
Efficient Layout Transformation for Disk-based
Multidimensional Arrays

Sriram Krishnamoorthy1, Gerald Baumgartner2, Chi-Chung Lam1, Jarek Nieplocha3,
and P. Sadayappan1

1 Department of Computer Science and Engineering
The Ohio State University, Columbus, OH 43210, USA

{krishnsr,clam,saday}@cse.ohio-state.edu
2 Department of Computer Science

Louisiana State University, Baton Rouge, LA 70803, USA
gb@csc.lsu.edu

3 Computational Sciences and Mathematics
Pacific Northwest National Laboratory, Richland, WA 99352, USA

jarek.nieplocha@pnl.gov

Abstract. I/O libraries such as PANDA and DRA use blocked layouts for ef-
ficient access to disk-resident multi-dimensional arrays, with the shape of the
blocks being chosen to match the expected access pattern of the array. Some-
times, different applications, or different phases of the same application, have
very different access patterns for an array. In such situations, an array’s blocked
layout representation must be transformed for efficient access. In this paper, we
describe a new approach to solve the layout transformation problem and demon-
strate its effectiveness in the context of the Disk Resident Arrays (DRA) library.
The approach handles re-blocking and permutation of dimensions. Results are
provided that demonstrate the performance benefit as compared to currently avail-
able mechanisms.

1 Introduction
Many scientific and engineering applications need to operate on data sets that are too
large to fit in the physical memory of the machine. Due to the extremely large seek time
relative to the per-word transfer time for disk access, it is imperative that I/O be done
using contiguous blocks of disk resident data. To optimize performance in collective I/O
operations between arrays located on disk and in distributed main memory of parallel
computers [1], I/O libraries like PANDA [2, 3] and DRA [4] use a blocked layout repre-
sentation for the disk-based multidimensional arrays instead of the dimension-ordered
representation used typically for the representation of multidimensional arrays in main
memory. Thus, the disk-based multidimensional array is partitioned into a number of
multidimensional blocks or “bricks”, and the elements within a brick are linearized
using some dimension order. Such a bricked representation of disk-based multidimen-
sional arrays permits efficient access as long as the accessed regions mostly contain full
bricks.

However, the access patterns to some disk-based multidimensional arrays in two
successive phases (or the access pattern of the producer and the consumer) are so dif-
ferent that no choice of brick shape will allow for efficient access. An example is the
out-of-core 2D Fast Fourier Transform (FFT), where the array is accessed by columns
in one phase and by rows in the other. The multi-dimensional FFT [5, 6] can be im-
plemented as a series of one-dimensional FFTs, one along each dimension. Another



example illustrating very different access patterns is with image data in three and four
(including time) dimensions. The production of data from scanning occurs plane by
plane. However, examination of the time evolution of a 3D block of data requires a
very different access pattern than that by which the data was generated. In isosurface
construction in three and four dimensions, the data is typically produced in a row-major
format by scanning or simulation. The amount of memory available determines the
amount of data generated between writes to disk, and hence limits the blocking pos-
sible. To efficiently perform computations on the stored data in a parallel system, the
data might have to transformed into a different blocked form [7]. Thus there are sit-
uations where performance can be greatly improved by transforming the layout of a
multidimensional array on disk to match the application’s access pattern.

Our primary motivation for addressing the layout transformation problem arises
from the domain of electronic structure calculations using ab initio quantum chemistry
models such as Coupled Cluster models. We are developing an automatic synthesis
system called the Tensor Contraction Engine (TCE)[8], to generate efficient parallel
programs from high level expressions, for a class of computations expressible as tensor
contractions [9–14]. Often the tensors (essentially multi-dimensional arrays) are too
large to fit in memory and must be disk-based. The input tensors are often generated by
other quantum chemistry packages such as NWChem [15], with a layout quite different
from that needed for efficient processing by the TCE-generated code.

This paper describes an approach to efficient transformation of data between disk-
based multidimensional arrays. Experimental results indicate that this approach delivers
comparable or better performance than other techniques currently used in practice, that
are based on reading data from one disk-based array to distributed main memory, in-
memory data transformation, and then writing data to the destination disk array. For
example, improvements exceeding 80 percent were observed on a Linux cluster.

The paper is organized as follows. Section 2 describes the DRA framework, within
which we implement our solution to the layout transformation problem. The array re-
blocking problem is explained is detail in Section 3. Section 4 presents the proposed
approach for efficient layout transformation. In Section 5, experimental results are pre-
sented. Section 6 concludes the paper.

2 Disk Resident Arrays
The Global Arrays (GA) library [16] [17] provides a shared-memory programming
model in which data locality is explicitly managed by the programmer. Explicit func-
tion calls are used to transfer data between global address space and local storage. It
is similar to distributed shared-memory models in providing an explicit acquire-release
protocol, but differs with respect to the level of explicit control in moving blocks of data
in multidimensional arrays between remote global storage and local storage. The func-
tionality provided by GA has proved useful in the development of large scale parallel
quantum chemistry suites such as NWChem [15] (which contains over a million lines
of code).

The Disk Resident Arrays (DRA) model [18] extends the GA NUMA program-
ming model to secondary storage. It provides a disk-based representation for multi-
dimensional arrays and functions to transfer blocks of data between global arrays and
disk resident arrays. DRA, along with GA, provides a unified programming model for
handling different levels of the memory hierarchy in which the user controls the loca-
tion of data in the memory hierarchy. This has been shown to provide high performance
while providing a programming model that is simpler than message passing.

Henceforth, we shall use GA and DRA to refer both to the library and the arrays
handled by them. The reference will be clear from the context.



3 The Layout Transformation Problem

Internally, the data in a DRA is stored in a blocked fashion. When a DRA is created, a
typical request shape/size can be specified. This is used to determine the shape of the
basic layout block or “brick”. The shape of the brick is chosen to match the specified
access shape. The size of the brick is chosen as a compromise between two competing
objectives: 1) optimize disk I/O bandwidth - this requires that the brick size be large
enough to amortize the disk seek time and 2) minimize wastage of disk I/O - since
I/O is done in units of the basic block (brick), small bricks imply less wastage at the
boundaries of the DRA regions being read/written.

An application might have an access pattern that is very different from the orga-
nization of the DRA on disk. This can happen when an application uses the output of
another program, or because different phases of the same program use different access
patterns. This can be handled by creating another copy of the disk resident array to
match the new request size and transformed dimensions.

We have implemented the copy routine, referred to as NDRA Copy, together with
dimension permutation. The routine takes as input the source and target DRA handles
and the dimension permutation to be performed. Henceforth, the data in the DRA cor-
responding to the dimensions of blocking in the source and target arrays are referred to
as the source and target blocks respectively.

The disk array layout transformation problem we consider here is a generalization
of the out-of-core matrix transposition problem. Out-of-core matrix transposition has
been widely studied in the literature. The algorithms perform out-of-core transposition
by making passes through the entire array a number of times. During each pass through
the array, each element of the source array is read once and each element of the tar-
get array is written once. Each pass consists of a series of steps in which a portion of
data from the source array is brought into memory, permuted and written to the target
out-of-core array. Different steps in a pass operate on disjoint sets of data. The block
transposition algorithm is a single-pass algorithm in which a 2-D tile of data is brought
into memory, transposed and written to disk. Since the different row segments of a 2D
tile are not contiguous on disk, this could be extremely inefficient unless the tile size is
very large. Eklundh [19] proposed a multi-pass algorithm, in which the minimum unit
of I/O is a row. The number of passes in the algorithm is proportional to the array di-
mensions. Kaushik et al. [20] reduced the number of read operations and increased the
read block size compared to Eklundh’s algorithm. Sun and Prasanna [21] proposed an
algorithm that minimized the total number of I/O operations, while potentially increas-
ing the total volume of I/O. Krishnamoorthy et al. [22] formulated these algorithms in a
tensor product notation and derived a generic algorithm that attempts to minimizes the
total execution time by taking into consideration the I/O characteristics of the system,
and subsequently extended it to a multi-processor system, in which each processor has
a local disk [23] .

Most of the above approaches assume the array dimensions and the memory size to
be powers-of-2. This assumption, coupled with the fact that the required transformation
is a transposition, allows different steps in the re-blocking process to operate on disjoint
sets of data. In each step, the set of data read into memory form an integral number
of write blocks, which are written out. So no data is retained across steps during the
transposition. When arbitrary blocking, array dimensions and memory sizes are to be
handled, it may not be possible to process and write out all the data read into memory
in a given step. Some data either needs to be discarded and re-read, increasing the
I/O cost, or needs to be retained, increasing the memory requirement. The memory
cost for retaining the data unused from a step depends on the order of traversal of



dimensions, and hence is not straight forward. The out-of-core transposition algorithms
involve I/O of blocks of data at specific strides, which is fixed for a pass. This regularity
allows accurate prediction of the I/O cost. The in-memory permutation of data can be
modeled as a bit-permutation on the linear address space of the data stored in disk.
This provides a regular structure to the in-memory computation. In the general case,
in-memory permutation corresponds to a series of collect operations for combining
portions of different read blocks to create a write block. The simplicity in the cost
models for the power-of-2 transposition problem makes it amenable to mathematical
treatment as done in [22].

In the next section, we detail our approach to solving the generalized re-blocking
problem.

4 Algorithm Design

The disk array layout transformation problem is modeled as an I/O optimization prob-
lem. The total I/O cost is to be minimized, subject to the amount of physical memory
available. The cost model and the algorithm to obtain the multi-pass solution are ex-
plained in this section. In the ensuing discussion, we shall consider an n-dimensional
matrix of dimensions < d1, . . . ,dn >. The matrix is blocked in brick shape < s1, . . . ,sn >.
The target matrix has the same ordering of dimensions as the source but is blocked us-
ing bricks of shape < t1, . . . , tn >. The source and target bricks are assumed to be of size
that is large enough for efficient access from/to disk. DRA typically uses a brick size
of around 1 Mbyte. Reads from the source disk array are assumed to be in units of the
source brick, and writes to the target disk array are done in units of the target brick.

4.1 Solution Approach

If feasible, a single-pass solution (in which each element is read and written exactly
once) would provide the minimum I/O cost. But the memory requirement for a single-
pass solution might exceed the physical memory available. In this case, we either need
to choose a multi-pass solution or perform redundant I/O in one pass. In this sub-section,
we present the intuition behind the design of our algorithm. We begin with a basic
single-pass algorithm and determine its I/O and memory cost. We then incrementally
improve the single-pass algorithm to lower the memory requirement and/or the I/O cost.
The multi-pass solution is discussed in a subsequent sub-section.

Consider the region < 0−LCM(s1, t1), . . . ,0−LCM(sn, tn) >. This region contains
an integral number of source and target blocks along all the dimensions. Thus the data
in the source matrix from this region maps onto complete blocks in the target matrix.
This region can be processed independent of other such blocks, without any redundant
I/O. We shall refer to such regions as LCM blocks. If the amount of physical memory
were large enough to hold an LCM block, then a single-pass solution is clearly possible
- read in source blocks contained in an LCM block into memory, construct the target
blocks corresponding to the data in memory, and write them into the target array. The
I/O cost is defined as the I/O required per element of the source array. This algorithm
has the minimum I/O cost of one read and one write per element of the source array.
Assuming the read and write operations are equivalent the I/O cost is two units per
element.

The memory cost is the size of the LCM block. Since arbitrary re-blocking needs
to be supported, the source and target block sizes could have arbitrary dimensions (pro-
vided their total size corresponds to a reasonable block size for I/O on the target file
system). Hence the LCM block can be arbitrarily large and might not fit in physical



memory. We can improve the single-pass algorithm to handle this scenario without in-
creasing the I/O cost. Instead of reading entire LCM blocks into memory, the algorithm
reads in a set of blocks of data from the source matrix and writes out those target blocks
that can be completely constructed from the data available in memory. Any data in
memory that cannot be used to construct a complete target block is retained in memory.
Any source block in an LCM block contributes to target blocks within the same LCM
block. Hence no data needs to be retained across LCM blocks. The algorithm processes
all the data in one LCM block before processing any other LCM block. The algorithm
requires enough memory to retain unused data and read in additional data for process-
ing. The additional data read into memory for processing must be enough to write at
least one target block to disk. This is referred to as the Max block and corresponds
to < M1, . . . ,Mn > where Maxi = d(max(si, ti)/si)e ∗ si. The algorithm traverses each
LCM block along each of the dimensions and processes data in units of the Max block.
The buffer to store the unused data is partitioned into one buffer per dimension. Unused
data from a Max block along a dimension needs to be retained until the adjacent Max
block along that dimension is processed. Thus the amount of unused data to be retained
depends on the order of traversal of dimensions. Along the dimension traversed first,
only data unused from the last processed Max block needs to be stored. Other dimen-
sions require more data to be retained. A static memory cost model is used, in which
the sizes of buffers used to store data is determined before the transformation begins.
The maximum memory required to perform the transformation is the sum of the size of
the Max block and the sizes of the buffers.

MemCost = ∑n
i=1 bsizei +∏n

i=1 Maxi

where bsizei represents the size of buffer to store unused data along the i-th dimension.
Let < T1, . . . ,Tn > be the order of traversal of dimensions. The unused data along

a dimension (say Ti) is an n-dimensional region. For a given dimension i, the size of
this region along dimension j can be as much as LCM(sTj , tTj) for j < i, but is bounded
above by MaxTj for j > i. Hence, the size of the buffer to store the unused data along a
dimension Ti is bounded by

bsizeTi = ∏n
j=1 S j

S j =







LCM(sTj , tTj) if j < i
UTj if j = i

MaxTj if j > i

where Ui be the maximum unused data that needs to be stored along dimension i. Since
Ui must be smaller than both si and ti, and for every si elements along dimension i
brought into memory, at least gcd(si, ti) elements must be written out, we have

Ui = min(si, ti)−gcd(si, ti)

As can be seen from the above formulae, the sizes of the unused buffers is propor-
tional to the LCM block dimensions. This could lead to situations in which the memory
requirement still exceeds the available memory. In this case, there are two options to be
considered. A multi-pass solution could be determined, which is discussed later, or a
single-pass solution that performs redundant read of data can be designed.

We propose a single-pass algorithm that differs from the discussion above in one
respect. Instead of traversing an entire LCM block, a smaller template is chosen. No
unused data is stored across templates. A template is an integral number of write blocks
along all dimensions. There is no redundant read within a template. But unlike LCM



blocks, templates might have source blocks on their boundaries that straddle across two
templates. This results in redundant reads across templates, increasing the I/O cost. The
memory cost is reduced and is given by:

MemCost = ∑n
i=1 bsizei +∏n

i=1 Maxi
bsizeTi = ∏n

j=1 S j

S j =







templTj
if j < i

UTj if j = i
MaxTj if j > i

where templi represents the size of the template along the i-th dimension.
For a two-dimensional array, the memory cost due to the unused buffers is U1 ∗

Max2 + LCM(s1, t1) ∗U2 if dimension 1 is traversed first; otherwise, it is U2 ∗Max1 +
LCM(s2, t2)∗U1. In an n-dimensional array, the traversal order is determined by sorting
the dimensions by comparing these expressions.

The minimum template size corresponds to a target block. In this case, the memory
requirement is reduced to a Max block. Thus the necessary condition for the existence
of a single-pass solution is that the Max block fit in memory.

The I/O cost is multiplicative along the dimensions. Within an LCM block, the
number of source blocks that need to be reread is the number of templates minus one,
which is (LCM(si, ti)− templi)− 1. Therefore, the I/O cost of re-blocking is given by
templi is

IOCost = ∏n
i=1 IOCosti

IOCosti =
(si∗(

LCM(si ,ti)−templi
templi

)+LCM(si,ti))

LCM(si,ti)

In reality, the LCM along a dimension might be larger than the length of the array
along the dimension, in which case we replace the LCM by the array dimension. Note
that the array dimensions are not considered while determining Ui. Hence, Ui does not
provide an exact estimate, but only an upper bound on the memory requirement. Note
that though the I/O cost for the single-pass solution is increased, the total I/O cost could
be reduced due to a decrease in the number of passes.

4.2 Template Determination for Single-pass Solution
Both the I/O cost and the memory cost are affected by the choice of the template. In this
section, we discuss the algorithm used to determine the template sizes. The template is
a set of write blocks along all the dimensions. It can range in size from one write block,
to an LCM block. For re-blocking an n-dimensional array, the template needs to be
determined from an n-dimensional solution space. A template is a feasible solution if
its processing does not require more memory than available. The algorithm exploits the
characteristics of the solution space and the optimization function.

Consider a template A. An enclosing template is defined as a template that is at least
as large as the given template in all the dimensions. Let B be an enclosing template of
A. From the memory cost equations, it can be seen that the memory required to process
A cannot exceed that required to process B. Conversely, processing B requires at least as
much memory as processing A. This implies that once a template has been determined
to require more memory than available (an infeasible solution), no enclosing templates
needs to be considered. This relation separates the solution space into a feasible and an
infeasible solution space (where the surface of separation approximates to a hyperbola
when n = 2).



The I/O cost has a similar characterization. The I/O cost equation shows that de-
creasing the template size along any dimension increases the I/O cost. Thus the I/O cost
of template A is at least as much as that of template B. This implies that when searching
through the solution space, no template that is enclosed by a feasible template needs to
be considered. Thus the optimal solution resides on the surface separating the feasible
and infeasible solution spaces.

Our algorithm to determine the template for a single-pass solution involves three
phases. The algorithm begins with the LCM block as the template and tests for feasi-
bility. If an LCM block is the feasible solution, it is chosen as the template. Otherwise,
a solution is chosen that is just feasible, i.e. , increasing the template size along any
dimension violates the memory constraint. This is a solution on the boundary between
the feasible and infeasible solution spaces and hence is a candidate solution. From this
solution, we perform a steepest descent to arrive at a local minimum in the search space.
Note that other optimization algorithms that can optimize on a surface can be used. The
algorithm used is shown in Fig.2.

4.3 Multi-pass Solution Determination
When a single-pass solution does not exist or is too expensive, a multi-pass solution
is chosen by determining intermediate block sizes. An intermediate disk-based array
is used to store the intermediate results. Hence, additional disk space equal to the size
of the arrays is required. The multi-pass solution proceeds as repeated execution of the
single-pass algorithm, for the source and target block sizes determined for that pass. The
source block size of the first pass is the block size of the source array. The target block
size of the last pass if the block size of the target array. The skew between the source
and target block sizes decreases as the multi-pass solution proceeds from one pass to
the next. The intermediate block size are chosen to effect the maximum re-blocking
possible with the available memory.

A simple heuristic is used to determine the intermediate tile sizes for the multi-pass
solution. Two candidate intermediate block sizes are considered. The first candidate in-
termediate block size is the geometric mean of the source and target block sizes. This
block size is “equidistant” from the source and target block sizes. This can be an effec-
tive intermediate block size of for solutions with an even number of passes. The second
intermediate block size is, in fact, a pair of block sizes. Let si and ti be the source and

target block sizes along dimension i. The intermediate block sizes chosen are s2/3
i ∗ t1/3

i

and s1/3
i ∗ t2/3

i . This pair of intermediate block sizes can be effective for solutions with
an odd number of passes. These two options allow a more refined search for interme-
diate block sizes. Without the second choice, any solution that requires an odd number
of passes, each transforming to an intermediate block “equidistant” from the previous
one, might be harder to achieve. Higher order intermediates were not considered as so-
lutions with a larger number of passes seldom occur in practice and can be handled by
a combination of these choices.

Once the intermediate block(s) are determined, the multi-pass solution is deter-
mined recursively for transforming from source to intermediate, and intermediate to
target block sizes. In the case of two intermediate blocks, the transformation between
the intermediate blocks is determined as well. The algorithm for determining the multi-
pass solution is shown in Fig. 3.

Consider an instance of the matrix re-blocking problem in which the source and
target arrays are blocked as < 32,9 > and < 5,16 >, respectively. The array dimensions
are much larger than the blocking and hence are not considered. The Max block is <
32,16 > and the unused data along each dimension is bounded by < 4,8 >. The solution



Input: (1) Source and target block sizes [s] and [t],
(2) Template size [templ]

Output: (1) Total memory cost (2) Dimension traversal order [T]
1) foreach dimension i
2) L[i] = LCM(s[i], t[i])
3) U[i] = min(s[i], t[i]) - gcd(s[i], t[i])
4) M[i] = ceil(max(s[i], t[i])/s[i])*s[i]
5) Sort dimensions into array T such that

forall i<j => U[T[i]]*M[T[j]] + L[T[i]]*U[T[j]] <
U[T[j]]*M[T[i]] + L[T[j]]*U[T[i]]

6) memCost=0
7) foreach dimension i
8) pdt=U[T[i]]
9) foreach j<i
10) pdt *= L[T[j]]
11) foreach j>i
12) pdt *= M[T[j]]
13) memCost += pdt

Fig. 1. Pseudo-code to determine the memory cost for a given template size

to the re-blocking problem depends on the memory available. An LCM block contains
LCM(s1, t1)∗LCM(s2, t2)=23040 elements. When enough memory is available to hold
an LCM block, the re-blocking can be performed by reading in an entire LCM block
and writing out the target blocks. But if the memory can hold U2 ∗Max1 +LCM(s2, t2)∗
U1 +Max1 ∗Max2=1344 elements, it is sufficient to hold all unused data when an LCM
block is processed. The second dimension is traversed first in the re-blocking procedure.
If the memory available is lesser, say enough to hold just 900 elements, a single-pass
solution with a template size of < 120,6 > elements is used for the re-blocking. When
the memory size is 800, a two-pass solution with an intermediate tile size of < 12,12 >
is determined. The template for the first pass is < 96,12 >, and that for the second pass
is < 60,48 >.

5 Experimental Results

In order to evaluate the effectiveness of the proposed approach, we compared the time
for layout transformation using our implementation with the time for transformation
using currently available mechanisms. The present interface to DRA is through Global
Arrays. When a DRA is to be copied to another DRA with different blocking, the source
array is read into a GA one section at a time, and written into the same section of
the target array. This is a single-pass solution. The basic unit of access, i.e. the shape
and size of the GA needs to be determined. The size is determined independent of
the blocking of the source and target arrays to equal the amount of available physical
memory. We evaluated three options for the shape of the GA used. One option was to
use the largest square tile that fits within the available memory. If the blocking of the
DRAs is known, the GA can be chosen to be a multiple of the source block size or
the target block size. These three options are labeled Basic(square), Source Directed
and Target Directed, respectively. The implementation of the new approach is labeled
NDRA Copy.

We evaluated the mechanisms on the OSCBW machine at the Ohio Supercomputer
Center [24]. Each node in the cluster has Dual AMD Athlon MP processors (1.533 GHz)
and 2GB of memory. The PGI pgcc 4.0-2 compiler was used to generate the executables.



Input: Source and target block sizes [s] and [t],
Output: Template size for single-pass solution, if it exists.
Support Routines: MemCost(templ) - Memory cost for processing

the given template
DiskCost(templ) - I/O cost for processing

the given template
MemoryExceeded(templ) - returns true if the

template is infeasible
1) Initialize template to LCM block
2) Reduce template size along along all dimensions equally

(in units of write block size) until the template is a
feasible solution.

3) If no feasible solution is found return "No solution exists"
4) Adjust the template size so that increasing the template size

along any dimension makes it infeasible.
5) Repeat the following steps
6) Among adjacent template sizes choose the one that has the

maximum rate of decrease in I/O cost to increase
in memory cost.

7) Determine a feasible solution that leads to the least
increase in disk I/O cost from the chosen template.

8) If the feasible solution found has lesser I/O cost than the
current template, choose that as the current template.
Otherwise return the current template as the solution.

Fig. 2. Algorithm to determine template size for a single-pass solution.

Input: Source and target block sizes [s] and [t],
Output: Sequence of intermediate block sizes [seqB], order of

traversal of dimensions for each pass I/O cost
1) Determine the cost (a) of single-pass solution
2) foreach dimension i
3) B1[i] = floor(sqrt(s[i]*t[i]))
4) B2[i] = (s[i]ˆ(2/3)*t[i]ˆ(1/3))
5) B3[i] = (s[i]ˆ(1/3)*t[i]ˆ(2/3))
6) Determine the cumulative cost (b) of multi-pass solutions

for re-blocking from s to B1 and B1 to t by recursively
calling this routine.

7) Determine the cumulative cost (c) multi-pass solutions
for re-blocking from s to B1, B1 to B2 and B2 to t
by recursively calling this routine.

8) If no multi-pass solution exists
return "no solution exists"

9) Choose solution with least I/O cost from (a), (b) and (c)
10) If the single-pass solution has the minimum cost
11) Return the solution with the order of traversal

determined by invoking memCost
12) else
13) Concatenate the sequence of solutions returned by the

two parts of the solution with the minimum I/O cost.

Fig. 3. Pseudo-code to determine a multi-pass solution



0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

16 20 24 28 32 36 40 44 48 52 56 60

Row size (*1000 els)

T
im

e 
(s

ec
s) Source directed

Basic (Square)
Target directed
NDRA_Copy

Fig. 4. Execution time to transform set-of-rows blocking to set-of-columns blocking

Two sets of experiments were conducted. In one, a set of rows form the blocks in the
source array. The target array is blocked as a set of columns. The corresponding results
are shown in Fig. 4. The second experiment involved the reverse - transforming from
a set-of-columns blocking into a set-of-rows blocking, and its results are shown in Fig.
5. The number of rows (or columns) in a block was chosen such that the block size
was greater than 1MByte, the typical brick size chosen by DRA for this system. For
example, for a < 4096,4096 > array, where each element is of size four bytes, set-
of-rows blocking corresponds to a block size of 1 Mb, with each brick holding a <
64,4096 > block of data; and a set-of-columns layout corresponds to a 1 Mb brick
holding a < 4096,64 > block of DRA data.

In both the experiments, the array size was increased from 16000 to 60000 in steps
of 2000 and all four mechanisms were evaluated. For our approach, the template size
is determined automatically using the algorithms described in Section 4. The x-axis in
the graphs shows the array dimension in number of elements. The y-axis shows the
transformation time in seconds. We were unable to run larger experiments due to the
limited amount of disk space available on the local disks (around 60GB).

In transforming the set-of-rows bricks into a set-of-columns bricks, the target di-
rected method performs significantly worse than other approaches. This is because the
data to be read in is not contiguous on disk. The DRA reads in entire blocks of data to
‘collect’ the data into the global array. This leads to exponential increase in cost. Due to
this obvious trend, this approach was evaluated with only certain sample array dimen-
sions. The source directed approach performs better, as DRA implementation allows
writes of partial blocks, if it is contiguous on disk. Though the unit of write is small,
it still performs better than the target directed approach. With larger array dimensions,
both the source directed and basic (square) approach increase in cost.

Our implementation performs better than the alternatives. The relative performance
benefit of our new approach increases with the size of the array. It starts with a single-
pass solution and then uses a two-pass solution for arrays with dimensions larger than
32,000. But the execution time increases gradually and is not drastically affected by the
exact problem instance at hand. Unlike the other three approaches, our implementation
performs comparably for both the transformations evaluated.



0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

4500.0

5000.0

16 20 24 28 32 36 40 44 48 52 56 60

Row size (*1000 els)

T
im

e 
(s

ec
s) Source directed

Basic (Square)
Target directed
NDRA_Copy

Fig. 5. Execution time to transform set-of-columns blocking to set-of-rows blocking

6 Conclusions

In this paper we proposed a new approach to efficient transformation of the blocked lay-
out of multidimensional disk-based arrays. The proposed approach was implemented as
a new copy primitive within the DRA I/O library. Experimental results demonstrated the
benefit of the new approach over existing mechanisms. The extension of this approach
to the parallel context is being pursued.

Acknowledgments

We acknowledge the support from the National Science Foundation through the Infor-
mation Technology Research program (CHE-0121676) and Pacific Northwest National
Laboratory. In addition, We would like to thank the Ohio Supercomputer Center (OSC)
for the use of their computing facilities.

References

1. Chen, Y., Foster, I., Nieplocha, J., Winslett, W.: Optimizing collective I/O performance on
parallel computers: A multisystem study. In: 11th ACM Intl. Conf. on Supercomputing.
(1997)

2. Seamons, K.E., Winslett, M.: Multidimensional array I/O in Panda 1.0. The Journal of
Supercomputing 10 (1996) 191–211

3. The Panda Project – Data Management for High-Performance Scientific Computation.
(http://drl.cs.uiuc.edu/panda/)

4. Foster, I., Nieplocha, J.: Disk Resident Arrays: An array-oriented I/O library for out-of-core
computations. In Buyya, R., Jin, H., Cortes, T., eds.: Disk Arrays and Parallel I/O: Theory
and Practice. IEEE Computer Society Press (2001)

5. Anderson, G.L.: A stepwise approach to computing the multidimensional fast Fourier trans-
form of large arrays. IEEE Transactions on Acoustics and Speech Signal Processing 28
(1980) 280–284



6. Bailey, D.H.: FFTs in external or hierarchical memory. Journal of Supercomputing 4 (1990)
23–35

7. Kazhiyur-Mannar, R., Wenger, R., Crawfis, R., Dey, T.K.: Adaptive resolution isosurface
construction in three and four dimensions. Technical Report OSU-CISRC-7/03–TR38,
School of Computer and Information Science, The Ohio State University (2003)

8. Tensor Contraction Engine – Synthesis of High-Performance Algorithms for Electronic
Structure Calculations. (http://www.cse.ohio-state.edu/˜saday/TCE/)

9. Baumgartner, G., Bernholdt, D., Cociorva, D., Harrison, R., Hirata, S., Lam, C., Nooijen,
M., Pitzer, R., Ramanujam, J., Sadayappan, P.: A high-level approach to synthesis of high-
performance codes for quantum chemistry. In: Proceedings of Supercomputing 2002. (2003)

10. Cociorva, D., Gao, X., Krishnan, S., Baumgartner, G., Lam, C., Sadayappan, P., Ramanujam,
J.: Global communication optimization for tensor contraction expressions under memory
constraints. In: 17th International Parallel & Distributed Processing Symposium (IPDPS).
(2003)

11. Cociorva, D., Baumgartner, G., Lam, C., Sadayappan, P., Ramanujam, J., Nooijen, M., Bern-
holdt, D., , Harrison, R.: Space-time trade-off optimization for a class of electronic structure
calculations. In: Proc. of ACM SIGPLAN PLDI 2002. (2002)

12. Cociorva, D., Wilkins, J., Baumgartner, G., Sadayappan, P., Ramanujam, J., Nooijen, M.,
Bernholdt, D., Harrison, R.: Towards automatic synthesis of high-performance codes for
electronic structure calculations: Data locality optimization. In: Proc. of the Intl. Conf. on
High Performance Computing. (2001)

13. Krishnan, S., Krishnamoorthy, S., Baumgartner, G., Cociorva, D., Lam, C., Sadayappan, P.,
Ramanujam, J., Bernholdt, D., Choppella, V.: Data locality optimization for synthesis of
efficient out-of-core algoritms. In: Proc. of the Intl. Conf. on High Performance Computing.
(2003)

14. Krishnan, S., Krishnamoorthy, S., Baumgartner, G., Lam, C., Ramanujam, J., Choppella, V.,
Sadayappan, P.: Efficient synthesis of out-of-core algorithms using a nonlinear optimization
solver. In: Proc. of 18th Intl. Parallel & Distributed Processing Symposium (IPDPS). (2004)

15. High Performance Computational Chemistry Group: NWChem, A Computational Chem-
istry Package for Parallel Computers, Version 4.6. Pacific Northwest National Laboratory,
Richland, Washington 99352–0999, USA. (2004)

16. Nieplocha, J., Harrison, R.J., Littlefield, R.J.: Global arrays: a portable programming model
for distributed memory computers. In: Supercomputing. (1994) 340–349

17. Nieplocha, J., Harrison, R.J., Littlefield, R.J.: Global arrays: A nonuniform memory access
programming model for high-performance computers. The Journal of Supercomputing 10
(1996) 169–189

18. Nieplocha, J., Foster, I.: Disk resident arrays: An array-oriented I/O library for out-of-core
computations. In: Proceedings of the Sixth Symposium on the Frontiers of Massively Parallel
Computation, IEEE Computer Society Press (1996) 196–204

19. Eklundh, J.O.: A fast computer method for matrix transposing. IEEE Trans. on Computers
20 (1972) 801–803

20. Kaushik, S.D., Huang, C.H., Johnson, R.W., Sadayappan, P., Johnson, J.R.: Efficient trans-
position algorithms for large matrices. In: Proceedings of the 1993 ACM/IEEE conference
on Supercomputing, ACM Press (1993) 656–665

21. Suh, J., Prasanna, V.K.: An efficient algorithm for out-of-core matrix transposition. IEEE
Trans. on Computers 51 (2002) 420–438

22. Krishnamoorthy, S., Baumgartner, G., Cociorva, D., Lam, C., Sadayappan, P.: On efficient
out-of-core matrix transposition. Technical Report OSU-CIRSC-9/03-T52, School of Com-
puter and Information Science, The Ohio State University (2003)

23. Krishnamoorthy, S., Baumgartner, G., Cociorva, D., Lam, C.C., Sadayappan, P.: Efficient
parallel out-of-core matrix transposition. In: Proceedings of the International Conference on
Cluster Computing, IEEE Computer Society Press (2003) to appear.

24. The Ohio Supercomputer Center. (http://www.osc.edu)


