
Performance Modeling and Optimization of Parallel
Out-of-Core Tensor Contractions∗

Xiaoyang Gao1 Swarup Kumar Sahoo1

Chi-Chung Lam1 J. Ramanujam3

1 Dept. of Computer Science and Engineering
The Ohio State University

{gaox,sahoo,luq,clam,saday}
@cse.ohio-state.edu

Qingda Lu1 Gerald Baumgartner2

P. Sadayappan1

2 Dept. of Computer Science
Louisiana State University

gb@csc.lsu.edu

3 Dept. of Electrical and Computer Engineering
Louisiana State University

jxr@ece.lsu.edu

ABSTRACT
The Tensor Contraction Engine (TCE) is a domain-specific com-
piler for implementing complex tensor contraction expressions aris-
ing in quantum chemistry applications modeling electronic struc-
ture. This paper develops a performance model for tensor contrac-
tions, considering both disk I/O as well as inter-processor com-
munication costs, to facilitate performance-model driven loop op-
timization for this domain. Experimental results are provided that
demonstrate the accuracy and effectiveness of the model.

Categories and Subject Descriptors
D.3.4 [Processors]: Compilers and Optimization; D.1.3 [Concur-
rent Programming]: Parallel programming; F.2.1 [Numerical Al-
gorithms and Problems]: Computations on matrices; C.4 [Perfor-
mance of systems]: Modeling techniques; J.2 [Physical Sciences
and Engineering]: Chemistry

General Terms
Algorithms, Performance

Keywords
Parallel Algorithms, Out-of-Core Algorithms, Performance Mod-
eling, Compiler Optimization

∗Supported in part by the National Science Foundation through
awards CHE-0121676, CHE-0121706, CNS-0103933 and CNS-
0403342.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’05, June 15–17, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-080-9/05/0006 ...$5.00.

1. INTRODUCTION
The development of effective performance-model driven program

transformation strategies for optimizing compilers is a challenging
problem. We face this problem in the context of a domain-specific
compiler targeted at a class of computationally demanding appli-
cations in quantum chemistry [2, 3]. A synthesis system is being
developed for transformation into efficient parallel programs, of a
high-level mathematical specification of a computation expressed
as tensor contraction expressions. A tensor contraction is essen-
tially a generalized matrix product involving multi-dimensional ar-
rays. Often, the tensors are too large to fit in memory, so that out-
of-core solutions are required. The optimization of a computation
involving a collection of tensor contractions requires an accurate
performance model for the core operation: a single tensor contrac-
tion, modeling both disk I/O costs and inter-processor communica-
tion costs. In this paper we address the problem of developing a
performance model for parallel out-of-core tensor contractions.

The approach presented in this paper may be viewed as an exam-
ple of the telescoping languages approach described in [15]. The
telescoping languages/libraries approach aims at facilitating a high-
level scripting interface for a domain-specific computation to the
user, while achieving high performance that is portable across ma-
chine architectures, and compilation time that only grows linearly
with the size of the user script. With this approach, library func-
tions are pre-analyzed and appropriate annotations are included to
provide information on performance characteristics. If user pro-
grams make heavy use of these library functions, the optimization
of the user “script” is achieved using the performance characteri-
zation of the library functions, without requiring extensive analysis
of the “expanded” program corresponding to inlined code for li-
brary functions. In a parallel computer, for efficient execution of
out-of-core tensor contractions, two dominant overhead costs need
to be reduced: inter-processor communication cost and local disk
access cost. Many factors affect these costs, including the commu-
nication pattern, the parallel algorithm, data partition, loop permu-
tation, disk I/O placements and tile size selection. These factors are
inter-related and can not be determined independently. The number
of possible combinations is exceedingly large and searching them
all is impractical. In this paper, we provide an approach, which
can model the relationship between different factors and efficiently
prune the search space to find good solutions in reasonable time.

This paper is organized as follows. In the next section, we intro-
duce the main concepts and describe the parallel system supported
by the algorithm. Section 3 discusses the impact of loop order and
the placement of disk I/O statements. Algorithms used with the
outside communication pattern and inside communication pattern
(defined in Section 2.1) are discussed in Section 4 and Section 5,
respectively. Section 6 presents results from the application of the
new algorithm to an example abstracted from NWChem [22]. We
discuss related work in Section 7. Conclusions are provided in Sec-
tion 8.

2. PRELIMINARIES
Consider the following tensor contraction expression

C(a,b,c,d) = ∑
m,n

A(a,b,m,n)×B(c,d,m,n) (1)

where A and B are input arrays and C is the output array; m,n are the
summation indices. If all indices range over N, O(N6) arithmetic
operations will be required to compute this.

A tensor contraction is a generalized matrix multiplication. The
above expression can be written as

C(I,J) = A(I,K)×B(J,K), (2)

where I ≡ {a,b}, J ≡ {c,d} and K ≡ {m,n} are index sets consid-
ered as “macro-indices.” This notation will be used in the rest of
the paper. Consider a distributed-memory parallel computer with
P processors, where every processor has limited local memory and
a local disk. If a processor needs data from the local disk of an-
other processor, the required data must first be read by the owner
processor and then communicated to the requesting processor. The
inter-processor network bandwidth is denoted as Bc, and the local
disk to memory bandwidth as Bd . Arrays A, B, and C are either
evenly distributed or fully replicated among all processors. An in-
dex set dist is used to represent the distribution pattern of an array.
For example, if array A is distributed by index i and j, then A.dist
is 〈i, j〉. If A is replicated on all processors, then A.dist is 〈〉.

The original size of an array is denoted as array.size. In a parallel
algorithm, the size of an array required for local computation is
denoted as array.localsize. If all required data can fit into memory,
no disk I/O is involved. Because data sets are very large, we assume
that both communication cost and disk I/O cost are dominated by
the volume of data movement, not the number of data movements.
The communication cost and disk I/O cost are calculated simply by
dividing the transfered volume by the bandwidth.

Three parallel matrix multiplication algorithms, rotation, repli-
cation, and accumulation are used. They will be discussed and
compared in Section 2.2. The choice of the parallel algorithm de-
termines the communication pattern. With the rotation algorithm,
computation is executed in several steps. Each processor circular-
shifts its local data with neighbors between computations. With the
replication algorithm, one operand is broadcast to all processors.
With the accumulation algorithm, partial contributions to the en-
tire target array are combined via reduction among all processors.
These communication patterns can be implemented by correspond-
ing communication routines. Communication routines on out-of-
core data are carried out in several steps and result in extra disk
access cost.

2.1 Communication Methods
When there is insufficient memory to hold all the remote data

for the next computation to be performed locally on a processor,
we can use one of two broad approaches to handling the out-of-
core data: 1) perform disk-to-disk transfer so that all remote data

needed by a processor for its portion of the computation is first
moved to its local disk, or 2) intersperse disk I/O with computa-
tion on in-core sub-arrays. We call the first method as the out-
side communication method, and the latter as the inside commu-
nication method. Our classification is similar to the in-core and
out-of-core communication methods discussed by Bordawekar and
Choudhary [5]. With the outside communication method, com-
munication and local computation are separated from each other.
All remote data for the next computation is fetched before the start
of the computation and stored on disk. It may cause redundant
disk access, but achieves minimal communication cost. With the
inside communication method, communication and local compu-
tation are interleaved together. When one block of data is copied
into memory, the owner processor performs computations on it, and
passes it to other processors requiring it. When other processors re-
ceive remote data, they perform computations on it, and discard it
without saving it on local disk. This approach incurs extra commu-
nication cost, but minimizes disk access cost. Examples of these
two communication methods are shown in Figure 1 and Figure 2.
The choice of the communication method introduces a trade-off be-
tween communication cost and disk access cost. Thus, when avail-
able local memory is large enough to hold all needed remote data,
we can directly select the outside communication method.

2.2 Parallel Algorithms and Distribution
Indices

Many approaches have been proposed for implementing parallel
matrix multiplication. In this framework, three simple and common
parallel algorithms are considered as the basis for an individual ten-
sor contraction: rotation, replication and accumulation. Implemen-
tation details of these parallel algorithms are discussed next.

1. Rotation: We use a generalization of Cannon’s algorithm as
the primary template. In this approach, a logical view of the
P processors as a two-dimensional

√
P×√

P grid is used.
Each array is two-dimensional cyclic-block distributed along
the two processor dimensions. A triplet {i,j,k} formed by
one index from each index set I, J, and K defines a distri-
bution 〈i, j〉 for the result array C, and distribution 〈i,k〉 and
〈k, j〉 for the input arrays A and B. The computation is carried
out in

√
P steps. At any time, each processor holds one sub-

block of each of the arrays A, B, and C. At each step, each
processor performs a sub-matrix multiplication using the lo-
cal blocks, transfers the blocks of A and B to neighbors after
the computation is done, and receives new blocks of A and B
from other neighbors.

2. Replication: In this scheme, each processor locally holds
one complete input array and a strip of the other two arrays.
In order to achieve good performance, it is best to replicate
the smaller input operand. Without loss of generality, we
assume the size of array A is less than the size of B. Thus, ar-
ray A is replicated on all processors, A.dist = 〈〉, and arrays
B and C are distributed by the same dimensions belonging
to the index set J, B.dist = C.dist = 〈 j〉, j ∈ J. The repli-
cation communication can be modeled as an all-to-all broad-
cast communication operation, whose communication cost is
a topology-dependent function. To simplify the problem, we
assume that the interconnection network is completely con-
nected in the rest of the paper. Thus, we use the expression

Replicate(S) = (S.size)/Bc (3)

to calculate the replication time.

3. Accumulation: With the accumulation parallel algorithm,
the two input operands are distributed by the same summa-
tion indices, A.dist = B.dist = 〈k〉,k ∈K, and the target array
is replicated on all processors, C.dist = 〈〉. Every processor
computes a partial contribution to each element of the result
matrix and these partial contributions are accumulated at the
end. The accumulation can be modeled as an all-to-all reduc-
tion communication operation, whose communication cost
depends on the inter-processor topology. In a completely-
connected network, the all-to-all reduction cost is

Reduce(S) = (S.size× log(P))/Bc (4)

If the distribution of the input or output arrays are not suitable for a
specific parallel algorithm, we need to rearrange the data before or
after executing the parallel algorithm. The redistribution procedure
is separated from the computation procedure.

Pseudocode for these three parallel algorithms using the inside
communication method is shown in Figure 1. The corresponding
pseudocode for the outside communication method is shown in Fig-
ure 2. Arrays A, B, and C are out-of-core arrays that are distributed
using a block-cyclic distribution among the processors in order to
make the Collective disk I/O operations load-balanced. Collective
disk I/O operations operate on global tiles, which consist of a set of
local tiles. The corresponding local disk I/O operation is indicated
under the collective disk I/O operation. In the pseudocode, the loop
order of the It, Jt and Kt loops is not determined, all the disk I/O
statements and message passing statements are placed inside the
innermost loop. However, after the loop permutation is defined,
these data movement statements will be moved outwards as far as
possible in the actual program.

2.3 The Overall Problem Definition
In this section, we define the problem of efficient execution of a

tensor contraction as follows.
For a given tensor contraction expression and some machine pa-

rameters, including the number of processors, the amount of phys-
ical available memory for every processor, the inter-processor net-
work bandwidth, and the local disk to memory bandwidth, our goal
is to determine:

• the communication method;

• the parallel algorithm and distributed indices;

• the order of the loops and disk I/O placements; and

• the tile sizes for each dimension

such that the total communication cost and disk access cost are
minimized.
For the input and output arrays, the algorithm can be used in either
of these modes:

• the distribution of the input and output arrays are uncon-
strained, and can be chosen by the algorithm to optimize the
communication cost; or

• the input and output arrays have a constrained distribution
on the processors in some pre-specified pattern.

The parallel execution can be decoupled into three stages:

1. redistribute the input arrays;

2. compute the tensor contraction expression in parallel; and

3. redistribute the output array.

Table 1: Arrays distribution constraint for different parallel
algorithms

PA Distribution Constraints.
Rotation A.dist = 〈i,k〉,B.dist = 〈 j,k〉,C.dist = 〈i, j〉

Replication A B.dist = C.dist = 〈 j〉
Replication B A.dist = C.dist = 〈i〉
Accumulation A.dist = B.dist = 〈k〉

The total execution time is the sum of the execution times in the
three stages. Because we only use load-balanced parallel algo-
rithms, the computations are always evenly distributed among all
the processors. Since the total number of arithmetic operations is
the same, we ignore the calculation component, and consider only
the communication overhead and the disk I/O overhead. The total
overhead cost for a specific parallel algorithm denoted as PA, can
be calculated by:

Overhead(PA) = Redist(A,A.dist1,A.dist2)
+ Redist(B,B.dist1,B.dist2)
+ Redist(C,C.dist1,C.dist2)
+ Computation(A,B,C,PA),

where A.dist1 and B.dist1 are the initial distribution of the input ar-
rays A and B, C.dist2 is the expected distribution of the output array
C. A.dist2, and B.dist2 are operand distribution patterns required
for PA. C.dist1 is the target distribution pattern generated by PA.
A.dist2, B.dist2, and C.dist1 must be compatible with each other
by the distribution constraints of PA. The distribution constraints
for the different parallel algorithms is shown in Table 1.

If the initial distribution is the same as the final distribution, data
re-arrangement is not necessary, and the redistribution cost is zero.
Otherwise, the redistribution cost is the sum of the communica-
tion cost and the disk I/O cost, which depend on the redistribution
scheme and machine specific inter-processor topology.

When a parallel algorithm is chosen for matrix multiplication,
suitable distributions for the input and output arrays are decided as
well. However, in a multi-dimensional tensor contraction, many
distributions can be used for a specific parallel algorithm. The
choice of the distribution will affect the redistribution cost in stages
one and three. But, the overhead of parallel execution in stage two
can be calculated independent of the distribution. Thus, in the fol-
lowing sections, we first present an algorithm to determine all pa-
rameters except for the distributions, to minimize the overhead cost
in stage two. The choice of distributions that allows for optimiza-
tion of redistribution cost will be discussed later.

3. LOOP ORDER AND DISK I/O
PLACEMENTS

In this section, we will concentrate on the loop order and the
placement of disk I/O statements. We will consider only the order
of tiling loops since different orders of the intra-tile loops will not
significantly affect the execution time.

Consider the tensor contraction given in Expression (1). After
tiling, the loops It, Jt, Kt will be the tiling loops as shown in Fig-
ures 1 and 2. Note that It, Jt, Kt are not single indices, but index
sets, i.e., they each consist of several loop indices. There are three
disk read statements corresponding to the three arrays A, B, and C.
We need to consider six cases for the placement of read statements:
ABC, ACB, BAC, BCA, CAB, CBA.

for It,Jt,Kt⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Collective Read AIi,Ki
(Local Read AIi/

√
P,Ki/

√
P)

Collective Read BKi,Ji
(Local Read BKi/

√
P,Ji/

√
P)

Collective Read CIi,Ji
(Local Read CIi/

√
P,Ji/

√
P)

for
√

P Rotations⎡
⎣ CIi,Ji += AIi,Ki*BKi,Ji

Circular-shift in-core AIi,Ki
Circular-shift in-core BKi,Ji

Collective Write CIi,Ji
(Local Write CIi/

√
P,Ji/

√
P)

(a): Rotation

for It,Jt,Kt⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Collective Read AIi,Ki
(Local Read AIi,Ki/P)
A2A In-Core Broadcast AIi,Ki
Collective Read BKi,Ji
(Local Read BKi,Ji/P)
Collective Read CIi,Ji
(Local Read CIi,Ji/P)
CIi,Ji += AIi,Ki*BKi,Ji
Collective Write CIi,Ji
(Local Write CIi,Ji/P)

(b): Replication

for It,Jt,Kt⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Collective Read AIi,Ki
(Local Read AIi,Ki/P)
Collective Read BKi,Ji
(Local Read BKi/P,Ji)
Local Read CIi,Ji
CIi,Ji += AIi,Ki*BKi,Ji
All-Reduct In-Core CIi,Ji
Local Write CIi,Ji

(c): Accumulation

Figure 1: Pseudocode of Inside Communication Method

for
√

P Rotations⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

for It,Jt,Kt⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Collective Read AIi,Ki
(Local Read AIi/

√
P,Ki/

√
P)

Collective Read BKi,Ji
(Local Read BKi/

√
P,Ji/

√
P)

Collective Read CIi,Ji
(Local Read CIi/

√
P,Ji/

√
P)

CIi,Ji += AIi,Ki*BKi,Ji
Collective Write CIi,Ji
(Local Write CIi/

√
P,Ji/

√
P)

Circular-shift Out-of-Core AI,K
Circular-shift Out-of-Core BK,J

(a): Rotation

A2A Broadcast Out-of-Core AI,K
for It,Jt,Kt⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Local Read AIi,Ki
Collective Read BKi,Ji
(Local Read BKi,Ji/P)
Collective Read CIi,Ji
(Local Read CIi,Ji/P)
CIi,Ji += AIi,Ki*BKi,Ji
Collective Write CIi,Ji
(Local Write CIi,Ji/P)

(b): Replication

for It,Jt,Kt⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Collective Read AIi,Ki
(Local Read AIi,Ki/P)
Collective Read BKi,Ji
(Local Read BKi/P,Ji)
Local Read CIi,Ji
CIi,Ji += AIi,Ki*BKi,Ji
Local Write CIi,Ji

All-Reduct Out-of-Core CI,J

(c): Accumulation

Figure 2: Pseudocode of Outside Communication Method

Consider the case where read statements are in the order ABC,
as shown in Figure 3. The three read statements divide the tiling
loops into four parts: D1, D2, D3, and D4. Each of these parts
contain some loops from each of the index sets It, Jt, and Kt. Let
Di contain index sets Iti, Jti, Kti as shown in Figure 3(a). Consider
the loops in part D1, we note that if Jt1 is non-empty, then disk I/O
for A will be unnecessarily repeated several times. So Jt1 should be
moved to part D2. This configuration will reduce the total volume
of disk access for A, and does not increase the size of local buffer
for any array. After putting Jt1 to part D2, we can merge index sets
Jt1 and Jt2 together, and re-name the new index set as Jt1. Now
consider the loops in part D2. If the index set It2 is non-empty,
then disk I/O for B will be unnecessarily repeated several times.
So It2 should be moved to part D3 and merged with It3. This will
reduce the total volume of disk access for B without any increase
of memory cost. Further, the non-empty index set Kt2 should be
moved to part D1, to reduce the memory requirement for the local
buffer of A, without increasing the volume of disk access for A, B
and C. Similarly, considering the loops in part D3, we note that Kt3
should be empty or be moved to part D4 to reduce the total volume
of disk access for C, and that the loops in Jt3 should be moved to
part D2 to reduce the memory requirement for disk access of B.
Continuing in this fashion, we should place loops from It4 in part
D3 and loops from Jt4 in part D2. The simplified code is shown in
Figure 3(b).

Using similar arguments, given any ordering of disk I/O place-
ments, we can move and merge loop sets to get the simplified loop
structure in the same manner. Note, that the particular loops put
in the index sets will not affect the minimum overhead cost, but
they will determine whether or not the conditions under which we

for It1, Jt1, Kt1⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Read A
for It2, Jt2, Kt2⎡
⎢⎢⎢⎣

Read B
for It3, Jt3, Kt3⎡
⎣ Read C

for It4, Jt4, Kt4[
C+ = A×B

(a) Initial groups

for It1, Kt1⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Read A
for Jt1⎡
⎢⎢⎢⎣

Read B
for It2⎡
⎣ Read C

for Kt2[
C+ = A×B

(b) After cleanup

Figure 3: Loop groups

can achieve the minimum overhead cost are satisfied. This will be
explained in detail in later sections.

4. OVERHEAD MINIMIZATION FOR THE
OUTSIDE COMMUNICATION METHOD

In this section, we analyze each of the three parallel algorithms
(rotation, replication and accumulation) with the outside commu-
nication pattern and determine the minimal overhead cost achiev-
able, along with the conditions under which this will be possible.
In the expressions used in this section and the next section, A, B,
C will denote the sizes of arrays A, B, C, respectively; the terms I,
J, K and It1, Jt1, Kt1 will denote the corresponding loop bounds.
The total number of processors will be denoted by P and the local
memory available for the tiles of each array, which we assume to
be one-third of the local memory per processor, is denoted by M.
The combined memory of all processors is, therefore, M×P.

4.1 Rotation
Let us consider the tensor contraction code with disk I/O place-

ment order ABC, the outside communication pattern, and rotation
type of parallelism as shown in Figure 2(a). The tiling loops are
ordered as discussed in the previous section. Our goal is to deter-
mine the tile sizes (or the number of tiles) that will minimize the
overhead cost, including disk I/O cost and communication cost.

In this case, each of the three arrays is partitioned equally among
the P processors. So we have A.localsize = A/P, B.localsize =
B/P, and C.localsize = C/P. The communication corresponds to
shifting the A and B arrays to adjacent processors. These commu-
nications happen

√
P times and each of these also involves disk

operations. Therefore, the total communication volume V =
√

P×
(A

P + B
P) = (A√

P
+ B√

P
). The disk access volume during communi-

cation D1 = 2× (A√
P

+ B√
P
), since the disk is accessed twice, once

for reading and once for writing. It is clear that these two terms are
independent of the tile sizes. The disk access volume during the
computation D2 =

√
P×(A

P + B
P × It1 +2× C

P ×Kt1) = A√
P

+ B√
P
×

It1 +2× C√
P
×Kt1. The total disk access volume D = D1 +D2. For

simplicity, in the calculations below D, we will include only those
two parts that depend on the number of tiles (or tile sizes).

It is clear that this term depends on the number of tiles. To min-
imize overhead cost, we will have to minimize the disk access vol-
ume during the computation and hence It1, Kt1 should be made 1.
But this is not possible due to the constraint that the tiles of array
A, B and C should fit into memory. Here we assume that each of
these array tiles occupies one third of the memory. The constraints
involving tiles can be expressed as follows.

It1 ×Kt1 ≥ A
M×P

(5)

Jt1 ×Kt1 ≥ B
M×P

(6)

It1 × It2 ×Jt1 ≥ C
M×P

(7)

Note that only Eqn. 5 involves both It1 and Kt1, which we want to
be 1. We will try to minimize D under the constraint of Eqn. 5.
The other two equations can be simultaneously satisfied by using
a large value for the unconstrained variables It2 and Jt1. Since
we are trying to reduce the values of It1 and Kt1 while satisfying
Eqn. 5, the Eqn. 5 can be written as It1 ×Kt1 = A

M×P . With this
modification, we can substitute the value of Kt1 in the equation for
D to get,

B× It2
1 −

√
P×D× It1 +

2×C×A
M×P

= 0 (8)

The above quadratic equation will have a real solution under the
condition that the quadratic curve discriminant P×D2 − 4×B×
(2×C×A

M×P) ≥ 0. In other words, for any real value of It1, the mini-

mum achievable value of D is 1
P

√
8×A×B×C

M . This minimum value

of D can be achieved with It1 = I ×
√

2
M×P and Kt1 = K√

2×M×P
.

In order to satisfy Equations 6 and 7, we need to choose values of

Jt1 and It2 that satisfy the conditions Jt1 ≥ J×
√

2
M×P and It2 ≥ 1.

Hence, the minimum total disk access volume is

2× (
A√
P

+
B√
P

)+
A√
P

+
1
P

√
8×A×B×C

M
. (9)

If these values are not integers, the number of tiles will be set to the
ceiling. There are two special cases if values of It1 or Kt1 are less
than 1.

• Case 1: I <
√

M×P
2

In this case, we select the values as It1 = 1, Kt1 = A
M×P ,

Jt1 ≥ J
I , It2 ≥ I2

M×P . The minimum total disk access volume

during the computation in this case will be A√
P

+ B√
P

+ 2×
C√
P
× A

M×P .

• Case 2: K <
√

2×M ×P

In this case, we select the values as It1 = A
M×P , Kt1 = 1,

Jt1 ≥ B
M×P , It2 ≥ M×P

K2 . The minimum total disk access vol-

ume during the computation in this case will be A√
P

+ B√
P
×

A
M×P +2× C√

P
.

We performed the analysis for the other five disk placement orders
in a similar fashion. The results are shown in Table 2 and the details
can be obtained from the associated technical report [11].

4.2 Replication
For this case, let us consider the tensor contraction code with

disk I/O placement order ABC, outside communication pattern, and
replication type of parallelism as shown in Figure 2(b). The tiling
loops are ordered as discussed in the previous section. As in the
case of rotation, our goal is to determine the tile sizes to minimize
the overhead cost.

Without loss of generality, we assume array A is smaller than
array B. Thus, the arrays B and C are partitioned equally among
the P processors whereas A is replicated on all processors. So we
have A.localsize = A, B.localsize = B/P, and C.localsize = C/P.
In this case, communication corresponds to broadcasting array A.
Therefore, the total communication volume V = A. The disk access
volume during communication D1 = A. Also, in this case the above
two terms are independent of the tile sizes. The disk access volume
during the computation D2 = A+ B

P × It1 +2× C
P ×Kt1. The total

disk access volume D = D1 +D2.
It is clear that D depends on the number of tiles. To minimize

the overhead cost, we will have to minimize the disk access volume
during the computation and hence It1, Kt1 should be set to 1. But
this is not possible due to the constraint that the tiles of arrays A, B,
and C fit into memory. The size constraints involving tiles can be
expressed as follows.

It1 ×Kt1 ≥ A
M

(10)

Jt1 ×Kt1 ≥ B
M×P

(11)

It1 × It2 ×Jt1 ≥ C
M×P

(12)

Our analysis here is similar to that for the case of rotation (Sec-
tion 4.1). We will try to minimize D under the constraint of Eqn. 10.
The other two equations can be simultaneously satisfied by using a
large value for the unconstrained variables It2 and Jt1. Since we are
trying to reduce the values of It1 and Kt1 while satisfying Eqn. 10,
the Eqn. 10 can be written as It1×Kt1 = A

M . With this modification,
we can substitute the value of Kt1 in the equation for D to get

B× It2
1 −P×D× It1 +

2×C×A
M

= 0. (13)

From the above equation, it should be clear that for any real value

of It1, the minimum achievable value of D is 1
P

√
8×A×B×C

M . This

minimum value of D can be achieved with It1 = I×
√

2
M and Kt1 =

K√
2×M

, Jt1 ≥ J
P ×

√
2
M and It2 ≥ 1. These values satisfy all the

constraints. Hence, the minimum total disk access volume is

A+A+
1
P

√
8×A×B×C

M
(14)

If these values are not integers, the number of tiles will be set to the
ceiling. There are two special cases if the values of It1 or Kt1 are
less than 1. The analysis for these cases can be done as shown in
Section 4.1.

Similarly, analysis for the other five disk placement orders was
performed. The results are shown in Table 2 and details can be
obtained from [11].

4.3 Accumulation
In this section, we deal with the accumulation type of paral-

lelism. Consider the tensor contraction code with accumulation
type of parallelism as shown in Figure 2(c). Again our goal is to
determine the tile sizes that will minimize the total overhead cost.

In this case, arrays A and B are partitioned equally among the
P processors, where as C is replicated on all processors. So we
have A.localsize = A/P, B.localsize = B/P, C.localsize = C. In
this case, the communication involves an All-Reduce operation on
array C. Therefore, total communication volume V = C × logP.
The disk access volume during communication D1 =C. Again, the
total communication cost is independent of the tile sizes. The disk
access volume during the computation D2 = A

P + B
P × It1 +2×C×

Kt1. The total disk access volume D = D1 +D2.
As in the previous subsections, to minimize the disk access vol-

ume during the computation, It1 and Kt1 should be made 1. But
this is prevented by the constraint that the tiles of array A, B, and C
should fit into memory. The constraints involving tiles in this case
can be expressed as follows.

It1 ×Kt1 ≥ A
M×P

(15)

Jt1 ×Kt1 ≥ B
M×P

(16)

It1 × It2 ×Jt1 ≥ C
M

(17)

The analysis is similar to that in the previous subsections. We will
try to minimize D under the constraint of Eqn. 15. The other two
equations are simultaneously satisfied by using a large value for the
unconstrained variables It2 and Jt1. As before, the Eqn. 15 can be
written as It1 ×Kt1 = A

M×P . Now substituting the value of Kt1 in
the equation for D, we get

B
P
× It2

1 −D× It1 +
2×C×A

M×P
= 0 (18)

From this equation, it is clear that for any real value of It1, the

minimum achievable value of D is 1
P

√
8×A×B×C

M . This minimum

value of D can be achieved with It1 = I ×
√

2
M , Kt1 = K

P×√
2×M

,

Jt1 ≥ J×
√

2
M , and It2 ≥ 1. Hence, the minimum total disk access

volume is

C +
A
P

+
1
P

√
8×A×B×C

M
(19)

If these values are not integers, the number of tiles will be set to
the ceiling. There are two special cases if the values of It1 or Kt1
are less than 1. Again, the analysis for these cases can be done as
shown in the previous subsections.

We did the analysis for the other five disk placement orders as
above. The results are shown in Table 2 and details can be obtained
from [11]. Note that with the outside communication pattern, the
rotation algorithm does not duplicate any data, but the other two
algorithms replicate one input array or output array, thereby requir-
ing more local disk space to store the replicated array. Generally,
we assume that there is enough disk space on each processor. How-
ever, replication is infeasible for really large problems. If the disk
requirement for an algorithm is beyond the amount of available lo-
cal disk, the solution is pruned away.

5. OVERHEAD MINIMIZATION FOR THE
INSIDE COMMUNICATION METHOD

In this section, we analyze each of the three parallel algorithms
possible with the inside communication pattern and determine the
minimal overhead cost achievable along with the conditions under
which this is possible. Note that a parallel algorithm with the inside
communication pattern replicates data in memory, as opposed to
replication on disk with the outside communication pattern. Thus,
the disk limitation is not a constraint any more.

5.1 Rotation
Consider the tensor contraction code with disk I/O placement

order ABC, inside communication pattern, and the rotation type of
parallelism, as shown in Figure 1(a). The tiling loop ordering is
decided as before. The goal is to determine the tile sizes (or the
number of tiles) that will minimize the total overhead cost.

Each of the three arrays is partitioned equally among the P pro-
cessors in a block-cyclic fashion. So we have A.localsize = A/P,
B.localsize = B/P, C.localsize = C/P. The communication corre-
sponds to shifting the A and B arrays to adjacent processors. This
communication happens

√
P times for each iteration of the tiling

loops and each of these also involves disk operations. Therefore,
the total communication volume V =

√
P× (A×Jt1

P + B×It1×It2
P) =

(A×Jt1√
P

+ B×It1×It2√
P

). Due to in-memory transfer, there will not be

any disk access as part of the communication. The total disk ac-
cess volume D = A

P + B
P × It1 +2× C

P ×Kt1. For simplicity in the
calculations below, D will not include the component A

P , which is
independent of the number of tiles.

First we will try to optimize D and V independently. To minimize
the communication volume V , It1, It2 and Jt1 should be made 1.
But this is not possible due to the constraint that the tiles of array
A, B, and C should fit into memory. Again, we assume that each
of these array tiles occupies one-third of memory. The constraints
involving tiles are the same as those shown for the case of rotation
and outside communication.

Note that only Equation 7 involves all the variables whose values
we want to reduce, namely It1, It2, and Jt1. We will try to mini-
mize V under the constraint of Equation 7. The other two equations
can be simultaneously satisfied by using a large value for the un-
constrained variable Kt1. Since we are trying to reduce the values
of It1, It2, and Jt1, while satisfying Equation 7, Equation 7 can be
written as It1 × It2 × Jt1 = C

M×P . With this modification, we can
substitute the value of Kt1 in the equation for V , to get

B× (It1 × It2)2 −
√

P×V × (It1 × It2)+
A×C
M×P

= 0 (20)

The above quadratic equation will have a real solution when P×
V 2 −4×B× (A×C

M×P) ≥ 0. In other words, for any real value of It1,

the minimum achievable value of V is 2
P

√
A×B×C

M . This minimum

value of V can be achieved with It1 = I√
M×P

, It2 = 1, Jt1 = J√
M×P

,

Table 2: Communication and Disk Access Volume for the Outside Communication pattern
ABC or ACB BAC or BCA CAB or CBA

Outside/ V = A√
P

+ B√
P

V = A√
P

+ B√
P

V = A√
P

+ B√
P

Rotation D = A√
P

+
√

8ABC
P
√

M
+ 2√

P
(A+B) D = B√

P
+

√
8ABC

P
√

M
+ 2√

P
(A+B) D = 2C√

P
+ 2

√
ABC

P
√

M
+ 2√

P
(A+B)

Outside/ V = A V = A V = A

Replication D = 2A+
√

8ABC
P
√

M
D = B

P +
√

8ABC
P
√

M
+A D = 2C

P + 2
√

ABC
P
√

M
+A

Outside/ V = C logP V = C logP V = C logP

Accumulation D = A
P +

√
8ABC

P
√

M
+C D = B

P +
√

8ABC
P
√

M
+C D = 3C + 2

√
ABC

P
√

M

Table 3: Communication and Disk Access Volume for the Inside Communication pattern with rotation type parallelism
I ≥√

MP,J ≥√
MP, I <

√
MP,J ≥√

MP, I ≥√
MP,J <

√
MP, I ≥√

MP,J ≥√
MP,

K ≥√
MP K ≥√

MP K ≥√
MP K <

√
MP

D = A
P +3

√
ABC
MP3 D = A

P + AB
MP2 + 2C

P

ABC V = 2
√

ABC
MP2 Lower bound is Lower bound is V = 2

√
ABC
MP2

(T1) same as (T3) higher than (T6) (T2)
D = A

P + B
P + 2AC

MP2

ACB Same as (T1) V = AC
MP

√
P

+ B√
P

Lower bound is Lower bound is

(T3) higher than (T6) same as (T2)

D = B
P +3

√
ABC
MP3 D = B

P + AB
MP2 + 2C

P

BAC V = 2
√

ABC
MP2 Lower bound is Lower bound is V = 2

√
ABC
MP2

(T4) higher than (T3) same as (T6) (T5)
D = A

P + B
P + 2BC

MP2

BCA Same as (T4) Lower bound is V = A√
P

+ BC
MP

√
P

Lower bound is

higher than (T3) (T6) same as (T5)

D = 2C
P +2

√
ABC
MP3 D = 2C

P + AC
MP2 + B

P D = 2C
P + A

P + BC
MP2 D = 2C

P +2
√

ABC
MP3

CAB V = 2
√

ABC
MP2 V = AC

MP
√

P
+ B√

P
V = A√

P
+ BC

MP
√

P
V = 2

√
ABC
MP2

(T7) (T8) (T9) (T10)

CBA Same as (T7) Same as (T8) Same as (T9) Same as (T10)

Table 4: Effective Communication and Disk Access Volume for the Inside Communication pattern with replication/accumulation
type parallelism

ABC or ACB BAC or BCA CAB or CBA

Inside/Replication A
P +RA+

√
8ABC

P
√

M
B
P +

√
8ABC(1+RP)

MP3
2C
P +

√
4ABC(1+RP)

MP3

Inside/Accumulation A
P + 2

√
ABC(2+R logP)

P
√

M
B
P + 2

√
ABC(2+R logP)

P
√

M
(2+R logP)C + 2

√
ABC

P
√

M

and Kt1 ≥ K√
M×P

,which also satisfies Equations 5 and 6. Hence,

the minimum total communication volume is

2
P

√
A×B×C

M
(21)

Now we will minimize the disk access volume independently. Note
that It1 and Kt1 should be made 1 in this case. But this is not pos-
sible due to the constraint that the tiles of arrays A, B, and C should
fit into the memory. We will try to minimize D under the constraint
of Eqn. 5. The other two equations can be simultaneously satisfied
by using a large value for the unconstrained variables It2 and Jt1.
The Eqn. 5 in this case can be written as It1 ×Kt1 = A

M×P . With
this modification, we can substitute the value of Kt1 in the equation
for D to get

B× It2
1 −P×D× It1 +

2×C×A
M×P

= 0 (22)

From this equation, we can see that for any real value of It1, the

minimum achievable value of D is
√

8×A×B×C
M×P3 . This minimum

value of D can be achieved with It1 = I×
√

2
M×P , Kt1 = K√

2×M×P
,

Jt1 ≥ J×
√

2
M×P , and It2 ≥ 1. These values will also satisfy Equa-

tions 6 and 7. Hence, the minimum total disk access volume is

A
P

+

√
8×A×B×C

M×P3 (23)

But it is obvious that the number of tiles does not match with that of
the previous analysis to minimize communication volume. So we
cannot optimize both the communication volume and disk access
volume at the same time. We have computed the overhead cost for
both the cases and we choose the one which has the smaller over-
head cost. In this case we choose the number of tiles that optimizes
the communication volume as this gives the least overhead cost.
With these tile sizes, the values of communication and disk access
volume are as follows:

V =
2
P

√
A×B×C

M
(24)

D =
A
P

+3

√
A×B×C

M×P3 (25)

There are three special cases if the values of It1, Jt1, or Kt1 are less
than 1.

• Case 1: I <
√

M×P, J ≥√
M×P, K ≥√

M×P,

In this case, the expected least overhead is V = A×C√
M×P3 + B√

P

and D = A
P + B

P + 2×C×A
M×P2 with It1 = 1, It2 = 1, Jt1 = C

M×P ,

Kt1 = A
M×P . But with these values, Eqn. 6 is not satisfied.

So, the expected least overhead can not be really achieved.
This is not a problem, though, as the expected lower bound
in this case is same as the achievable lower bound of some
other cases as shown in the Table 3.

• Case 2: I ≥√
M×P, J <

√
M×P, K ≥√

M×P,

This case is similar to case 1.

• Case 3: I ≥√
M×P, J ≥√

M×P, K <
√

M×P,

In this case, the least overhead that can be achieved is V =
2
√

A×B×C
M×P2 and D = A

P + B
P × A

M×P + 2×C
P with It1 = A

M×P ,

It2 =
√

M×P
K , Jt1 = J√

M×P
, Kt1 = 1. With these values, all

the constraints are also satisfied.

The results of the analysis for the other disk I/O placements are
shown in Table 3 and details can be obtained from [11].

5.2 Replication
For this case, let us consider the tensor contraction code with

disk I/O placement order ABC, an inside communication pattern,
and the replication type of parallelism as shown in Figure 1(b).

In this case, because the replication occurs in memory, and repli-
cated data is discarded after computation, array A is not replicated
on disk. Arrays A, B and C are partitioned equally among the P
processors. We have A.localsize = A/P, B.localsize = B/P, and
C.localsize = C/P. The communication corresponds to an in-core
broadcast of array A. Therefore, the total communication volume
V = A, and it is independent of the tile sizes. The total disk access
volume D = A

P + B
P × It1 +2× C

P ×Kt1.
The constraints involving tiles are the same as those shown for

the case of replication with outside communication. The minimum

achievable value of D can be computed as A
P + 1

P

√
8×A×B×C

M . This

minimum value of D can be achieved with It1 = I×
√

2
M and Kt1 =

K√
2×M

, Jt1 ≥ J
P ×

√
2
M and It2 ≥ 1. These values satisfy all the

constraints. The analysis for the special cases can be done as shown
in the earlier sections.

The result of the analysis for the other five disk placement orders
are shown in Table 4 and details can be obtained from [11]. Note
that the values shown in this table are the effective communication
and disk access volume EffVol = D+R×V , where R = Bd

Bc
, where

Bd is the disk bandwidth and Bc is the communication (network)
bandwidth.

5.3 Accumulation
In this section, we consider the accumulation type of parallelism.

Consider the tensor contraction code shown in Figure 1(c). In this
case, arrays A and B are partitioned equally among the P pro-
cessors where as C is replicated on all processors. So we have
A.localsize = A/P, B.localsize = B/P, C.localsize = C. The com-
munication involves an in-core All-Reduce operation for array C.
Therefore, the total communication volume V = C ×Kt1 × logP.
The total disk access volume D = A

P + B
P × It1 + 2×C×Kt1. In

this case, we can optimize the total overhead cost, which is EffVol
Bd

,
where EffVol is the effective communication and disk access vol-
ume given by (note that R is defined at the end of Section 5.2)

EffVol =
A
P

+
B
P
× It1 +C×Kt1 × (2+R× logP). (26)

Our goal is to minimize EffVol under the constraints involving tile
sizes that are shown in the accumulation section of the previous
section. We proceed as before and compute the minimum achiev-

able value of EffVol, which is found to be A
P +2×

√
ABC(2+R×logP)

M×P2 .

This minimum value is achieved with It1 = I×
√

(2+R×logP)
M , Kt1 =

K
P×

√
(2+R×logP)×M

, Jt1 ≥ J ×
√

(2+R×logP)
M , and It2 ≥ 1.

The special cases are handled as before. The analysis for the
other five disk placement orders are also done as above. The results
are shown in Table 4 and details can be obtained from [11]. Again,
note that the values in the table give the minimum value of EffVol.

6. EXPERIMENTS
Our performance models for the various approaches to paral-

lel out-of-core tensor contractions were evaluated on an Itanium-2
cluster at the Ohio Supercomputer Center. The configuration of the
cluster is shown in Table 5. All the programs were compiled with
the Intel Itanium Fortran Compiler for Linux. We considered three
example computations.
(1) Square Matrix Multiplication:

C(I,J)+ = A(I,K)×B(J,K)

In order to limit the execution time we ran “scaled down” experi-
ments by setting the available physical memory limit to 64Mbytes.
All the array dimensions were set to 4000. The parallel programs
were run on 4 processors. We implemented parallel programs for
the six methods discussed earlier. Table 6 compares the predicted
costs for I/O and communication with the measured costs for the
different approaches. It can be seen that there is a good match
between predicted and actual times, and that the difference in per-
formance of the various methods is quite significant.
(2) 4-index transform: This expression represents one step in the
4-index transform, also referred to as the AO-to-MO transform. It
is used to transform two-electron integrals from an atomic orbital
(AO) basis to a molecular orbital (MO) basis.

T1[a,b,c,d]+ = A[a,b,c, p]×B[p,d]

The size of all dimensions was set to 800. The parallel program was
run on 4 processors. Between the different algorithms, we can find
the best solution to be outside replication. The predicted overheads
for the different parallel algorithms are shown in Table 7.
(3) CCSD: We used a sub-expression from the CCSD (Coupled
Cluster Singles and Doubles) equation [1, 20, 21] for electronic
structure modeling.

T1[i, j]+= A[i,a,b,c]×B[a,b,c, j]

The size of all dimensions was set to 800. The parallel program was
run on 4 processors. The best solution on the machine can be seen
to be outside accumulation. The predicted values for the different
parallel algorithms are shown in Table 7.

The effective choice of parallel algorithms results in a notice-
able improvement in the communication cost for most cases. The
ratio of disk bandwidth and interprocessor network bandwidth de-
termines which factor dominates the total execution time. In previ-
ous experiments, because the network is almost twenty times faster
than the disk, the disk cost dominated. In such a situation, the in-
side rotation algorithm is the best. However, using our model, we
are able to predict the best choice for a given machine and problem
characteristic. Table 8 shows such an example for a given matrix
multiplication and disk bandwidth, where I = 160000, J = 160000,
K = 160000, and Bd = 10MB/s. If we use a 100M Ethernet as the
interconnection network and run the program on 4 processors, then
the best parallel algorithm is outside replication. If we use Myrinet
and run the program on 4 processors, the best solution becomes
inside rotation.

7. RELATED WORK
The issues arising in optimizing locality in the context of tensor

contractions has been previously addressed by us, focusing primar-
ily on minimizing memory-to-cache data movement [9, 10]. This
approach was extended to the disk-to-memory transfers in [16],
where a greedy approach to the placement of disk read/write op-
erations was taken. For each set of tile sizes, the algorithm places
read/write statements immediately inside those loops at which the

memory limit is exceeded. In [17], a set of candidate fusion struc-
tures with disk I/O placements was taken as input and the tile size
search space was explored. The search space was divided into fea-
sible and infeasible solution spaces and their boundary was shown
to contain the optimal solution. An algorithm was developed to
locate the boundary efficiently and a steepest ascent hill-climbing
used to determine an efficient solution for the tile sizes.

There has been some work in the area of software techniques
for optimizing disk I/O. These include parallel file systems, com-
pile time [4,6,7,12–14,18,19] and runtime libraries and optimiza-
tions [8,23]. Bordawekar et al. [4,6] discuss several compiler meth-
ods for optimizing out-of-core programs in High Performance For-
tran. Our classification of communication into inside and outside
methods is similar to the inside and outside communication strate-
gies discussed in [5]. Bordawekar et al. [7] develop a schedul-
ing strategy to eliminate additional I/O arising from communica-
tion among processors; this paper is among the few that address
the impact of scheduling on disk I/O overhead in a parallel con-
text. Solutions for choreographing disk I/O with computation are
presented by Paleczny et al. [19]. They organize computations
into groups that operate efficiently on data accessed in chunks.
Compiler-directed prefetching is discussed by Mowry et al. [18].
Kandemir et al. [12–14] develop file layout and loop transforma-
tions for reducing I/O. None of these techniques address perfor-
mance modeling and optimization of of parallel out-of-core com-
putations addressing both disk I/O costs and inter-processor com-
munication overheads.

There has been some work in the design of out-of-core linear al-
gebra libraries [24, 25]. But, we are not aware of any work that ad-
dresses the detailed modeling of disk I/O and inter-processor com-
munication costs, in addition to an evaluation and optimization of
the overall performance of parallel out-of-core computations.

8. CONCLUSION AND FUTURE WORK
This paper addressed the problem of developing performance

models for a core computation – tensor contractions – in the context
of a domain-specific compiler targeting a class of computations in
quantum chemistry. The cost of disk I/O and interprocessor com-
munication for different data partitions and tile sizes was modeled
for various computational alternatives. The models were experi-
mentally evaluated and the predictions were shown to match mea-
sured results. It was also seen that the optimal choice of parallel
algorithm was dependent on the characteristics of both the tensor
structure as well as machine parameters. The work presented in this
paper can be used in conjunction with high-performance libraries
for parallel out-of-core matrix computations for selecting the best
version of code at runtime. Further work is in progress for using
this framework to optimize tensor contraction expressions with a
sequence of tensor contractions.

Acknowledgments
We would like to thank the Ohio Supercomputer Center (OSC) for
the use of their computing facilities.

Table 5: Configuration of the Itanium 2 cluster at OSC
Node OS Compiler Memory Network Disk

Bandwidth Bandwidth
Dual 900MHz Linux efc 1GB 200MB/s 8MB/s

Table 6: Predicted and Empirical results
Parallel Method Predicted Overhead (sec.) Measured Overhead (sec.).
Inside/Rotation 25.28 28.8827

Outside/Rotation 75.42 70.1237
Inside/Replication 24.718 23.5525

Outside/Replication 56.9 63.1590
Inside/Accumulation 53.792 54.7575

Outside/Accumulation 73.792 78.6768

Table 7: Predicted performance results on 4 processors for ccsd and 4index-transform
4index ccsd

Disk I/O Comm. Total Disk I/O Comm. Total
Volume(MB) Volume(MB) Time(sec.) Volume(MB) Volume(MB) Time(sec.)

Outside/Rotation 1024000.32 204800.32 829440 1024000 409600 839680
Outside/Replica. 307200.64 0.64 245760 512000 409600 438563
Outside/Accum. 921600.16 819200 778240 204800.64 1.28 163840
Inside/Rotation 307200.16 205824.32 256051 204800.16 409600 184320
Inside/Replica. - - - 921600.32 409600 766243
Outside/Accum. 512000 1146880 466944 - -

Table 8: When Bd=10MB/s, predicted best disk/communication overheads (in sec.)
I=J=K=160000 , 4 Processors I = J = K =640000, 16 Processors

Bc = 10MB/s Bc = 200MB/s Bc = 10MB/s Bc = 200MB/s
Outside/Rotation 281920 262464 3855360 3699712

Outside/Replication 259683 232168 4224000 3601408
Outside/Accumulation 318784 264307 6018048 4274790

Inside/Rotation 310240 120240 4040960 1000960
Inside/Replication 268248 123502 4636610 1330921

Inside/Accumulation 298304 243827 5690368 3947110

9. REFERENCES
[1] R.J. Bartlett and G.D. Purvis. Many-body perturbation

theory, coupled-pair many-electron theory and the
importance of quadruple excitations for the correlation
problem. Int. J. Quantum Chem., 14:561–581, 1978.

[2] G. Baumgartner, A. Auer, D. Bernholdt, A. Bibireata,
V. Choppella, D. Cociorva, X. Gao, R. Harrison, S. Hirata,
S. Krishnamoorthy, S. Krishnan, C. Lam, Q. Lu, M. Nooijen,
R. Pitzer, J. Ramanujam, P. Sadayappan, and A. Sibiryakov.
Synthesis of high-performance parallel programs for a class
of ab initio quantum chemistry models. Proceedings of the
IEEE, 93(2):276–292, February 2005.

[3] G. Baumgartner, D.E. Bernholdt, D. Cociorva, R. Harrison,
S. Hirata, C. Lam, M. Nooijen, R. Pitzer, J. Ramanujam, and
P. Sadayappan. A high-level approach to synthesis of
high-performance codes for quantum chemistry. In Proc. of
Supercomputing 2002, November 2002.

[4] R. Bordawekar. Techniques for Compiling I/O Intensive
Parallel Programs. PhD thesis, Dept. of Electrical and
Computer Eng., Syracuse University, April 1996.

[5] R. Bordawekar and A. Choudhary. Communication strategies
for out-of-core programs on distributed memory machines.
In ICS ’95: Proc. 9th International Conference on
Supercomputing, pages 395–403, 1995.

[6] R. Bordawekar, A. Choudhary, K. Kennedy, C. Koelbel, and
M. Paleczny. A model and compilation strategy for
out-of-core data-parallel programs. In Proc. 5th ACM Symp.
Principles and Practice of Parallel Programming, 1995.

[7] R. Bordawekar, A. Choudhary, and J. Ramanujam.
Automatic optimization of communication in out-of-core
stencil codes. In Proc. 10th ACM International Conference
on Supercomputing, pages 366–373, 1996.

[8] Y. Chen, M. Winslett, Y. Cho, and S. Kuo. Automatic parallel
I/O performance optimization. In Proc. 10th Annual ACM
Symposium on Parallel Algorithms and Architectures, 1998.

[9] D. Cociorva, J. Wilkins, G. Baumgartner, P. Sadayappan,
J. Ramanujam, M. Nooijen, D. E. Bernholdt, and
R. Harrison. Towards automatic synthesis of
high-performance codes for electronic structure calculations:
Data locality optimization. In Proc. of the Intl. Conf. on High
Performance Computing, volume 2228, pages 237–248.
Springer-Verlag, 2001.

[10] D. Cociorva, J. Wilkins, C. Lam, G. Baumgartner,
P. Sadayappan, and J. Ramanujam. Loop optimization for a
class of memory-constrained computations. In Proc. 15th
ACM International Conference on Supercomputing (ICS’01),
pages 500–509, 2001.

[11] X. Gao, S. Sahoo, Q. Lu, G. Baumgartner, J. Ramanujam,
C. Lam, and P. Sadayappan. Compiler techniques for
efficient parallelization of out-of-core tensor contractions.
Technical Report OSU-CISRC-12/04-TR67, The Ohio State
University, Columbus, OH, December 2004.

[12] M. Kandemir, A. Choudhary, and J. Ramanujam. An I/O
conscious tiling strategy for disk-resident data sets. The
Journal of Supercomputing, 21(3):257–284, 2002.

[13] M. Kandemir, A. Choudhary, J. Ramanujam, and
R. Bordawekar. Compilation techniques for out-of-core
parallel computations. Parallel Computing,
24(3-4):597–628, June 1998.

[14] M. Kandemir, A. Choudhary, J. Ramanujam, and
M. Kandaswamy. A unified framework for optimizing
locality, parallelism and communication in out-of-core

computations. IEEE Transactions of Parallel and Distributed
Systems, 11(7):648–668, July 2000.

[15] K. Kennedy, B. Broom, K. Cooper, J. Dongarra, R. Fowler,
D. Gannon, L. Johnsson, J. M. Crummey, and L. Torczon.
Telescoping languages: A strategy for automatic generation
of scientific problem-solving systems from annotated
libraries. JPDC, 61(12):1803–1826, December 2001.

[16] S. Krishnan. Data locality optimization for synthesis of
out-of-core programs. Master’s thesis, The Ohio State
University, Columbus, OH, September 2003.

[17] S. Krishnan, S. Krishnamoorthy, G. Baumgartner,
D. Cociorva, C. Lam, P. Sadayappan, J. Ramanujam, D. E.
Bernholdt, and V. Choppella. Data locality optimization for
synthesis of efficient out-of-core algorithms. In Proc. of the
Intl. Conf. on High Performance Computing, 2003.

[18] T. Mowry, A. Demke, and O. Krieger. Automatic
compiler-inserted I/O prefetching for out-of-core
applications. In Proc. of Second Symposium on Operating
Systems Design and Implementations, pages 3–17, 1996.

[19] M. Paleczny, K. Kennedy, and C. Koelbel. Compiler support
for out-of-core arrays on parallel machines. Technical Report
94509-S, Rice University, Houston, TX, December 1994.

[20] J.A. Pople, R. Krishnan, H.B. Schlegel, and J.S. Binkley.
Electron correlation theories and their application to the
study of simple reaction potential surfaces. Int. J. Quantum
Chem., 14:545–560, 1978.

[21] G.E. Scuseria, C.L. Janssen, and H.F. Schaefer III. An
efficient reformulation of the closed-shell coupled cluster
single and double excitation (CCSD) equations. The Journal
of Chemical Physics, 89(12):7382–7387, 1988.

[22] T. P. Straatsma, E. Aprà, T. L. Windus, E. J. Bylaska,
W. de Jong, S. Hirata, M. Valiev, M. Hackler, L. Pollack,
R. Harrison, M. Dupuis, D. M. A. Smith, J. Nieplocha,
V. Tipparaju, M. Krishnan, A. A. Auer, E. Brown,
G. Cisneros, G. Fann, H. Früchtl, J. Garza, K. Hirao,
R. Kendall, J. Nichols, K. Tsemekham, K. Wolinski,
J. Anchell, D. Bernholdt, P. Borowski, T. Clark, D. Clerc,
H. Dachsel, M. Deegan, K. Dyall, D. Elwood,
E. Glendening, M. Gutowski, A. Hess, J. Jaffee, B. Johnson,
J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield,
X. Long, B. Meng, T. Nakajima, S. Niu, M. Rosing,
G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe,
A. Wong, and Z. Zhang. NWChem, A Computational
Chemistry Package for Parallel Computers, Version 4.6.
Pacific Northwest National Laboratory, Richland,
Washington 99352–0999, USA, 2004.
http://www.emsl.pnl.gov/docs/nwchem/.

[23] R. Thakur, R. Bordawekar, A. Choudhary, R. Ponnusamy,
and T. Singh. PASSION runtime library for parallel I/O. In
Proc. of Scalable Parallel Libraries Conference, pages
119–128, 1994.

[24] S. Toledo. A survey of out-of-core algorithms in numerical
linear algebra. In J. Abello and J.S. Vitter, editors, External
Memory Algorithms and Visualization, pages 161–180. AMS
Press, 1999.

[25] S. Toledo and F.G. Gustavson. The design and
implementation of solar, a portable library for scalable
out-of-core linear algebra computations. In IOPADS ’96:
Proc. 4th Workshop on I/O in Parallel and Distributed
Systems, pages 28–40, 1996.

