performance of the scheme’s various
mechanisms show the feasibility of the approach.

There has been some research on the problem of assigning
friend-lists [32], [33], and we will consider how best to
apply this to our own work. We will also experiment with
incorporating an interruptible-communication mechanism [16]
into our scheme.

While this paper concentrated on a scheduling scheme
for independent-task applications, we will experiment with
adapting the algorithm for a wide class of applications. It is our
intention to present a desktop grid user with a simple software
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Self-adjustment Ramp-up Running
Function Time (sec) Time (sec)
Linear 1068 2302
Constant 1142 2308
Exponential 681 2584

TABLE VI

EFFECT OFSELF-ADJUSTMENT FUNCTION

interface that will allow him/her to customize the scheduling
schemes to the characteristics of an application.

The experimental platform was a set of 18 heterogeneous
machines. In future, we plan to harness the computing power
of idle machines across the Internet — at the Ohio State
University in particular — to create a desktop grid of a scale
of the tens or hundreds of thousands. Researchers will then be
free to deploy scientific applications on this system.
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