
Global Communication Optimization for
Tensor Contraction Expressions under Memory Constraints∗

Daniel Cociorva, Xiaoyang Gao, Sandhya Krishnan, Gerald Baumgartner,
Chi-Chung Lam, P. Sadayappan

Department of Computer and Information Science
The Ohio State University

{cociorva,gaox,krishnas,gb,clam,saday }@cis.ohio-state.edu

J. Ramanujam
Department of Electrical and Computer Engineering

Louisiana State University
jxr@ece.lsu.edu

Abstract

The accurate modeling of the electronic structure of atoms and
molecules involves computationally intensive tensor contrac-
tions involving large multi-dimensional arrays. The efficient
computation of complex tensor contractions usually requires
the generation of temporary intermediate arrays. These in-
termediates could be extremely large, but they can often be
generated and used in batches through appropriate loop fu-
sion transformations. To optimize the performance of such
computations on parallel computers, the total amount of inter-
processor communication must be minimized, subject to the
available memory on each processor. In this paper, we ad-
dress the memory-constrained communication minimization
problem in the context of this class of computations. Based
on a framework that models the relationship between loop
fusion and memory usage, we develop an approach to iden-
tify the best combination of loop fusion and data partition-
ing that minimizes inter-processor communication cost with-
out exceeding the per-processor memory limit. The effective-
ness of the developed optimization approach is demonstrated
on a computation representative of a component used in quan-
tum chemistry suites.

1 Introduction

The development of high-performance parallel programs for
scientific applications is often very tediuos and time consum-
ing. The time to develop an efficient parallel program for a
computational model can be a primary limiting factor in the
rate of progress of the science. Our overall goal is to develop
a program synthesis system to facilitate the rapid development
of high-performance parallel programs for a class of scientific
computations encountered in quantum chemistry. The domain
of our focus is electronic structure calculations, as exemplified

∗Supported in part by the National Science Foundation through the Infor-
mation Technology Research program (CHE-0121676 and CHE-0121706), and
NSF grants CCR-0073800 and EIA-9986052.

by coupled cluster methods [4], in which many computation-
ally intensive components are expressible as a set of tensor
contractions (explained later with an example). We are de-
veloping a program synthesis system that will transform an
algebraic formula expressed in a high-level notation into effi-
cient parallel code tailored to the characteristics of the target
architecture.

A number of compile-time optimizations are being incor-
porated into the program synthesis system. These include
algebraic transformations to minimize the number of arith-
metic operations [13, 16], loop fusion and array contraction
for memory space minimization [15, 16], tiling and data local-
ity optimization [2], and space-time trade-off optimization [3].
Since the problem of determining the set of algebraic trans-
formations to minimize operation count was found to be NP-
complete, we developed a pruning search procedure [13] that
is very efficient in practice. The operation-minimization pro-
cedure results in the creation of intermediate temporary arrays.
Instead of directly computing the result using the input arrays,
the number of operations can often be significantly reduced
by suitable choice of some intermediate arrays (an example is
provided later). However, these intermediate arrays that help
in reducing the computational cost can create a problem with
the memory required. Loop fusion was found to be effec-
tive in significantly reducing the total memory requirement.
However, since some fusions could prevent other fusions, the
choice of the optimal set of fusion transformations is impor-
tant. So we addressed the problem of finding the choice of
loop fusions for a given operator tree that minimizes the space
required for all intermediate arrays after fusion [15, 14].

In this paper we address the optimization of a parallel im-
plementation of this class of computations. If memory were
abundant, the issue would be that of determining the optimal
distributions/re-distributions of the various multi-dimensional
arrays and distributed implementations of the collection of
tensor contractions, which are essentially generalized matrix
products on higher dimensional arrays (an example is provided
later). We use a generalization of Cannon’s matrix multiplica-
tion algorithm [12] as the basis for the individual contractions.



For many problems of practical interest to quantum chemists,
the available memory even on clusters is insufficient to imple-
ment the operation-minimal form of the computation, unless
array contractions through loop fusion are performed. Hence
the problem that we address is the following: given a set of
computations expressed as a sequence of tensor contractions,
and a specified limit on the amount of available memory on
each processor, determine the set of loop fusions and choice of
array distributions that will minimize the communication over-
head for a parallel implementation of the contractions, based
on Cannon’s algorithm. In this paper, we present a framework
that we have developed to solve this problem. Experimental
results on a cluster are provided, that demonstrate the effec-
tiveness of the developed algorithm.

The computational structures that we target arise in scien-
tific application domains that are extremely compute-intensive
and consume significant computer resources at national su-
percomputer centers. They are present in various computa-
tional chemistry codes such as ACES II, GAMESS, Gaussian,
NWChem, PSI, and MOLPRO. In particular, they comprise
the bulk of the computation with the coupled cluster approach
to the accurate description of the electronic structure of atoms
and molecules [17, 20]. Computational approaches to model-
ing the structure and interactions of molecules, the electronic
and optical properties of molecules, the heats and rates of
chemical reactions, etc., are very important to the understand-
ing of chemical processes in real-world systems.

This paper is organized as follows. In the next section,
we elaborate on the computational context of interest and the
pertinent optimization issues. Section 3 discusses the interac-
tion between distribution of arrays and loop fusion, and de-
scribes our algorithm for the memory-constrained communi-
cation minimization problem. Section 4 presents results from
the application of the new algorithm to an example abstracted
from NWChem [9]. We discuss related work in Section 5.
Conclusions are provided in Section 6.

2 Elaboration of problem addressed

In the class of computations considered, the final result to be
computed can be expressed as multi-dimensional summations
of the product of several input arrays. Due to commutativity,
associativity, and distributivity, there are many different ways
to obtain the same final result and they could differ widely in
the number of floating point operations required. Consider the
following example:

S(t) = ∑
i, j,k

A(i, j, t)×B( j,k, t) (1)

If implemented directly as expressed above, the computation
would require 2NiNjNkNt arithmetic operations to compute.
However, assuming associative reordering of the operations
and use of distributive law of multiplication over addition is
acceptable for the floating-point computations, the above com-
putation can be rewritten in various ways. One equivalent form
that only requiresNiNjNt + NjNkNt + 2NjNt operations is as
shown in Fig. 1(a).

Generalizing from the above example, we can express
multi-dimensional integrals of products of several input arrays
as a sequence of formulae. Each formula produces some in-
termediate array and the last formula gives the final result. A
formula is either:

T1( j, t) = ∑
i

A(i, j, t)

T2( j, t) = ∑
k

B( j,k, t)

T3( j, t) = T1( j, t)×T2( j, t)

S(t) = ∑
j

T3( j, t)

(a) Formula sequence

A(i, j, t) B( j,k, t)

∑i ∑kT1 T2

�
��

@
@@

×T3

∑ jS

(b) Binary tree representation

Figure 1: A formula sequence and its binary tree representa-
tion.

• a multiplication formula of the form:Tr(. . .) = X(. . .)×
Y(. . .), or

• a summation formula of the form:Tr(. . .) = ∑i X(. . .),

where the terms on the right hand side represent input arrays or
intermediate arrays produced by a previously defined formula.
Let IX , IY and ITr be the sets of indices inX(. . .), Y(. . .)
and Tr(. . .), respectively. For a formula to be well-formed,
every index inX(. . .) andY(. . .), except the summation index
in the second form, must appear inTr(. . .). ThusIX ∪ IY ⊆
ITr for any multiplication formula, andIX −{i} ⊆ ITr for
any summation formula. Such a sequence of formulae fully
specifies the multiplications and additions to be performed in
computing the final result.

A sequence of formulae can be represented graphically as
a binary tree to show the hierarchical structure of the compu-
tation more clearly. In the binary tree, the leaves are the input
arrays and each internal node corresponds to a formula, with
the last formula at the root. An internal node may either be
a multiplication node or a summation node. A multiplication
node corresponds to a multiplication formula and has two chil-
dren which are the terms being multiplied together. A summa-
tion node corresponds to a summation formula and has only
one child, representing the term on which summation is per-
formed. As an example, the binary tree in Fig. 1(b) represents
the formula sequence shown in Fig. 1(a).

The operation-minimization procedure discussed above
usually results in the creation of intermediate temporary ar-
rays. Sometimes these intermediate arrays that help in reduc-
ing the computational cost create a problem with the memory
capacity required. For example, consider the following ex-
pression:

Sabi j = ∑
cde f kl

Aacik×Bbe f l×Cd f jk×Dcdel



If this expression is directly translated to code (with ten nested
loops, for indicesa− l ), the total number of arithmetic oper-
ations required will be 4N10 if the range of each indexa− l
is N. Instead, the same expression can be rewritten by use of
associative and distributive laws as the following:

Sabi j = ∑
ck

(
∑
d f

(
∑
el

Bbe f l×Dcdel

)
×Cd f jk

)
×Aacik

This corresponds to the formula sequence shown in Fig. 2(a)
and can be directly translated into code as shown in Fig. 2(b).
This form only requires 6N6 operations. However, additional
space is required to store temporary arraysT1 andT2. Of-
ten, the space requirements for the temporary arrays poses a
serious problem. For this example, abstracted from a quantum
chemistry model, the array extents along indicesa−d are the
largest, while the extents along indicesi− l are the smallest.
Therefore, the size of temporary arrayT1 would dominate the
total memory requirement.

We have previously shown that the problem of determin-
ing the operator tree with minimal operation count is NP-
complete, and have developed a pruning search procedure
[13] that is very efficient in practice. For the above exam-
ple, although the latter form is far more economical in terms
of the number of arithmetic operations, its implementation
will require the use of temporary intermediate arrays to hold
the partial results of the parenthesized array subexpressions.
Sometimes, the sizes of intermediate arrays needed for the
“operation-minimal” form are too large to even fit on disk.

A systematic way to explore ways of reducing the memory
requirement for the computation is to view it in terms of poten-
tial loop fusions. Loop fusion merges loop nests with common
outer loops into larger imperfectly nested loops. When one
loop nest produces an intermediate array which is consumed
by another loop nest, fusing the two loop nests allows the di-
mension corresponding to the fused loop to be eliminated in
the array. This results in a smaller intermediate array and thus
reduces the memory requirements. For the example consid-
ered, the application of fusion is illustrated in Fig. 2(c). By
use of loop fusion, for this example it can be seen thatT1 can
actually be reduced to a scalar andT2 to a 2-dimensional ar-
ray, without changing the number of arithmetic operations.

For a computation comprised of a number of nested loops,
there will generally be a number of fusion choices, that are
not all mutually compatible. This is because different fusion
choices could require different loops to be made the outermost.
In prior work, we have addressed the problem of finding the
choice of fusions for a given operator tree that minimizes the
total space required for all arrays after fusion [16, 15, 14].

A data-parallel implementation of the unfused code for
computingSabi j would involve a sequence of three steps, each
corresponding to one of the loops in Fig. 2(b). The communi-
cation cost incurred will clearly depend on the way the arrays
A, B, C, D, T1, T2, andS are distributed. We have previ-
ously considered the problem of minimization of communi-
cation with such computations [16]. However, the issue of
memory space requirements was not addressed. In practice,
many of the computations of interest in quantum chemistry
require impractically large intermediate arrays in the unfused
operation-minimal form. Although the collective memory of
parallel machines is very large, it is nevertheless insufficient to
hold the full intermediate arrays for many computations of in-
terest. Thus, array contraction through loop fusion is essential
in the parallel context too. However, it is not satisfactory to

first find a communication-minimizing data/computation dis-
tribution for the unfused form, and then apply fusion trans-
formations to minimize memory for that parallel form. This
is because 1) fusion changes the communication cost, and
2) it may be impossible to find a fused form that fits within
available memory, due to constraints imposed by the chosen
data distribution on possible fusions. In this paper we ad-
dress this problem of finding suitable fusion transformations
and data/computation partitioning that minimize communica-
tion costs, subject to limits on available per-processor mem-
ory.

3 Memory-constrained communication mini-
mization

Given a sequence of formulae, we now address the prob-
lem of finding the optimal partitioning of arrays and oper-
ations among the processors and the loop fusions on each
processor in order to minimize inter-processor communica-
tion while staying within the available memory in implement-
ing the computation on a message-passing parallel computer.
Section 3.1 introduces a two-dimensional logical processor
model used to represent the computational space, and presents
a generalized Cannon’s algorithm for tensor contractions. Sec-
tion 3.2 discusses the combined effects of loop fusions and
array/operation partitioning on communication cost and mem-
ory usage. An integrated algorithm for solving this problem is
presented in Section 3.3.

3.1 Preliminaries: a generalization of Can-
non’s algorithm for tensor contractions

Since primitive tensor contractions are essentially generalized
multi-dimensional matrix multiplications, we choose to use
the memory efficient Cannon algorithm [12] as the primary
template. The generalization of Cannon’s algorithm to multi-
dimensional arrays proceeds as follows. A logical view of the
P processors as a two-dimensional

√
P×

√
P grid is used, and

each array is fully distributed along the two processor dimen-
sions. As will be clear later on, the logical view of the proces-
sor grid does not impose any restriction on the actual physi-
cal interconnection topology of the processor system, since an
empirical characterization of the cost of redistribution between
different distributions is performed on the target system.

We use a pair of indices to denote the partitioning ordis-
tribution of the elements of a data array on a two-dimensional
processor array. Thed-th position in a pairα, denotedα[d],
whered can be either 1 or 2, corresponds to thed-th proces-
sor dimension. Each position is an index variable distributed
along that processor dimension. As an example, suppose 16
processors form a two-dimensional 4×4 logical array. For the
arrayB(b,e, f , l) in Fig. 2(a), the pairα = 〈b, f 〉 specifies that
the first (b) and the third (f ) dimensions ofB are distributed
along the first and second processor dimensions respectively,
and that the second (e) and fourth (l ) dimensions ofB are not
distributed. Thus, a processor whose id isPz1,z2, with z1 andz2
between 1 and 4, will be assigned a portion ofB specified by
B(myrange(z1,Nb,4),1 : Ne,myrange(z2,Nf ,4),1 : Nl ), where
myrange(z,N, p) is the range(z−1)×N/p+1 toz×N/p.

We assume a data-parallel programming model, with par-
allelism being exploited within each operator of an operator



T1bcd f = ∑
el

Bbe f l×Dcdel

T2bc jk = ∑
d f

T1bcd f×Cd f jk

Sabi j = ∑
ck

T2bc jk×Aacik

(a) Formula sequence

T1=0; T2=0; S=0
for b, c, d, e, f, l[

T1bcdf += Bbefl Dcdel
for b, c, d, f, j, k[

T2bcjk += T1bcdf Cdfjk
for a, b, c, i, j, k[

Sabij += T2bcjk Aacik

(b) Direct implementation
(unfused code)

S = 0
for b, c

T1f = 0; T2f = 0
for d, f

for e, l[
T1f += B befl Dcdel

for j, k[
T2f jk += T1f C dfjk

for a, i, j, k[
Sabij += T2f jk Aacik

(c) Memory-reduced implementation (fused)

Figure 2: Example illustrating use of loop fusion for memory reduction.

tree, and do not consider distributing the computation of dif-
ferent formulae on different subsets of processors. A tensor
contraction formula can be expressed as a generalized matrix
multiplication C(I,J) += A(I,K) * B(K,J), where I, J, and K rep-
resent index collections or index sets. This observation follows
from a special property of tensor contractions: all the indices
appearing on the left-hand side must appear on the right-hand
side onlyonce(index sets I and J, for A and B, respectively),
and all summation indices must appear on both right-hand
side arrays (index set K). For example, the tensor contraction
T1(b,c,d, f ) = ∑e,l B(b,e, f , l)×D(c,d,e, l) is characterized
by the index sets I ={b, f}, J ={c,d}, and K ={e, l}.

We generalize Cannon’s algorithm for multi-dimensional
arrays as follows. A triplet{i, j,k} formed by one index from
each index set I, J, and K defines a distribution〈i, j〉 for the
result arrayC, and distributions〈i,k〉 and〈k, j〉 for the input
arraysA andB, respectively. In addition, one of the 3 indices
{i, j,k} is chosen as the “rotation index,” along which the pro-
cessor communication takes place. For example, in the tra-
ditional Cannon algorithm for matrix multiplication, the sum-
mation indexk plays that role; blocks of the input arraysA and
B are rotated among processors, and each processor holds a
different block ofA andB and the same block ofC after each
rotation step. At every step, processors multiply their local
blocks ofA andB, and add the result to the block ofC.

Due to the symmetry of the problem, any of the 3 indices
{i, j,k} can be chosen as the rotation index, so that it is pos-
sible to keep any one of the arrays in a fixed distribution and
communicate (“rotate”) the other two arrays. Therefore, the
number of distinct communication patterns within the gener-
alized Cannon’s algorithm framework is given by 3× NI NJ
NK, where NI is defined as the number of indices in the in-
dex setI . The communication costs of the tensor contraction
depend on the distribution choice{i, j,k} and the choice of
rotation index.

In addition to the communication of array blocks dur-
ing the rotation phase of the Cannon algorithm, array re-
distribution may be necessary between the Cannon steps.
For instance, suppose the arraysB(b,e, f , l) and D(c,d,e, l)
have initial distributions〈b, f 〉 and 〈e,c〉 respectively. If
we wantT1 to have the distribution〈b,c〉 when evaluating
T1(b,c,d, f ) = ∑e,l B(b,e, f , l)×D(c,d,e, l), B would have,
for example, to be re-distributed from〈b, f 〉 to 〈b,e〉 for the
generalized Cannon algorithm to be possible. But since the
initial distribution 〈e,c〉 of D(c,d,e, l) is the same as the dis-
tribution required to perform the Cannon rotations, no re-
distribution is necessary for arrayD.

3.2 Interaction between data distribution and
loop fusion

The partitioning of data arrays among the processors and the
fusions of loops on each processor are inter-related. Although
in our context there are no constraints on loop fusion due to
data dependences (there are never any fusion-preventing de-
pendences), there are constraints and interactions with array
distribution:(i) both affect memory usage, by fully collapsing
array dimensions (fusion) or by reducing them (distribution),
(ii) loop fusion can increase both the number of messages, and
therefore the start-up communication cost, and the communi-
cation volume, and(iii ) fusion and communication patterns
may conflict, resulting in mutual constraints. We discuss these
issues next.
(i) Memory usage and array distribution. The memory re-
quirements of the computation depend on both loop fusion and
array distribution. Fusing a loop with indext between a node
v and its parent eliminates thet-dimension of arrayv. If the
t-loop is not fused but thet-dimension of arrayv is distributed
along thed-th processor dimension, then the range of thet-
dimension of arrayv on each processor is reduced toNt/

√
P.

Let DistSize(v,α, f ) be the size on each processor of arrayv,
with distribution α and fusion f with its parent, wheref is
described by a set of fused indices. We have

DistSize(v,α, f ) = ∏i ∈ v.dimensDistRange(i,v,α, f )

wherev.dimens= v.indices−{v.sumindex} is the array dimen-
sion indices ofv before loop fusions,v.indicesis the set of loop
indices forv including the summation indexv.sumindexif v is
a summation node, and

DistRange(i,v,α,x) =


1 if i ∈ x

Ni/
√

P if i 6∈ x andi = α[d]
Ni if i 6∈ x andi 6∈ α

In our example, assumeP= 16 and thatNa = Nb = Nc = Nd =
480, Ne = Nf = 64, andNj = Nk = Nl = 32. If the array
T1(b,c,d, f ) has distribution〈b, f 〉 and fusion〈c〉 with T2,
then the size ofB on each processor would beNb/

√
P×1×

Nd×Nf /
√

P = 921,600 words, or 7.2MB per processor.
(ii) Loop fusion increases communication cost.The distri-
bution of an arrayv determines the communication pattern,
while loop fusions change the number of times arrayv is com-
municated and the size of each message. Letv be an array that
is communicated (rotated) in a generalized Cannon algorithm
tensor contraction. If nodev is not fused with its parent, ar-
rayv is fully rotated only once, in

√
P rotation steps. Fusing a

loop with indext between nodev and its parent puts the collec-
tive communication code inside thet loop. Thus, the number



of communication steps is increased by a factor ofNt/
√

P if
thet-dimension ofv is distributed, and by a factor ofNt if the
t-dimension ofv is not distributed.
(iii ) Potential conflict between array distribution and loop
fusion. For the fusion of a loop between nodesu andv to be
possible, its index must either be undistributed at bothu and
v, or be distributed onto the same number of processors atu
and atv. Otherwise, the range of the loop at nodeu would be
different from that at nodev, preventing fusion of the loops.
This condition introduces an important mutual constraint in
the search for the optimal fusion and distribution. It shows that
independently finding the optimal fusion configuration and the
optimal data distribution pattern may not result in a valid over-
all solution to the problem of memory-constrained communi-
cation minimization. The next section presents an integrated
algorithm that provides the solution to this problem.

3.3 Memory-constrained communication min-
imization algorithm

In this section, we present an algorithm addressing the com-
munication minimization problem with memory constraint. In
practice, the arrays involved are often too large to fit into the
available memory even after partitioning among the proces-
sors. We assume the input arrays can be distributed initially
among the processors in any way at zero cost. We do not re-
quire the final results to be distributed in any particular way.
Our approach works regardless of whether any initial or final
data distribution is given.

The main idea of this method is to search among all combi-
nations of loop fusions and array distributions to find one that
has minimal total communication and computational cost and
uses no more than the available memory. In this section, we
present a dynamic programming algorithm for this purpose.

Let RCost(localsize,α, i) be the communication cost in ro-
tating the blocks of anα- distributed array, withlocalsizeel-
ements distributed on each processor, along thei index of the
array. We empirically measureRCostfor each distributionα
and each position of the indexi, and for several differentlo-
calsizeson the target parallel computer. We generate this data
by measuring the communication times for different array dis-
tributions and array sizes on the target computer (in our case,
an Intel Itanium cluster). Although generating the character-
ization is somewhat laborious, once a characterization file is
completed, it can be used to predict, by interpolation or ex-
trapolation, the communication times for arbitrary array dis-
tributions and sizes. LetRotateCost(v,α, i, f ) denote the com-
munication cost for the arrayv, which has fusionf with its
parent, distributionα, and is rotated along thei index. It can
be expressed as:

RotateCost(v,α, i, f ) =
MsgFactor(v,α, f )×RCost(DistSize(v,α, f ),α, i),

where

MsgFactor(v,α, f ) = ∏ j ∈ v.dimensLoopRange( j,v,α, f )

and

LoopRange( j,v,α, f ) =


1 if j 6∈ f

Nj/
√

P if j ∈ f and j = α[d]
Nj if j ∈ f and j 6∈ α

Finally, we defineCost(v,α) to be the total cost for the
subtree rooted atv with distributionα. After transforming the
given sequence of formulae into an expression treeT (see Sec-
tion 2), we initializeCost(v,α) = 0 for each leaf nodev in T
and each distributionα. For each internal nodeu and each
distribution α, we can calculateCost(u,α) according to the
following procedure: letu be a node with two childrenv and
v′. Let β andγ be the distributions ofv andv′, respectively.
In order to perform the generalized Cannon matrix multiplica-
tion, the distributionsβ, γ, andα have to be compatible,i.e. of
the formβ = 〈i,k〉, γ = 〈k, j〉, andα = 〈i, j〉. Thus,

Cost(u,α) = minβ,γ,l{Cost(v,β)+Cost(v′,γ)+RotateCost(u,α, l , /0)}.

With these definitions, the bottom-up dynamic program-
ming algorithm proceeds as follows. At each nodev in the
expression treeT, we consider all combinations of array dis-
tributions forv and loop fusions betweenv and its parent. The
array size and communication cost are determined according
to the equations in sections 3.2 and 3.3. At each nodev, a set
of solutions is formed. Each solution contains the final dis-
tribution of v, the loop nesting atv, the loop fusion between
v and its parent, the total communication cost, and the mem-
ory usage for the subtree rooted atv. A solutions is said to
be inferior to another solutions′ if they have the same final
distribution,s has less potential fusions withv’s parent than
s′, s.cost≥ s′.cost, and the memory usage ofs is higher than
that ofs′. An inferior solution and any solution that uses more
memory than available can be pruned. At the root node of
T, the only two remaining criteria are the communication cost
and the memory usage of the solutions. After pruning the so-
lutions whose memory usage exceeds the memory limit, we
pick the solution with the lowest communication cost as the
optimal solution for the entire tree.

The algorithm is exhaustive, searching through the entire
space of array distributions and loop fusions, and discarding
only those partial solutions that cannot become optimal. It
always finds an optimal solution if there is one. Although the
complexity of the algorithm is exponential in the number of
index variables and the number of solutions could in theory
grow exponentially with the number of index variables, the
number of index variables in practical applications is usually
small and there is indication that the pruning is effective in
keeping the size of the solution set in each node small.

4 An application example

In this section, we present an application example of the
memory-constrained communication minimization algorithm.
Consider again the sequence of computations in Fig. 2(a), rep-
resentative of the multi-dimensional tensor contractions often
present in quantum chemistry codes:

Sabi j = ∑
ck

(
∑
d f

(
∑
el

Bbe f l×Dcdel

)
×Cd f jk

)
×Aacik

The sizes of the array dimensions are chosen to be com-
patible with the dimensions found in typical chemistry prob-
lems, where they represent occupied or virtual orbital spaces:
Nj = Nk = Nl = 32, Na = Nb = Nc = Nd = 480, andNe =
Nf = 64. The input arraysA, B, C, andD, and the output
arrayS are assumed to be fully stored in memory, while the
intermediate arraysT1bcd f = ∑el Bbe f l×Dcdel andT2bc jk =
∑d f T1bcd f×Cd f jk can be partially stored through the use of
loop fusion (see Fig. 2(c)).



As an example, we investigate the parallel execution of
this calculation on an Intel Itanium cluster with 2 processors
per node and 4GB of memory available at each node. We first
consider the use of 32 nodes in the computation, for a total
of 64 processors and 128GB available physical memory. We
then consider the execution of the same calculation on only 8
nodes, resulting in a total of 16 processors and 32GB of avail-
able memory. Since different amounts of memory are avail-
able under the two scenarios, the communication optimal so-
lutions are different. In particular, we show by this example
that memory constraints can lead to counter-intuitive trends in
communication costs: for a given problem size, as the num-
ber of available nodes decreases, more loop fusions are neces-
sary to keep the problem in the available memory, resulting in
higher communication costs.

Tables 1 and 2 present the solutions of the memory-
constrained communication minimization algorithm on the
Itanium cluster for 64 and 16 processors, respectively.

For the system of 64 processors (32 nodes) on the Ita-
nium cluster, the logical view of the processor space is a two-
dimensional 8×8 distribution. For the 16 processor (8 node)
case, the logical processor view is a 4× 4 distribution. Ta-
bles 1 and 2 show the full four-dimensional arrays involved in
the computation, their reduced (fused) representations, their
initial and final distributions, their memory requirements, and
the communication costs involved in the Cannon rotations in
the initial and final distributions. The initial distribution is de-
fined as the distribution at the multiplication node where the
array is generated, or produced, and the definition applies only
to intermediate (T1, T2) or output (S) arrays. The final distri-
bution is defined as the distribution at the multiplication node
at which the array is used or consumed; this definition applies
to the input arraysA, B,C, andD, as well as to the intermediate
arraysT1 andT2.

For the 64 processor system, the available 128GB of mem-
ory are enough to fully store all the arrays in the computa-
tion, and no fusion is necessary. Indeed, Table 1 shows the
”reduced arrays” being the same as the full arrays; since the
array elements are double precision quantities, the total mem-
ory requirements for the sum of all arrays is≈ 65.3GB, or
≈ 2.04GB/node, which is within the 4GB available memory
limit per node, even allowing for an extra 115.2MB tempo-
rary send/receive buffer (the size of the largest message to be
transmitted, for the arrayD). The arrayT1 requires the largest
amount of space (55.3GB, or≈ 1.73GB/node), and dominates
the memory requirements of the problem. However, the opti-
mal solution does not require communication ofT1, and each
processor needs access only to its own data.

For the optimal solution presented in Table 1, the initial
and final distributions of the intermediate arrays are the same;
this implies that no array re-distribution is performed between
the Cannon matrix multiplication steps. Hence, all the com-
munication costs in the problem result exclusively from the
alignment and rotation of the multi-dimensional matrix blocks
during the Cannon matrix multiplication steps. For each step,
the 2 smaller arrays are communicated: in the first step,
T1bcd f = ∑el Bbe f l×Dcdel, the arraysB and D are rotated;
in the second step,T2bc jk = ∑d f T1bcd f ×Cd f jk, C and T2
are rotated, while in the final step,Sabi j = ∑ckT2bc jk×Aacik,
any 2 arrays can be rotated for the same cost, and we choose
A andT2. Table 1 shows the communication costs for these
Cannon rotations. A value of 0 means that the array is not
communicated during a matrix multiplication step.

The total communication cost is the sum of all the costs in

Table 1: 98.0 seconds. This represents only 7.0% of the total
1403.4 second running time of the calculation on the 64 pro-
cessor system. If memory limits were not an issue, we would
expect the fraction of communication time to the total run-
ning time to decrease even further for a system with a smaller
number of nodes. However, the memory constraints are very
important in this class of problems, and their impact on com-
munication costs is very significant, as we show in the next
example.

Table 2 presents the solution of the algorithm for a sys-
tem of 8 nodes (16 processors, 32GB of memory) on the
Itanium cluster. In this case, the total memory require-
ments of the problem,≈ 65.3GB, are larger than the avail-
able space, so loop fusion for memory reduction is neces-
sary. This is achieved by fusing thef loop and reducing the
array T1(b,c,d, f ) (55.3GB, or 6.9GB/node) toT1(b,c,d),
(864MB, or 108MB/node). The total memory requirement of
the optimal solution is now≈ 10.8GB, or 1.35GB/node, which
is within the 4GB/node memory limit, even allowing for an
extra 230.4MB temporary send/receive buffer (the size of the
largest messages to be transmitted, for the arraysA andT2).

For the optimal solution presented in Table 2, the initial
and final distributions of the intermediate arrays are again
the same, so no array re-distribution is performed between
the Cannon matrix multiplication steps. Like in the pre-
vious example, the inter-processor communication happens
only during the matrix multiplication steps. For the first 2
steps, the arrays that do not contain the fused indexf are
not communicated, in order to minimize the communication
cost: in the first step,T1bcd f = ∑el Bbe f l×Dcdel, the arrays
B(b,e, f = constant, l) andT1(b,c,d) are rotated for each it-
eration of f , while D(c,d,e, l) is not communicated. The
communication ofB andT1 results in multiple smaller mes-
sages and higher start-up costs; in the second step,T2bc jk =
∑d f T1bcd f×Cd f jk,C(d, f = constant, j,k) andT1(b,c,d) are
rotated for each iteration off , while T2(b,c, j,k) is not com-
municated. In the final step,Sabi j = ∑ckT2bc jk×Aacik, any 2
arrays can be rotated for the same cost, because no fusion is
involved, and the arrays have the same size; we again choose
to communicateA andT2, while keepingS in a fixed distribu-
tion. Table 2 shows the communication costs for these Cannon
rotations. A value of 0 means that the array is not communi-
cated during a matrix multiplication step.

The total communication cost is the sum of all the costs
in Table 2: 1907.8 seconds. This represents 27.3% of the to-
tal 6983.8 second running time of the calculation on the 16
processor system. This represents a significantly higher per-
centage than that for the 64 processor system, and it is entirely
due to the memory constraints of the problem. In this exam-
ple, the higher communication overhead for the 16 processor
example mostly arises from the rotation of the arrayT1 for
each iteration of thef loop.

5 Related work

Much work has been done on improving locality and paral-
lelism by using loop fusion. Kennedy and McKinley [10] pre-
sented an algorithm for fusing a collection of loops to min-
imize the parallel loop synchronization overhead and maxi-
mize parallelism. They proved that finding loop fusions that
maximize locality is NP-hard. Two polynomial-time algo-
rithms for improving locality were given. Darte [5] discusses
the complexity of maximal fusion of parallel loops. Recently,



Table 1: Loop fusions, memory requirements and communication costs on 64 processors (32 nodes) of an Intel Itanium cluster for
the arrays presented in Fig. 2(a).

Full array Reduced array Initial dist. Final dist. Mem./node Comm. (init.) Comm. (final)

D(c,d,e, l) D(c,d,e, l) N/A 〈d,e〉 115.2MB N/A 35.7 sec.
B(b,e, f , l) B(b,e, f , l) N/A 〈e,b〉 15.4MB N/A 4.9 sec.
C(d, f , j,k) C(d, f , j,k) N/A 〈k,d〉 7.7MB N/A 2.8 sec.
A(a,c, i,k) A(a,c, i,k) N/A 〈a,k〉 57.6MB N/A 18.3 sec.

T1(b,c,d, f ) T1(b,c,d, f ) 〈d,b〉 〈d,b〉 1.728GB 0 0
T2(b,c, j,k) T2(b,c, j,k) 〈k,b〉 〈k,b〉 57.6MB 17.8 sec. 18.5 sec.
S(a,b, i, j) S(a,b, i, j) 〈a,b〉 N/A 57.6MB 0 N/A

Table 2: Loop fusions, memory requirements and communication costs on 16 processors (8 nodes) of an Intel Itanium cluster for
the arrays presented in Fig. 2(a).

Full array Reduced array Initial dist. Final dist. Mem./node Comm. (init.) Comm. (final)

D(c,d,e, l) D(c,d,e, l) N/A 〈d,e〉 460.8MB N/A 0
B(b,e, f , l) B(b,e, f , l) N/A 〈e,b〉 61.6MB N/A 25.7 sec.
C(d, f , j,k) C(d, f , j,k) N/A 〈k,d〉 30.8MB N/A 20.8 sec.
A(a,c, i,k) A(a,c, i,k) N/A 〈a,k〉 230.4MB N/A 34.6 sec.

T1(b,c,d, f ) T1(b,c,d) 〈d,b〉 〈d,b〉 108.0MB 902.0 sec. 888.5 sec.
T2(b,c, j,k) T2(b,c, j,k) 〈k,b〉 〈k,b〉 230.4MB 0 36.2 sec.
S(a,b, i, j) S(a,b, i, j) 〈a,b〉 N/A 230.4MB 0 N/A

Kennedy [11] developed a fast algorithm that allows accurate
modeling of data sharing as well as the use of fusion-enabling
transformations. Ding [6] illustrates the use of loop fusion in
reducing storage requirements through an example, but does
not provide a general solution. Singhai and McKinley [24]
examined the effects of loop fusion on data locality and paral-
lelism together. They viewed the optimization problem as one
of partitioning a weighted directed acyclic graph in which the
nodes represent loops and the weights on edges represent the
amount of locality and parallelism. Although the problem is
NP-hard, they were able to find optimal solutions in restricted
cases and heuristic solutions for the general case. However,
the work addressed in this paper considers a different use of
loop fusion, which is to reduce array sizes and memory us-
age of automatically synthesized code containing nested loop
structures. Traditional compiler research does not address this
use of loop fusion because this problem does not arise with
manually-produced programs.

Gao et al. [8] studied the contraction of arrays into scalars
through loop fusion as a means to reduce array access over-
head. They partitioned a collection of loop nests into fusible
clusters using a max-flow min-cut algorithm, taking into ac-
count the data dependencies. However, their study is moti-
vated by data locality enhancement and not memory reduction.
Also, they only considered fusions of conformable loop nests,
i.e., loop nests that contain exactly the same set of loops. Song
et al. [25] have explored the use of loop fusion for memory
reduction for sequential execution. They do not consider trad-
ing off memory for recomputation or the impact of data distri-
bution on communication costs while meeting per-processor
memory constraints in a distributed memory machine.

Loop fusion in the context of delayed evaluation of array
expressions in compiling APL programs has been discussed
by Guibas and Wyatt [7]. They considered loop fusion without
any loop reordering; and their work is not aimed at minimizing
array sizes. Lewis et al. [18] discusses the application of fu-

sion directly to array statements in languages such as F90 and
ZPL. Callahan et al. [1] present a technique to convert array
references to scalar accesses in innermost loops.

As mentioned earlier, loop fusion has also been used as a
means of improving data locality [11, 24, 22, 21]. There has
been much less work investigating the use of loop fusion as
a means of reducing memory requirements [8, 23]. Another
significant way in which our approach differs from other work
that we are aware of, is that we attempt global optimization
across a collection of loop nests using empirically derived cost
models.

6 Conclusion

In this paper, we have addressed a compile-time optimization
problem arising in the context of a program synthesis sys-
tem. The goal of the synthesis system is the facilitation of
rapid development of high-performance parallel programs for
a class of computations encountered in computational chem-
istry. These computations are expressible as a set of tensor
contractions and arise in electronic structure calculations.

We have described the interactions between distributing ar-
rays on a parallel machine and minimizing memory through
loop fusion. We have presented an optimization approach that
can serve as the basis for a key component of the system, for
minimizing the communication cost on a parallel computer
under memory constraints. We have found that the memory
constraints of a given problem size generally lead to higher
communication costs for systems with lower available mem-
ory. The effectiveness of the algorithm was demonstrated by
applying it to a computation that is representative of those used
in quantum chemistry codes such as NWChem.



References

[1] D. Callahan, S.Carr, and K. Kennedy. Improving register
allocation for subscripted variables. InProc. SIGPLAN
’90 Conference on Programming Language Design and
Implementation,White Plains, NY, June 1990.

[2] D. Cociorva, J. Wilkins, G. Baumgartner, P. Sadayappan,
J. Ramanujam, M. Nooijen, D. Bernholdt, and R. Harri-
son. Towards Automatic Synthesis of High-Performance
Codes for Electronic Structure Calculations: Data Local-
ity Optimization.Proc. of the Intl. Conf. on High Perfor-
mance Computing, Lecture Notes in Computer Science,
Vol. 2228, pp. 237–248, Springer-Verlag, 2001.

[3] D. Cociorva, G. Baumgartner, C. Lam, P. Sadayappan,
J. Ramanujam, M. Nooijen, D. Bernholdt, and R. Harri-
son. Space-Time Trade-Off Optimization for a Class of
Electronic Structure Calculations.Proc. of ACM SIG-
PLAN 2002 Conference on Programming Language De-
sign and Implementation (PLDI), June 2002.

[4] T. D. Crawford and H. F. Schaefer III. An Introduction
to Coupled Cluster Theory for Computational Chemists.
In Reviews in Computational Chemistry, vol. 14, pp. 33–
136, Wiley-VCH, 2000.

[5] A. Darte. On the complexity of loop fusion. InProc.
International Conference on Parallel Architectures and
Compilation Techniques (PACT’99),Newport Beach,
CA, October 1999.

[6] C. Ding. Improving effective bandwidth through com-
piler enhancement of global and dynamic cache reuse.
Ph.D. Thesis, Rice University, January 2000.

[7] L. Guibas and D. Wyatt. Compilation and delayed eval-
uation in APL. In Proc. 5th Annual ACM Symposium
on Principles of Programming Languages,Tucson, Ari-
zona, pp. 1–8, Jan. 1978.

[8] G. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collec-
tive loop fusion for array contraction. InLanguages and
Compilers for Parallel Processing,New Haven, CT, Au-
gust 1992.

[9] High Performance Computational Chemistry Group.
NWChem, A computational chemistry package for par-
allel computers, Version 3.3, 1999. Pacific Northwest
National Laboratory, Richland, WA 99352.

[10] K. Kennedy and K. McKinley. Maximizing loop paral-
lelism and improving data locality via loop fusion and
distribution. In Languages and Compilers for Parallel
Computing,Portland, OR, pp. 301–320, August 1993.

[11] K. Kennedy. Fast greedy weighted fusion. InProc. ACM
International Conference on Supercomputing,Santa Fe,
May 2000. Also available as Technical Report CRPC-
TR-99789, Center for Research on Parallel Computation
(CRPC), Rice University, Houston, TX, 1999.

[12] For a brief description, see V. Kumar, A. Grama,
A. Gupta, and G. Karypis,Introduction to Parallel Com-
puting, The Benjamin/Cummings Publishing Company,
pp. 171, 1994.

[13] C. Lam, P. Sadayappan, and R. Wenger. On optimizing a
class of multi-dimensional loops with reductions for par-
allel execution.Parallel Processing Letters,Vol. 7 No. 2,
pp. 157–168, 1997.

[14] C. Lam, D. Cociorva, G. Baumgartner, and P. Sadayap-
pan. Memory-optimal evaluation of expression trees in-
volving large objects. InProc. International Conference
on High Performance Computing, Calcutta, India, De-
cember 1999.

[15] C. Lam, D. Cociorva, G. Baumgartner, and P. Sadayap-
pan. Optimization of memory usage requirement for a
class of loops implementing multi-dimensional integrals.
In Languages and Compilers for Parallel Computing,
San Diego, August 1999.

[16] C. Lam. Performance optimization of a class of loops
implementing multi-dimensional integrals. Ph.D. Disser-
tation, Ohio State University, Columbus, August 1999.
Also available as Technical Report No. OSU-CISRC-
8/99-TR22, Dept. of Computer and Information Science,
The Ohio State University.

[17] T. Lee and G. Scuseria. Achieving chemical accuracy
with coupled cluster theory. In S. R. Langhoff (Ed.),
Quantum Mechanical Electronic Structure Calculations
with Chemical Accuracy,pages 47–109, 1997.

[18] E. Lewis, C. Lin, and L. Snyder. The implementation and
evaluation of fusion and contraction in array languages.
In Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation,June 1998.

[19] N. Manjikian and T. Abdelrahman. Fusion of loops
for parallelism and locality. InProc. International
Conference on Parallel Processing,pp. II:19–28,
Oconomowoc, WI, August 1995.

[20] J. Martin. In Encyclopedia of Computational Chem-
istry. P. Schleyer, P. Schreiner, N. Allinger, T. Clark, J.
Gasteiger, P. Kollman, H. Schaefer III (Eds.), Wiley &
Sons, Berne (Switzerland). Vol. 1, pp. 115–128, 1998.

[21] K. McKinley. A compiler optimization algorithm for
shared-memory multiprocessors.IEEE Trans. on Paral-
lel and Distributed Systems, 9(8):769–787, Aug 1998.

[22] K. McKinley, S. Carr, and C.-W. Tseng. Improving data
locality with loop transformations.ACM Trans. on Pro-
gramming Languages and Systems, 18(4):424–453, July
1996.

[23] V. Sarkar and G. Gao. Optimization of array accesses by
collective loop transformations. InProc. ACM Interna-
tional Conference on Supercomputing,pages 194–205,
Cologne, Germany, June 1991.

[24] S. Singhai and K. McKinley. A parameterized loop fu-
sion algorithm for improving parallelism and cache lo-
cality. The Computer Journal, 40(6):340–355, 1997.

[25] Y. Song, R. Xu, C. Wang and Z. Li. Data locality en-
hancement by memory reduction. InProc. of ACM 15th
International Conference on Supercomputing,pages 50–
64, June 2001.


