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Abstract

The Tensor Contraction Engine (TCE) is a domain-specific
compiler for implementing complex tensor contraction ex-
pressions arising in quantum chemistry applications mod-
eling electronic structure. This paper develops a perfor-
mance model for tensor contractions, considering both disk
I/O as well as inter-processor communication costs, to facili-
tate performance-model driven loop optimization for this do-
main. Experimental results are provided that demonstrate the
accuracy and effectiveness of the model.

1 Introduction

The development of effective performance-model driven pro-
gram transformation strategies for optimizing compilers is a
challenging problem. We face this problem in the context of
a domain-specific compiler targeted at a class of computation-
ally demanding applications in quantum chemistry [2, 3]. A
synthesis system is being developed for transformation into
efficient parallel programs, of a high-level mathematical spec-
ification of a computation expressed as tensor contraction ex-
pressions. A tensor contraction is essentially a generalized
matrix product involving multi-dimensional arrays. Often, the
tensors are too large to fit in memory, so that out-of-core so-
lutions are required. The optimization of a computation in-
volving a collection of tensor contractions requires an accu-
rate performance model for the core operation: a single tensor
contraction, modeling both disk I/O costs and inter-processor
communication costs. In this paper we address the problem of
developing a performance model for parallel out-of-core ten-
sor contractions.

The approach presented in this paper may be viewed as
an example of the telescoping languages approach described
in [14]. The telescoping languages/libraries approach aims
at facilitating a high-levelscripting interface for a domain-
specific computation to the user, while achieving high perfor-
mance that is portable across machine architectures, and com-
pilation time that only grows linearly with the size of the user

∗Supported in part by the National Science Foundation through the Infor-
mation Technology Research program (CHE-0121676 and CHE-0121706), and
NSF grants CCR-0073800 and EIA-9986052.

script. With this approach, library functions are pre-analyzed
and appropriate annotations are included to provide informa-
tion on performance characteristics. If user programs make
heavy use of these library functions, the optimization of the
user “script” is achieved using the performance characteriza-
tion of the library functions, without requiring extensive anal-
ysis of the “expanded” program corresponding to inlined code
for library functions. In a distributed computer, for efficient
execution of out-of-core tensor contractions, two dominant
overhead costs need to be reduced: inter-processor commu-
nication cost and local disk access cost. Many factors affect
these costs, including the communication pattern, the parallel
algorithms, data partitioning methods, loop orders, disk I/O
placements and tile size selection. They are inter-related and
can not be determined independently. The number of possible
combinations is exceedingly large and searching them all is
impractical. In this paper, we provide an approach, which can
model the relationship between the space of possible structures
and efficiently prune the search space to find the best solution
in reasonable time.

This paper is organized as follows. In the next section,
we introduce the main concepts and specify the parallel sys-
tem supported by the algorithm. Section 3 discusses the im-
pact of loop order and the placement of disk I/O statements.
Algorithms used inoutside communication pattern andinside
communication pattern (defined in Section 2.1) are discussed
in Section 4 and Section 5 respectively. Section 6 presents re-
sults from the application of the new algorithm to an example
abstracted from NWChem [21]. We discuss related work in
Section 7. Conclusions are provided in Section 8.

2 Preliminaries

Consider the following tensor contraction expression

C(a,b,c,d) = ∑
m,n

A(a,b,m,n)×B(c,d,m,n) (2.1)

where A and B are input arrays and C is the output array;m,n
are the summation indices. If all indices range over N,O(N6)
arithmetic operations will be required to compute this.

Notice that a tensor contraction is essentially a generalized



matrix multiplication. The above expression can written as

C(I,J) = A(I,K)×B(J,K), (2.2)

whereI ≡ {a,b}, J ≡ {c,d} and K ≡ {m,n} are index sets
considered as “macro-indices.” This notation will be used in
the rest of the paper. Consider a distributed-memory computer
with P processors in which every processor has limited local
memory and unlimited local disk. If a processor needs data
from the local disk of other processors, the required data will
be first read by the owner processor and then communicated to
the requesting processor. The inter-processor network band-
width is denoted asBc, and the local disk to memory band-
width is Bd . Arrays A,B and C are either evenly distributed or
fully replicated among all processors. An index setdist is used
to represent the distribution pattern of an array. For example,
if array A is distributed by indexi and j, thenA.dist is 〈i, j〉.
If A is replicated on all processors, thenA.dist is 〈〉.

The original size of an array is denoted asarray.size. In
a parallel algorithm, the size of an array required for local
computation is denoted asarray.localsize. If all required data
can fit into memory, there is no disk I/O involved. Otherwise
the array whosearray.localsize larger than one-third of local
memory will be put on disk.

Because data sets are very large, we assume that both com-
munication cost and disk I/O cost are dominated by the vol-
ume of data movement, not the number of data movements.
The communication cost and disk I/O cost, can be calculated
simply by dividing the transfered volume with the transferring
bandwidth.

Three parallel matrix multiplication algorithms,rotation,
replication, and accumulation are used. They will be dis-
cussed and compared in Section 2.2. The choice of the paral-
lel algorithm decides the communication pattern. In the rota-
tion algorithm, computation is executed in several steps. Each
processorcircular-shifts its local data with neighbors between
computations. In the replication algorithm, one operand is
broadcasted to all processors. In the accumulation algorithm,
the partial result of the entire target array isreduced among
all processors. These communication patterns can be imple-
mented by corresponding communication routines. Commu-
nication routines on out-of-core data will be carried out in sev-
eral steps and results in extra disk access cost.

2.1 Communication Methods

When there is insufficient memory to hold all the remote data
for the next computation to be performed locally on a proces-
sor, we can use one of two broad approaches to handling the
out-of-core data: 1) first perform disk-to-disk transfer so that
all remote data needed by a processor for its portion of the
computation is first moved to its local disk, or 2) intersperse
disk I/O with computation on in-core sub-arrays. We call the
first method as theoutside communication method, and the
latter as theinside communication method. In the outside
communication method, communication and local computa-
tion are separated from each other. All remote data for the
next computation is fetched before the start of the computa-
tion and stored on disk. It may cause redundant disk access,
but achieves minimal communication cost. With theinside
communication method, communication and local compu-
tation are interleaved together. When one block of data is
copied into memory, the owner processor performs computa-
tions on it, and passes it to other processors requiring it. When

other processors receive remote data, they perform computa-
tions on it, and discard it without writing it to disk. This ap-
proach incurs extra communication cost, but minimizes disk
access cost. Examples of these two communication methods
are shown in Figure 1 and Figure 2. The choice of the com-
munication method introduces a trade-off between communi-
cation cost and disk access cost. Thus, when available local
memory is large enough to hold all the remote data, we can
directly select the outside communication method.

2.2 Parallel Algorithms and Distribution In-
dices

Many approaches have been proposed for implementing paral-
lel matrix multiplication. In this framework, three simple and
common parallel algorithms are considered as the basis for an
individual tensor contraction: rotation, replication and accu-
mulation. Implementation details of these parallel algorithms
are discussed next.

1. Rotation: We use a generalization of Cannon’s algo-
rithm as the primary template. In this approach, a logical
view of theP processors as a two-dimensional

√
P×

√
P

grid is used. To apply rotation parallel algorithm, each
array is two-dimensional cyclic-block distributed along
the two processor dimensions. A triplet{ i,j,k } formed
by one index from each index set I,J,and K defines a
distribution〈i, j〉 for the result array C, and distribution
〈i,k〉 and〈k, j〉 for the input arrays A and B. The com-
putation is carried out in

√
P steps. One processor holds

a sub-block of array A,B and C respectively at any mo-
ment, performs a sub-matrix multiplication on them and
transfers blocks A and B to its neighbors after the com-
putation is done.

2. Replication: In this scheme, each processor locally
holds one full input array and a strip of the other two
arrays. In order to achieve good performance, we always
replicate the smaller operand. Without loss of generality,
we assume the size of array A is less than the size of B.
Thus, to use the replication parallel algorithm, array A
is replicated on all processors,A.dist = 〈〉, and arrays B
and C are distributed by the same dimensions belonging
to the index set J,B.dist = C.dist = 〈 j〉, j ∈ J. Repli-
cation communication can be modeled as an all-to-all
broadcast communication operation, whose communica-
tion cost is a topology-dependent function. To simplify
the problem, we assume that the interconnection network
is completely connected in the rest of the paper. Thus, we
use the expression

Replicate(S) = (S.size)/Bc (2.3)

to calculate the replication time.

3. Accumulation: In order to apply the accumulation par-
allel algorithm, two operands are distributed by the same
summation indices,A.dist = B.dist = 〈k〉,k ∈ K , and the
target array is replicated on all processors,C.dist = 〈〉.
Every processor executes a partial matrix multiplication
and accumulates the result at last. The accumulation can
be modeled as an all-to-all reduction communication op-
eration, whose communication cost depend on the inter-
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processor topology. In the completely-connected net-
work, the all-to-all reduction cost is

Reduce(S) = (S.size× log(P))/Bc (2.4)

If the distribution of the input or output arrays are not suitable
for a specific parallel algorithm, we need to rearrange the data
before or after executing the parallel algorithm. The redistri-
bution procedure is separated from the computation procedure.

The pseudocode of these three parallel algorithms using
the inside communication method are shown in Figure 1.
The corresponding pseudocode for the outside communica-
tion method are shown in Figure 2. Arrays A, B and C are
out-of-core arrays that are distributed using a block-cyclic dis-
tribution amongP processors in order to render theCollective
disk I/O operations load-balanced.Collective disk I/O oper-
ations operate on global tiles, which consist of a set of local
tiles. The correspondinglocal disk I/O operation is indicated
under thecollective disk I/O operation. In the pseudocode, the
loop order of the It, Jt and Kt loops is not determined, all the
disk I/O statements and message passing statements are placed
inside the innermost loop. However, after the loop structure is
defined, these data movement statements will be inserted at the
appropriate places in the actual program.

2.3 The Overall Problem Definition

Our overall goal is to develop a domain specific com-
piler, which can automatically translate a sequence of ten-
sor expressions represented in high-level language to a high-
performance parallel program in Fortran or C code. There are
many methods to implement a parallel out-of-core tensor con-
traction. Different methods may perform differently because
of differences in the hardware environment or because of the
tensors’ shape and size. In this section, we define the overall
problem as following. For a given tensor contraction expres-
sion and some machine parameters, including the number of
processors, the amount of physical available memory for ev-
ery processor, the inter-processor network bandwidth, and the
local disk to memory bandwidth, our goal is to determine:

• the communication method;

• the parallel algorithm and distributed indices;

• the order of the loops and disk I/O placements; and

• the tile sizes for each dimension

such that the total communication cost and the disk access cost
are reduced.
For the input and output arrays, the algorithm can be used in
either of these modes:

• the distribution of the input and output arrays areuncon-
strained, and can be chosen by the algorithm to optimize
the communication cost; or

• the input and output arrays have aconstrained distribu-
tion on to the processors in some pre-specified pattern.

The parallel execution can be decoupled into three stages:

1. redistribute the input arrays;

2. compute the tensor contraction expression in parallel;
and

PA Distribution Constraints.
Rotation A.dist = 〈i,k〉,B.dist = 〈 j,k〉,C.dist = 〈i, j〉

Replication A B.dist = C.dist = 〈 j〉
Replication B A.dist = C.dist = 〈i〉
Accumulation A.dist = B.dist = 〈k〉

Table 1: Arrays distribution constraint for different parallel
algorithms

3. redistribute the output array.

The total execution time is the sum of execution times in the
three stages. Because we only use load-balanced parallel algo-
rithms, the computations are always evenly distributed among
all the processors. We can ignore the calculation time, and
consider only the communication overhead and the disk I/O
overhead. The total overhead cost for a specific parallel algo-
rithm, which is denoted asPA, can be calculated by:

Overhead(PA) = Redist(A,A.dist1,A.dist2)

+ Redist(B,B.dist1,B.dist2)

+ Redist(C,C.dist1,C.dist2)

+ Computation(A,B,C,PA),

where A.dist1 and B.dist1 are the initial distribution of the in-
put arrays A and B, and C.dist2 is the expected distribution of
the output array C. A.dist2, and B.dist2 are operand distribu-
tion patterns required forPA. C.dist1 is the target distribution
pattern generated byPA. A.dist2, B.dist2 and C.dist1 must
be compatible with each other by the distribution constraints
of PA. The distribution constraints for different parallel algo-
rithms is shown in Table 1.

If the initial distribution is the same as the final distribu-
tion, data re-arrangement is not necessary, and the redistribu-
tion cost is zero. Otherwise, the redistribution cost is the sum
of the communication cost and the disk I/O cost, which de-
pend on the redistribution scheme and machine specific inter-
processor topology.

When a parallel algorithm is chosen for matrix multipli-
cation, suitable distribution methods of the input and output
arrays are decided as well. However, in a multi-dimensional
tensor contraction expression, many distribution methods can
be applied in a specific parallel algorithm. The choice of the
distribution method will affect the redistribution cost in stages
one and three. However, the overhead of parallel execution
in stage two can be calculated independently of the distribu-
tion method. Thus, in the following sections, we present an
algorithm to determine all parameters, except for distribution
method, which can minimize the overhead cost in stage two.
The choice of the distribution method that allows for optimiz-
ing the redistribution cost will be discussed later.

3 Loop Order and Disk I/O Placements

In this section, we will concentrate on the loop order and the
placements of disk I/O statements. We will consider only the
order of tiling loops since different orders of the intra-tile loops
will not significantly affect the execution time.

Consider the tensor contraction expression given in Ex-
pression ( 2.1). After tiling, the loopsIt, Jt, Kt will be the
tiling loops as shown in Figures 1 and 2. Note thatIt, Jt, Kt
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for It,Jt,Kt








































Collective Read AIi,Ki
(Local Read AIi/

√
P,Ki/

√
P )

Collective Read BKi,Ji
(Local Read BKi/

√
P,Ji/

√
P )

Collective Read CIi,Ji
(Local Read CIi/

√
P,Ji/

√
P)

for
√

P Rotations




CIi,Ji += AIi,Ki*BKi,Ji
Circular-shift in-core AIi,Ki
Circular-shift in-core BKi,Ji

Collective Write CIi,Ji
(Local Write CIi/

√
P,Ji/

√
P)

(a): Rotation

for It,Jt,Kt






























Collective Read AIi,Ki
(Local Read AIi,Ki/P)
A2A In-Core Broadcast AIi,Ki
Collective Read BKi,Ji
(Local Read BKi,Ji/P)
Collective Read CIi,Ji
(Local Read CIi,Ji/P)
CIi,Ji += AIi,Ki*BKi,Ji
Collective Write CIi,Ji
(Local Write CIi,Ji/P)

(b): Replication

for It,Jt,Kt






















Collective Read AIi,Ki
(Local Read AIi,Ki/P)
Collective Read BKi,Ji
(Local Read BKi/P,Ji)
Local Read CIi,Ji
CIi,Ji += AIi,Ki*BKi,Ji
All-Reduct In-Core CIi,Ji
Local Write CIi,Ji

(c): Accumulation

Figure 1: Pseudocode of Inside Communication Method

for
√

P Rotations






































for It,Jt,Kt




























Collective Read AIi,Ki
(Local Read AIi/

√
P,Ki/

√
P )

Collective Read BKi,Ji
(Local Read BKi/

√
P,Ji/

√
P )

Collective Read CIi,Ji
(Local Read CIi/

√
P,Ji/

√
P)

CIi,Ji += AIi,Ki*BKi,Ji
Collective Write CIi,Ji
(Local Write CIi/

√
P,Ji/

√
P)

Circular-shift Out-of-Core AI,K
Circular-shift Out-of-Core BK,J

(a): Rotation

A2A Broadcast Out-of-Core AI,K
for It,Jt,Kt






















Local Read AIi,Ki
Collective Read BKi,Ji
(Local Read BKi,Ji/P)
Collective Read CIi,Ji
(Local Read CIi,Ji/P)
CIi,Ji += AIi,Ki*BKi,Ji
Collective Write CIi,Ji
(Local Write CIi,Ji/P)

(b): Replication

for It,Jt,Kt


















Collective Read AIi,Ki
(Local Read AIi,Ki/P)
Collective Read BKi,Ji
(Local Read BKi/P,Ji)
Local Read CIi,Ji
CIi,Ji += AIi,Ki*BKi,Ji
Local Write CIi,Ji

All-Reduct Out-of-Core CI,J

(c): Accumulation

Figure 2: Pseudocode of Outside Communication Method

are not single indices, but index sets, i.e., they each consist
of several loop indices or be empty. Orderings of these tiling
loops will depend upon the order of the placement of the disk
I/O statements. There are three disk read statements corre-
sponding to the three arraysA, B, andC. We need to consider
six cases for the placement of read statements:ABC, ACB,
BAC, BCA, CAB, CBA.

Consider the case where read statements are in the order
ABC as shown in Figure 3. The three read statements will di-
vide the tiling loops into four parts:D1, D2, D3, andD4. Each
of these parts will contain some loops from each of the index
setsIt, Jt, Kt. Let Di contain index setsIti, Jti, Kti as shown
in Figure 3(a). Considering the loops in partD1, we note that
if Jt1 is non-empty, then disk I/O forA will be unnecessarily
repeated several times. SoJt1 should be moved to partD2 to
reduce the total volume of disk access forA without increas-
ing the size of local buffers forA, B andC. After puttingJt1
to partD2, we can merge index setsJt1 andJt2 together, and
re-name the new index set asJt1. Considering the loops in part
D2, we note that ifIt2 is non-empty, then disk I/O forB will be
unnecessarily repeated several times. SoIt2 should be moved
to partD3 to reduce the total volume of disk access forB with-
out increaseing the size of local buffers. Further,Kt2 would be
empty or moved to partD1 to reduce the memory requirement
for the local buffer ofA without increasing the volume of disk
access forA, B andC. Similarly, considering the loops in part
D3, we note thatKt3 should be empty or be moved to partD4
to reduce the total volume of disk access forC and that the
loops inJt3 should be empty or moved to partD2 to reduce
the memory requirement for disk access ofB. Continuing in

this fashion, we decide to put loops inIt4 in partD3 and loops
in Jt4 in partD2.

The simplified code is shown in Figure 3(b). Note, that the
particular loops put in index sets will not affect the minimum
Overhead cost, but they will determine whether the conditions
under which we can achieve the minimum Overhead cost are
satisfied or not. This will be explained in detail in later sec-
tions.

4 Overhead Minimization for the Outside
Communication Method

In this section, we analyze each of the three parallel algorithms
(rotation, replication and accumulation) with theoutside com-
munication pattern and determine the minimalOverhead cost
achievable along with the conditions under which this will be
possible. In the expressions used in this and the next section,
A, B, C will denote the sizes of arraysA, B, C, respectively; the
termsI, J, K and It1, Jt1, Kt1 will denote the corresponding
loop bounds. The total number of processors will be denoted
by P and the local memory available for the tiles of each ar-
ray, which we assume to be one-third of the local memory per
processor, is denoted byM. The combined memory of all pro-
cessors is, therefore,M×P.

4.1 Rotation

Let us consider the tensor contraction code with disk I/O
placement orderABC, the outside communication pattern, and
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for It1, Jt1, Kt1


















Read AIi1,Ki1,I2,I3,I4,K2,K3,K4
for It2, Jt2, Kt2










Read BJi1,Ji2,Ki1,Ki2,J3,J4,K3,K4
for It3, Jt3, Kt3




Read CIi1,Ii2,Ii3,I4,Ji1,Ji2,Ji3,J4
for It4, Jt4, Kt4
[

C+ = A×B

(a) Initial groups

for It1, Kt1


















Read AIi1,Ki1,I2,K2
for Jt1










Read BJi1,Ki1,K2
for It2




Read CIi1,Ii2,Ki1,Ki2
for Kt2
[

C+ = A×B

(b) After cleanup

Figure 3: Loop groups

rotation type of parallelism as shown in Figure 2(a). The tiling
loops are ordered as discussed in the previous section. Our
goal is to determine the tile sizes (or the number of tiles) that
will minimize theOverhead cost, including disk I/O cost and
communication cost.

In this case, each of the three arrays are partitioned equally
among theP processors. So we haveA.localsize = A/P,
B.localsize = B/P, andC.localsize = C/P. The communica-
tion corresponds to shifting theA andB arrays to adjacent pro-
cessors. These communications happen

√
P times and each of

these also involves disk operations. Therefore, the total com-
munication volumeV =

√
P× ( A

P + B
P ) = ( A√

P
+ B√

P
). The

disk access volume during communicationD 1 = 2× ( A√
P

+
B√
P
), since the disk is accessed twice, once for reading and

once for writing. It is clear that these two terms are inde-
pendent of the tile sizes. The disk access volume during
the computationD 2 =

√
P× ( A

P + B
P × It1 + 2× C

P ×Kt1) =
A√
P

+ B√
P
× It1 +2× C√

P
×Kt1. The total disk access volume

D =D 1+D 2. For simplicity, in the calculations belowD will
include only those two parts that depend on the number of tiles
(or tile sizes).

It is clear that this term depends on the number of tiles. To
minimize Overhead cost, we will have to minimize the disk ac-
cess volume during the computation and henceIt1, Kt1 should
be made 1. But this is not possible due to the constraint that
the tiles of arrayA, B andC should fit into memory. Here we
assume that each of these array tiles occupies one third of the
memory. The constraints involving tiles can be expressed as
follows.

It1×Kt1 ≥ A
M×P

(4.1)

Jt1×Kt1 ≥ B
M×P

(4.2)

It1× It2× Jt1 ≥ C
M×P

(4.3)

Note that only Eqn. 4.1 involves bothIt1 andKt1, which we

want to be 1. We will try to minimizeD under the constraint
of Eqn. 4.1. The other two equations can be simultaneously
satisfied by using a large value the the unconstrained variables
It2 andJt1. Since we are trying to reduce the values ofIt1 and
Kt1 while satisfying Eqn. 4.1, the Eqn. 4.1 can be written as
It1 ×Kt1 = A

M×P . With this modification, we can substitute
the value ofKt1 in the equation forD to get,

B× It2
1 −

√
P×D × It1 +

2×C×A
M×P

= 0 (4.4)

The above quadratic equation will have a real solution under
the condition that the quadratic curve discriminantP×D 2−
4×B×( 2×C×A

M×P )≥ 0. In other words, for any real value ofIt1,

the minimum achievable value ofD is 1
P

√

8×A×B×C
M . This

minimum value ofD can be achieved withIt1 = I ×
√

2
M×P

andKt1 = K√
2×M×P

. In order to satisfy Equations 4.2 and 4.3,

we need to choose values ofJt1 andIt2 that satisfy the condi-

tionsJt1 ≥ J×
√

2
M×P andIt2 ≥ 1. Hence, the minimum total

disk access volume is

2× (
A√
P

+
B√
P

)+
A√
P

+
1
P

√

8×A×B×C
M

. (4.5)

If these values are not integers, the number of tiles will be set
to the ceiling. There are two special cases if values ofIt1 or
Kt1 are less than 1.

• Case 1: I <
√

M×P
2

In this case, we select the values asIt1 = 1, Kt1 =
A

M×P , Jt1 ≥ J
I , It2 ≥ I2

M×P . The minimum total disk ac-
cess volume during the computation in this case will be

A√
P

+ B√
P

+2× C√
P
× A

M×P .

• Case 2: K <
√

2×M×P

In this case, we select the values asIt1 = A
M×P , Kt1 = 1,

Jt1 ≥ B
M×P , It2 ≥ M×P

K2 . The minimum total disk access

volume during the computation in this case will beA√
P

+

B√
P
× A

M×P +2× C√
P

.

We performed the analysis for the other five disk placement
orders in a similar fashion. The results are shown in Table 2.

4.2 Replication

For this case, let us consider the tensor contraction code with
disk I/O placement orderABC, outside communication pat-
tern, and replication type of parallelism as shown in Fig-
ure 2(b). The tiling loops are ordered as discussed in the previ-
ous section. As in the case of rotation, our goal is to determine
the tile sizes to minimize the Overhead cost.

Without loss of generality, we assume arrayA is smaller
than arrayB. Thus, the arraysB andC are partitioned equally
among theP processors whereasA is replicated on all pro-
cessors. So we haveA.localsize = A, B.localsize = B/P, and
C.localsize = C/P. In this case, communication corresponds
to broadcasting arrayA. Therefore, the total communication
volumeV = A. The disk access volume during communica-
tion D 1 = A. Also in this case the above two terms are inde-
pendent of the tile sizes. The disk access volume during the
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computationD 2 = A + B
P × It1 + 2× C

P ×Kt1. The total disk
access volumeD = D 1 +D 2.

It is clear that D depends on the number of tiles. To mini-
mize the Overhead cost, we will have to minimize the disk ac-
cess volume during the computation and henceIt1, Kt1 should
be set to 1. But this is not possible due to the constraint that the
tiles of arraysA, B, andC fit into memory. The size constraints
involving tiles can be expressed as follows.

It1×Kt1 ≥ A
M

(4.6)

Jt1×Kt1 ≥ B
M×P

(4.7)

It1× It2× Jt1 ≥ C
M×P

(4.8)

Our analysis here is similar to that for the case of rotation (Sec-
tion 4.1). We will try to minimizeD under the constraint of
Eqn. 4.6. The other two equations can be simultaneously sat-
isfied by using a large value for the unconstrained variablesIt2
andJt1. Since we are trying to reduce the values ofIt1 and
Kt1 while satisfying Eqn. 4.6, the Eqn. 4.6 can be written as
It1×Kt1 = A

M . With this modification, we can substitute the
value ofKt1 in the equation forD to get

B× It2
1 −P×D × It1 +

2×C×A
M

= 0. (4.9)

From the above equation, it should be clear that for any
real value of It1, the minimum achievable value ofD is
1
P

√

8×A×B×C
M . This minimum value ofD can be achieved

with It1 = I ×
√

2
M and Kt1 = K√

2×M
, Jt1 ≥ J

P ×
√

2
M and

It2 ≥ 1. These values satisfy all the constraints. Hence, the
minimum total disk access volume is

A+A+
1
P

√

8×A×B×C
M

(4.10)

If these values are not integers, the number of tiles will be set
to the ceiling. There are two special cases if the values ofIt1
or Kt1 are less than 1. The analysis for these cases can be done
as shown in Section 4.1.

We did the analysis for the other five disk placement orders
as above. The results are shown in Table 3.

4.3 Accumulation

In this section, we deal with the accumulation type of paral-
lelism. Consider the tensor contraction code with accumula-
tion type of parallelism as shown in Figure 2(c). Again our
goal is to determine the tile sizes that will minimize the total
Overhead cost.

In this case, arraysA andB are partitioned equally among
theP processors whereasC is replicated on all processors. So
we haveA.localsize = A/P, B.localsize = B/P, C.localsize =
C. In this case, the communication involves an All-Reduce
operation of arrayC. Therefore, total communication volume
V =C× logP. The disk access volume during communication
D 1 =C. Again the total communication cost is independent of
the tile sizes. The disk access volume during the computation
D 2 = A

P + B
P × It1 +2×C×Kt1. The total disk access volume

D = D 1 +D 2.

As in the previous sections, to minimize the disk access
volume during the computation,It1 andKt1 should be made
1. But this is prevented by the constraint that the tiles of array
A, B, andC should fit into memory. The constraints involving
tiles in this case can be expressed as follows.

It1×Kt1 ≥ A
M×P

(4.11)

Jt1×Kt1 ≥ B
M×P

(4.12)

It1× It2× Jt1 ≥ C
M

(4.13)

We do the analysis similar to that in the previous subsections.
We will try to minimizeD under the constraint of Eqn. 4.11.
The other two equations are simultaneously satisfied by using
a large value for the unconstrained variablesIt2 andJt1. As
before, the Eqn. 4.11 can be written asIt1×Kt1 = A

M×P . Now
substituting the value ofKt1 in the equation forD we get

B
P
× It2

1 −D × It1 +
2×C×A

M×P
= 0 (4.14)

From this equation it is clear that, for any real value ofIt1,

the minimum achievable value ofD is 1
P

√

8×A×B×C
M . This

minimum value ofD can be achieved withIt1 = I ×
√

2
M ,

Kt1 = K
P×

√
2×M

, Jt1 ≥ J ×
√

2
M , andIt2 ≥ 1. Hence, the min-

imum total disk access volume is

C +
A
P

+
1
P

√

8×A×B×C
M

(4.15)

If these values are not integers, the number of tiles will be set
to the ceiling. There are two special cases if the values ofIt1
or Kt1 are less than 1. Again, the analysis for these cases can
be done as shown in the previous subsections.

We did the analysis for the other five disk placement orders
as above. The results are shown in Table 4.

5 Overhead Minimization for the Inside Com-
munication Method

In this section, we analyze each of the three parallel algo-
rithms possible with theinside communication pattern and
determine the minimal Overhead cost achievable along with
the conditions under which this will be possible.

5.1 Rotation

Consider the tensor contraction code with disk I/O placement
order ABC, inside communication pattern, and the rotation
type of parallelism as shown in Figure 1(a). The tiling loop
ordering is decided as before. The goal is to determine the
tile sizes (or the number of tiles) that will minimize the total
Overhead cost.

In this case, each of the three arrays are partitioned equally
among theP processors in a block-cyclic fashion. So we have
A.localsize = A/P, B.localsize = B/P,C.localsize =C/P. The
communication corresponds to shifting theA andB arrays to
adjacent processors. This communication happens

√
P times

for each iteration of the tiling loops and each of these also

6



Disk Cost Estimate Tile Minimal Disk Cost and
Order Formulas Constraints conditions

ABC/ V = A√
P

+ B√
P

It1×Kt1≥ A
M×P < 1 > If I ≥

√

M×P
2 , andK ≥

√
2M×P, then

ACB D 1 = 2√
P
(A+B) Jt1×Kt1≥ B

M×P It1 = I
√

2
M×P , Kt1 = K√

2M×P
, Jt1≥ J

√

2
M×P , It2 = 1

D 2 =
√

P× ( A
P + B

P × It1+2× C
P ×Kt1) It1× It2× Jt1≥ C

M×P D 2 = A√
P

+
√

8ABC
P
√

M

< 2 > If I <
√

M×P
2 , andK ≥

√
2M×P, then

It1 = 1, Kt1 = A
M×P , Jt1≥ J

I , It2 = 1
D 2 = A√

P
+ B√

P
+ 2AC

MP
√

P

< 3 > If I ≥
√

M×P
2 , andK <

√
2M×P, then

It1 = A
M×P , Kt1 = 1, Jt1≥ B

M×P , It2 = 1
D 2 = A√

P
+ A×B

MP
√

P
+ 2C√

P

BAC/ V = A√
P

+ B√
P

It1×Kt1≥ A
M×P < 1 > If J ≥

√

M×P
2 , andK ≥

√
2M×P, then

BAC D 1 = 2√
P
(A+B) Jt1×Kt1≥ B

M×P It1≥ I
√

2
M×P , Kt1 = K√

2M×P
, Jt1 = J

√

2
M×P , Jt2 = 1

D 2 =
√

P× ( A
P × Jt1+ B

P +2× C
P ×Kt1) It1× Jt1× Jt2≥ C

M×P D 2 = B√
P

+
√

8ABC
P
√

M

< 2 > If J <
√

M×P
2 , andK ≥

√
2M×P, then

Jt1 = 1, Kt1 = B
M×P , It1≥ I

J , Jt2 = 1
D 2 = A√

P
+ B√

P
+ 2BC

MP
√

P

< 3 > If J ≥
√

M×P
2 , andK <

√
2M×P, then

Jt1 = B
M×P , Kt1 = 1, It1≥ A

M×P , Jt2 = 1
D 2 = B√

P
+ A×B

MP
√

P
+ 2C√

P

CAB/ V = A√
P

+ B√
P

It1×Kt1≥ A
M×P < 1 > If I ≥

√
M, andJ ≥

√
M, then

CBA D 1 = 2√
P
(A+B) Jt1× Jt2×Kt1≥ B

M×P It1 = I√
M

, Kt1≥ K√
M

, Jt1 = J√
M

, Jt2 = 1

D 2 =
√

P× ( A
P × Jt1+ B

P × It1+2× C
P ) It1× Jt1≥ C

M×P D 2 = 2C√
P

+
√

4ABC
P
√

M

< 2 > If I <
√

M, andJ ≥
√

M, then
It1 = 1, Jt1 = C

M×P , Kt1≥ A
M×P , Jt2 = 1

D 2 = AC
MP

√
P

+ B√
P

+ 2C√
P

< 3 > If I ≥
√

M, andJ <
√

M, then
It1 = C

M×P , Jt1 = 1, Kt1≥ B
M×P , Jt2 = 1

D 2 = A√
P

+ BC
MP

√
P

+ 2C√
P

Table 2: Communication and Disk Access Volume for theOutside/Rotationpattern
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Disk Cost Estimate Tile Minimal Disk Cost and
Order Formulas Constraints conditions

ABC/ V = A It1×Kt1≥ A
M < 1 > If I ≥

√

M
2 , andK ≥

√
2M, then

ACB D 1 = A Jt1×Kt1≥ B
M×P It1 = I

√

2
M , Kt1 = K√

2M
, Jt1≥ J

√
2√

MP
, It2 = 1

D 2 = A+ B
P × It1+2× C

P ×Kt1 It1× It2× Jt1≥ C
M×P D 2 = A+

√
8ABC√
MP

< 2 > If I <
√

M
2 , andK ≥

√
2M, then

It1 = 1, Kt1 = A
M , Jt1≥ J

I×P , It2 = 1
D 2 = A+ B

P + 2AC
MP

< 3 > If I ≥
√

M
2 , andK <

√
2M, then

It1 = A
M , Kt1 = 1, Jt1≥ B

M×P , It2 = 1
D 2 = A+ AB

MP + 2C
P

BAC/ V = A It1×Kt1≥ A
M < 1 > If J ≥

√
M×P√

2
, andK ≥

√
2M, then

BCA D 1 = A Jt1×Kt1≥ B
M×P It1≥ I

√

2
M , Kt1 = K√

2M
, Jt1 = J

√
2√

MP
, Jt2 = 1

D 2 = A× Jt1+ B
P +2× C

P ×Kt1 It1× Jt1× Jt2≥ C
M×P D 2 = B

P +
√

8ABC
P
√

M

< 2 > If J <
√

M×P√
2

, andK ≥
√

2M, then

Jt1 = 1, Kt1 = B
M×P , It1≥ IP

J , Jt2 = 1
D 2 = A+ B

P + 2BC
MP2

< 3 > If J ≥
√

M×P√
2

, andK <
√

2M, then

Jt1 = B
M×P , Kt1 = 1, It1≥ A

M , Jt2 = 1
D 2 = A×B

MP + B
P + 2C

P

CAB/ V = A It1×Kt1≥ A
M < 1 > If I ≥

√
M, andJ ≥

√
M×P, then

CBA D 1 = A Jt1× Jt2×Kt1≥ B
M×P It1 = I√

M
, Kt1≥ K√

M
, Jt1 = J√

MP
, Jt2 = 1

D 2 = A× Jt1+ B
P × It1+2× C

P It1× Jt1≥ C
M×P D 2 = 2C

P +
√

4ABC
P
√

M

< 2 > If I <
√

M, andJ ≥
√

M×P, then
It1 = 1, Jt1 = C

M×P , Kt1≥ A
M , Jt2 = 1

D 2 = AC
MP + B

P + 2C
P

< 3 > If I ≥
√

M, andJ <
√

M×P, then
It1 = C

M×P , Jt1 = 1, Kt1≥ KP
J , Jt2 = 1

D 2 = A+ BC
MP2 + 2C

P

Table 3: Communication and Disk Access Volume for theOutside/Replicationpattern
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Disk Cost Estimate Tile Minimal Disk Cost and
Order Formulas Constraints conditions

ABC/ V = C× logP It1×Kt1≥ A
M×P < 1 > If I ≥

√

M
2 , andK ≥

√
2M×P, then

ACB D 1 = C Jt1×Kt1≥ B
M×P It1 = I

√

2
M , Kt1 = K√

2MP
, Jt1≥ J

√

2
M , It2 = 1

D 2 = A
P + B

P × It1+2C×Kt1 It1× It2× Jt1≥ C
M D 2 = A

P +
√

8ABC√
MP

< 2 > If I <
√

M
2 , andK ≥

√
2M×P, then

It1 = 1, Kt1 = A
MP , Jt1≥ J

I , It2 = 1
D 2 = A

P + B
P + 2AC

MP

< 3 > If I ≥
√

M
2 , andK <

√
2M×P, then

It1 = A
MP , Kt1 = 1, Jt1≥ B

M×P , It2 = 1
D 2 = A

P + AB
M×P2 +2C

BAC/ V = C× logP It1×Kt1≥ A
M×P < 1 > If J ≥

√

M
2 , andK ≥

√
2M×P, then

BCA D 1 = C Jt1×Kt1≥ B
M×P It1≥ I

√

2
M , Kt1 = K√

2MP
, Jt1 = J

√

2
M , Jt2 = 1

D 2 = A
P × Jt1+ B

P +2C×Kt1 It1× Jt1× Jt2≥ C
M D 2 = B

P +
√

8ABC
P
√

M

< 2 > If J <
√

M
2 , andK ≥

√
2M×P, then

Jt1 = 1, Kt1 = B
M×P , It1≥ C

M , Jt2 = 1
D 2 = A

P + B
P + 2BC

MP

< 3 > If J ≥
√

M
2 , andK <

√
2M×P, then

Jt1 = B
M×P , Kt1 = 1, It1≥ A

M , Jt2 = 1
D 2 = AB

M×P2 + B
P +2C

CAB/ V = C×LogP It1×Kt1≥ A
M×P < 1 > If I ≥

√
M, andJ ≥

√
M, then

CBA D 1 = C Jt1× Jt2×Kt1≥ B
M×P It1 = I√

M
, Kt1≥ K√

MP
, Jt1 = J√

M
, Jt2 = 1

D 2 = A
P × Jt1+ B

P × It1+2C It1× Jt1≥ C
M D 2 = 2C +

√
4ABC

P
√

M

< 2 > If I <
√

M, andJ ≥
√

M, then
It1 = 1, Jt1 = C

M , Kt1≥ A
MP , Jt2 = 1

D 2 = AC
MP + B

P +2C

< 3 > If I ≥
√

M, andJ <
√

M, then
It1 = C

M , Jt1 = 1, Kt1≥ B
PM , Jt2 = 1

D 2 = A
P + BC

MP +2C

Table 4: Communication and Disk Access Volume for theOutside/Accumulationpattern
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I ≥
√

MP,J ≥
√

MP, I <
√

MP,J ≥
√

MP, I ≥
√

MP,J <
√

MP, I ≥
√

MP,J ≥
√

MP,
K ≥

√
MP K ≥

√
MP K ≥

√
MP K <

√
MP

D = A
P +3

√

ABC
MP3 D = A

P + AB
MP2 + 2C

P

ABC V = 2
√

ABC
MP2 Lower bound is Lower bound is V = 2

√

ABC
MP2

(1) same as (3) higher than (6) (2)
D = A

P + B
P + 2AC

MP2

ACB Same as (1) V = AC
MP

√
P

+ B√
P

Lower bound is Lower bound is

(3) higher than (6) same as (2)

D = B
P +3

√

ABC
MP3 D = B

P + AB
MP2 + 2C

P

BAC V = 2
√

ABC
MP2 Lower bound is Lower bound is V = 2

√

ABC
MP2

(4) higher than (3) same as (6) (5)
D = A

P + B
P + 2BC

MP2

BCA Same as (4) Lower bound is V = A√
P

+ BC
MP

√
P

Lower bound is

higher than (3) (6) same as (5)

D = 2C
P +2

√

ABC
MP3 D = 2C

P + AC
MP2 + B

P D = 2C
P + A

P + BC
MP2 D = 2C

P +2
√

ABC
MP3

CAB V = 2
√

ABC
MP2 V = AC

MP
√

P
+ B√

P
V = A√

P
+ BC

MP
√

P
V = 2

√

ABC
MP2

(7) (8) (9) (10)

CBA Same as (7) Same as (8) Same as (9) Same as (10)

Table 5: Communication and Disk Access Volume for theInside Rotation pattern

involves disk operations. Therefore, the total communication
volumeV =

√
P× ( A×Jt1

P + B×It1×It2
P ) = ( A×Jt1√

P
+ B×It1×It2√

P
).

Due to in-memory transfer there will not be any disk access
as part of the communication. The total disk access volume
D = A

P + B
P × It1 + 2× C

P ×Kt1. For simplicity in the calcu-
lations below,D will not include the componentAP , which is
independent of the number of tiles.

First we will try to optimizeD and V independently.
To minimize the communication volumeV , It1, It2 and Jt1
should be made 1. But this is not possible due to the constraint
that the tiles of arrayA, B, andC should fit into memory. Again
we assume that each of these array tiles occupies one-third of
memory. The constraints involving tiles are the same as those
shown in the rotation case ofoutside communication.

Note that only Equation 4.3 involves all the variables
whose values we want to reduce namelyIt1, It2, andJt1. We
will try to minimize V under the constraint of Equation 4.3.
The other two equations can be simultaneously satisfied by
using a large value for the unconstrained variableKt1. Since
we are trying to reduce the values ofIt1, It2, andJt1 while
satisfying Equation 4.3, the Equation 4.3 can be written as
It1 × It2 × Jt1 = C

M×P . With this modification, we can sub-
stitute the value ofKt1 in the equation forV to get

B× (It1× It2)
2−

√
P×V × (It1× It2)+

A×C
M×P

= 0 (5.1)

The above quadratic equation will have a real solution when
the condition, quadratic curve discriminantP×V 2−4×B×
( A×C

M×P ) ≥ 0 is true. In other words, for any real value ofIt1

the minimum achievable value ofV is 2
P

√

A×B×C
M . This min-

imum value ofV can be achieved withIt1 = I√
M×P

, It2 = 1,

Jt1 = J√
M×P

, andKt1 ≥ K√
M×P

which also satisfies the Equa-

tions 4.1 and 4.2. Hence, the minimum total communication
volume is

2
P

√

A×B×C
M

(5.2)

Now we will minimize the disk access volume independently.
Note thatIt1 andKt1 should be made 1 in this case. But this
is not possible due to the constraint that the tiles of arraysA,
B, andC should fit into the memory. We will try to minimize
D under the constraint of Eqn. 4.1. The other two equations
can be simultaneously satisfied by using a large value for the
unconstrained variablesIt2 andJt1. The Eqn. 4.1 in this case
can be written asIt1×Kt1 = A

M×P . With this modification, we
can substitute the value ofKt1 in the equation forD to get

B× It2
1 −P×D × It1 +

2×C×A
M×P

= 0 (5.3)

From this equation we can see that for any real value ofIt1 the

minimum achievable value ofD is
√

8×A×B×C
M×P3 . This mini-

mum value ofD can be achieved withIt1 = I ×
√

2
M×P and

Kt1 = K√
2×M×P

, Jt1 ≥ J ×
√

2
M×P , andIt2 ≥ 1. These values

will also satisfy Equations 4.2 and 4.3. Hence, the minimum
total disk access volume is

A
P

+

√

8×A×B×C

M×P3 (5.4)

But it is obvious that the number of tiles does not match with
that of the previous analysis to minimize communication vol-
ume. So we cannot optimize both the communication volume
and disk access volume at the same time. We have computed
the Overhead cost for both the cases and we choose the one
which has the smaller Overhead cost. In this case we choose
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Disk Cost Estimate Tile Minimal Disk Cost and
Order Formulas Constraints conditions

ABC/ V = A It1×Kt1≥ A
M < 1 > If I ≥

√

M
2 , andK ≥

√
2M, then

ACB D = A
P + B

P × It1+2× C
P ×Kt1 Jt1×Kt1≥ B

M×P It1 = I
√

2
M , Kt1 = K√

2M
, Jt1≥ J

√
2√

MP
, It2 = 1

It1× It2× Jt1≥ C
M×P D = A

P +
√

8ABC√
MP

< 2 > If I <
√

M
2 , andK ≥

√
2M, then

It1 = 1, Kt1 = A
M , Jt1≥ J

I×P , It2 = 1
D = A

P + B
P + 2AC

MP

< 3 > If I ≥
√

M
2 , andK <

√
2M, then

It1 = A
M , Kt1 = 1, Jt1≥ B

M×P , It2 = 1
D = A

P + AB
MP + 2C

P

BAC/ V = A× Jt1 It1×Kt1≥ A
M < 1 > If J ≥

√

MP(1+PR)
2 , andK ≥

√

2MP
1+PR , then

BCA D = A
P × Jt1+ B

P +2× C
P ×Kt1 Jt1×Kt1≥ B

M×P It1≥ I
√

2P
M(1+PR)

, Kt1 = K
√

1+PR
2MP , Jt1 = J

√

2
MP(1+PR)

, Jt2 = 1

EffVol = A× Jt1× 1+PR
P It1× Jt1× Jt2≥ C

M×P EffVol = B
P +

√

8ABC(1+PR)
MP3

+ B
P +2× C

P ×Kt1

< 2 > If J <

√

MP(1+PR)
2 , andK ≥

√

2MP
1+PR , then

Jt1 = 1, Kt1 = B
M×P , It1≥ IP

J , Jt2 = 1

EffVol = B
P +

√

8ABC(1+PR)
MP3

< 3 > If J ≥
√

MP(1+PR)
2 , andK <

√

2MP
1+PR , then

Jt1 = B
M×P , Kt1 = 1, It1≥ A

M , Jt2 = 1

EffVol = B
P +

A(1+PR)
P + 2BC

MP3

CAB/ V = A× Jt1 It1×Kt1≥ A
M < 1 > If I ≥

√

MP
1+PR , andJ ≥

√

MP(1+PR), then

CBA D = A
P × Jt1+ B

P × It1+2× C
P Jt1× Jt2×Kt1≥ B

M×P It1 = I
√

1+PR
M , Kt1≥ K

√

P
M(1+PR)

, Jt1 = J
√

J
MP(1+RP)

, Jt2 = 1

EffVol = A× Jt1× 1+PR
P It1× Jt1≥ C

M×P EffVol = 2C
P +

√

4ABC(1+RP)
MP3

+ B
P × It1+2× C

P

< 2 > If I <
√

MP
1+PR , andJ ≥

√

MP(1+PR), then

It1 = 1, Jt1 = C
M×P , Kt1≥ A

M , Jt2 = 1

EffVol = 2C
P + B

P +
AC(1+PR)

MP2

< 3 > If I ≥
√

MP
1+PR , andJ <

√

MP(1+PR), then

It1 = C
M×P , Jt1 = 1, Kt1≥ KP

J , Jt2 = 1
EffVol = 2C

P + BC
MP2 +A(1+PR)

Table 6: Communication and Disk Access Volume and Conditions for theInside/Replicationpattern
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Disk Cost Estimate Tile Minimal Disk Cost and
Order Formulas Constraints conditions

ABC/ V = C×LogP×Kt1 It1×Kt1≥ A
M×P < 1 > If I ≥

√

M
2+RlogP , andK ≥ P

√

M(2+RlogP), then

ACB D = A
P + B

P × It1+2C×Kt1 Jt1×Kt1≥ B
M×P It1 = I

√

(2+RlogP)
M , Kt1 = K√

(2+RlogP)MP
, Jt1≥ J

√

2+RlogP
M , It2 = 1

EffVol = A
P + B

P × It1 It1× It2× Jt1≥ C
M EffVol = A

P +2
√

ABC(2+RlogP)
MP2

+C×Kt1× (2+R× logP)

< 2 > If I <
√

M
2+RlogP , andK ≥ P

√

M(2+RlogP), then

It1 = 1, Kt1 = A
M×P , Jt1≥ J

I , It2 = 1
EffVol = A

P + B
P + AC

MP × (2+RlogP)

< 3 > If I ≥
√

M
2+RlogP , andK < P

√

M(2+RlogP), then

It1 = A
MP , Kt1 = 1, Jt1≥ B

M×P , It2 = 1
EffVol = A

P + AB
MP +C(2+RlogP)

BAC/ V = C×LogP×Kt1 It1×Kt1≥ A
M×P < 1 > If J ≥

√

M
2+RlogP , andK ≥

√

MP2(2+RlogP), then

BCA D = A
P × Jt1+ B

P +2C×Kt1 Jt1×Kt1≥ B
M×P It1≥ I

√

P(2+RlogP)
M , Kt1 = K√

MP2(2+RlogP)
, Jt1 = J

√

(2+RlogP)
M , Jt2 = 1

EffVol = A
P × Jt1+ B

P It1× Jt1× Jt2≥ C
M EffVol = B

P +2
√

ABC(2+RlogP)
MP2

+C× (2+RlogP)×Kt1

< 2 > If J <
√

M
2+RlogP , andK ≥

√

MP2(2+RlogP), then

Jt1 = 1, Kt1 = B
M×P , It1≥ I

J , Jt2 = 1
EffVol = A

P + B
P + BC

MP × (2+RlogP)

< 3 > If J ≥
√

M
2+RlogP , andK <

√

MP2(2+RlogP), then

Jt1 = B
M×P , Kt1 = 1, It1≥ A

M×P , Jt2 = 1
EffVol = B

P + AB
MP +C× (2+RlogP)

CAB/ V = C× logP It1×Kt1≥ A
M×P < 1 > If I ≥

√
M, andJ ≥

√
M, then

CBA D = A
P × Jt1+ B

P × It1+2C Jt1× Jt2×Kt1≥ B
M×P It1 = I√

M
, Kt1≥ K√

MP2
, Jt1 = J√

M
, Jt2 = 1

EffVol = A× Jt1×+ B
P × It1 It1× Jt1≥ C

M EffVol = C× (2+RlogP)+
√

4ABC
MP2

+C× (2+RlogP)
< 2 > If I <

√
M, andJ ≥

√
M, then

It1 = 1, Jt1 = C
M , Kt1≥ A

PM , Jt2 = 1
EffVol = C× (2+RlogP)+ B

P + AC
MP

< 3 > If Igeq
√

M, andJ <
√

M, then
It1 = C

M , Jt1 = 1, Kt1≥ B
MP , Jt2 = 1

EffVol = C× (2+RlogP)+ A
P + BC

MP

Table 7: Communication and Disk Access Volume and Conditions for theInside/Accumulation pattern
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the number of tiles that optimizes the communication volume
as this gives the least Overhead cost. The values of commu-
nication and disk access volume are as follows with these tile
sizes:

V =
2
P

√

A×B×C
M

(5.5)

D =
A
P

+3

√

A×B×C

M×P3 (5.6)

There are three special cases if values ofIt1, Jt1, or Kt1 are
less than 1.

• Case 1: I <
√

M×P, J ≥
√

M×P, K ≥
√

M×P, In this
case, the expected least overhead isV = A×C√

M×P3 + B√
P

andD = A
P + B

P + 2×C×A
M×P2 with It1 = 1, It2 = 1, Jt1 =

C
M×P , Kt1 = A

M×P . But with these values, Eqn. 4.2 is not
satisfied. So, the least overhead above can not be really
achieved. This is not a problem, though, as the expected
lower bound in this case is same as the achievable lower
bound of case ACB as shown in Table 5.

• Case 2: I ≥
√

M×P, J <
√

M×P, K ≥
√

M×P, the
expected least overhead isV = A√

P
+ B×C√

M×P3 andD =

A
P +3×

√

ABC
M×P3 with It1 = 1, It2 = 1, Jt1 = C

M×P , Kt1 =

A
M×P . But with these values, Eqn. 4.3 is not satisfied.
So, the least overhead above can not be really achieved.
We don’t need to mind it, from Table 5, we can see that
the achievable lower bound of case BCA isV ′ = A√

P
+

B×C√
M×P3 andD ′ = A

P + A
P +2× BC

M×P , which is lower than

the expected lower bound in the current case.

• Case 3: I ≥
√

M×P, J ≥
√

M×P, K <
√

M×P,

In this case, the least overhead that can be achieved is

V = 2
√

A×B×C
M×P2 andD = A

P + B
P × A

M×P + 2×C
P with It1 =

A
M×P , It2 =

√
M×P
K , Jt1 = J√

M×P
, Kt1 = 1. With these

values, all the constraints are also satisfied.

We did the analysis for the other five disk placement orders as
above. The results of the analysis are shown in Table 5.

5.2 Replication

For this case, let us consider the tensor contraction code with
disk I/O placement orderABC, an inside communication pat-
tern, and the replication type of parallelism as shown in Fig-
ure 1(b).

In this case, because the replication occurs in memory, and
replicated data will be skipped after computation, so arrayA
is not replicated on disk. ArraysA, B andC are partitioned
equally among theP processors. We haveA.localsize = A/P,
B.localsize = B/P, C.localsize = C/P. The communication
corresponds to an in-core broadcast of arrayA. Therefore, the
total communication volumeV = A, and it is independent of
the tile sizes. The total disk access volumeD = A

P + B
P × It1+

2× C
P ×Kt1.
The constraints involving tiles are the same as those shown

in the replication part of outside communication. We do the
analysis similar to the ones for the earlier cases. The minimum

achievable value ofD can be computed asAP + 1
P

√

8×A×B×C
M .

This minimum value ofD can be achieved withIt1 = I×
√

2
M

andKt1 = K√
2×M

, Jt1 ≥ J
P ×

√

2
M andIt2 ≥ 1. These values

satisfy all the constraints. The analysis for the special cases
can be done in the earlier sections.

The result of the analysis for the other five disk placement
orders are shown in Table 6. Note that the values shown in
this table are the effective communication and disk access vol-
umeEffVol = D +R×V , whereR = Bd

Bc
, whereBd is the disk

bandwdith andBc is the communication (network) bandwidth.

5.3 Accumulation

In this section, we deal with the accumulation type of par-
allelism. Consider the tensor contraction code with the ac-
cumulation type of parallelism as shown in Figure 1(c). In
this case, arraysA and B are partitioned equally among the
P processors whereasC is replicated on all processors. So
we haveA.localsize = A/P, B.localsize = B/P, C.localsize =
C. The communication involves in-core All-Reduce oper-
ation of arrayC. Therefore, the total communication vol-
ume V = C × Kt1 × logP. The total disk access volume
D = A

P + B
P × It1 + 2×C × Kt1. In this case, we can opti-

mize the total overhead cost, which isEffVol
Bd

, whereEffVol is
the effective communication and disk access volume given by
(note thatR is defined at the end of Section 5.2)

EffVol =
A
P

+
B
P
× It1 +C×Kt1× (2+R× logP). (5.7)

Our goal is to minimizeEffVol under the constraints involv-
ing tile sizes that are shown in the accumulation section of
the previous section. We proceed as before and compute the
minimum achievable value ofEffVol, which is found to be
A
P + 2×

√

ABC(2+R×logP)
M×P2 . This minimum value is achieved

with It1 = I×
√

(2+R×logP)
M , Kt1 = K

P×
√

(2+R×logP)×M
, Jt1 ≥

J×
√

(2+R×logP)
M , andIt2 ≥ 1.

The special cases are handled as before. The analysis for
the other five disk placement orders are also done as above.
The results are shown in Table 7. Again, note that the values
in the table give the minimum value ofEffVol.

6 Experiments

Our performance models for the various approaches to parallel
out-of-core tensor contractions were evaluated on an Itanium-
2 cluster at the Ohio Supercomputer Center. The configuration
of the cluster is shown in Table 8. All the programs were com-
piled with the Intel Itanium Fortran Compiler for Linux. We
considered three example computations.
(1) Square Matrix Multiplication:

C(I,J)+ = A(I,K)×B(J,K) (6.1)

In order to limit the execution time we ran “scaled down” ex-
periments by setting the available physical memory limit to
64Mbytes. All the array dimensions were set to 4000. The
parallel programs were run on 4 processors. We implemented
parallel programs for the six methods discussed earlier. Ta-
ble 9 compares the predicted costs for I/O and communication
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Node OS Compiler Memory Network Disk
Bandwidth Bandwidth

Dual 900MHz Linux efc 1GB 200MB/s 8MB/s

Table 8: Configuration of the Itanium 2 cluster at OSC

with the measured costs for the different approaches. It can be
seen that there is a good match between predicted and actual
times, and that the difference in performance of the various
methods is quite significant.
(2) 4-index transform: This expression (also referred to as
the AO-to-MO transform) is commonly used to transform
two-electron integrals from an atomic orbital (AO) basis to a
molecular orbital (MO) basis.

T1[a,b,c,d]+ = A[a,b,c, p]×B[p,d] (6.2)

The size of all dimensions was set to 800. The parallel pro-
gram was run on 4 processors. Between the different algo-
rithms, we can find the best solution to be outside replication.
The predicted overheads for the different parallel algorithms
are shown in Table 10.
(3) CCSD: We used a sub-expression from the CCSD (Cou-
pled Cluster Singles and Doubles) model [1, 19, 20] for deter-
mine electronic structures.

T1[i, j]+= A[i,a,b,c]×B[a,b,c, j] (6.3)

The size of all dimensions was set to 800. The parallel pro-
gram was run on 4 processors. The best solution on the cur-
rent machine can be seen to be outside accumulation. The
predicted values of different parallel algorithms are shown in
Table 10.

The effective choice of parallel algorithms results in a
noticeable improvement in the communication cost for most
cases. The ratio of disk bandwidth and interprocessor network
bandwidth determines which factor dominates the total exe-
cution time. In previous experiments, because the network is
almost twenty times faster than the disk, the disk cost domi-
nated. In such a situation, the inside rotation algorithm is the
best. However, using our model, we are able to predict the
best choice for a given machine and problem characteristic.
Table 11 shows such an example for a given matrix multipli-
cation and disk bandwidth, whereI = 160000,J = 160000,
K = 160000, andBd = 10MB/s. If we use a 100M Ethernet as
the interconnection network and run the program on 4 proces-
sors, then the best parallel algorithm is outside replication. If
we use Myrinet and run the program on 4 processors, the best
solution becomes inside rotation.

7 Related Work

The issues arising in optimizing locality in the context of
tensor contractions has been previously addressed by us, fo-
cusing primarily on minimizing memory-to-cache data move-
ment [8, 9]. This approach was extended to the disk-memory
hierarchy in [15], where a greedy approach to disk read/write
placement was taken. For each set of tile sizes, the algorithm
places read/write statements immediately inside those loops at
which the memory limit is exceeded. In [16], a set of candi-
date fusion structures with disk I/O placements was taken as
input and the tile size search space was explored. The search
space was divided into feasible and infeasible solution spaces

and their boundary was shown to contain the optimal solution.
An algorithm was developed to locate the boundary efficiently
and a steepest ascent hill-climbing used to determine an effi-
cient solution for the tile sizes.

There has been some work in the area of software tech-
niques for optimizing disk I/O. These include parallel file sys-
tems, compile time [4–6, 11–13, 17, 18] and runtime libraries
and optimizations [7,22]. Bordawekar et al. [4,5] discuss sev-
eral compiler methods for optimizing out-of-core programs in
High Performance Fortran. Bordawekar et al. [6] develop a
scheduling strategy to eliminate additional I/O arising from
communication among processors; this paper is among the few
that address the impact of scheduling on disk I/O overhead
in a parallel context. Solutions for choreographing disk I/O
with computation are presented by Paleczny et al. [18]. They
organize computations into groups that operate efficiently on
data accessed in chunks. Compiler-directed prefetching is dis-
cussed by Mowry et al. [17]. ViC* (Virtual C*) [10] is a
preprocessor that transforms out-of-core C* programs into in-
core programs with appropriate calls to the ViC* I/O library.
Kandemir et al. [11–13] develop file layout and loop transfor-
mations for reducing I/O. None of these techniques address
performance modeling and optimization of of parallel out-of-
core computations addressing both disk I/O costs and inter-
processor communication overheads.

There has been some work in the design of out-of-core lin-
ear algebra libraries [23, 24]. But, we are not aware of any
work that addresses the detailed modeling of disk I/O and
inter-processor communication costs, in addition to an eval-
uation and optimization of the overall performance of parallel
out-of-core computations.

8 Conclusion and Future Work

This paper addressed the problem of developing performance
models for a core computation – tensor contractions – in the
context of a domain-specific compiler targeting a class of com-
putations in quantum chemistry. The cost of disk I/O and in-
terprocessor communication for different data partitions and
tile sizes was modeled for various computational alternatives.
The models were experimentally evaluated and the predictions
were shown to match measured results. It was also seen that
the optimal choice of parallel algorithm was dependent on
the characteristics of both the tensor structure as well as ma-
chine parameters. Further work is in progress for using this
framework to optimize tensor contraction expressions with a
sequence of tensor contractions.
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Parallel Method Predicted Overhead (sec.)Measured Overhead (sec.).
Inside/Rotation 25.28 28.8827

Outside/Rotation 75.42 70.1237
Inside/Replication 24.718 23.5525

Outside/Replication 56.9 63.1590
Inside/Accumulation 53.792 54.7575

Outside/Accumulation 73.792 78.6768

Table 9: Predicted and Empirical results

4index ccsd
Disk I/O Comm. Total Disk I/O Comm. Total

Volume(MB) Volume(MB) Time(sec.) Volume(MB) Volume(MB) Time(sec.)
Outside/Rotation 1024000.32 204800.32 829440 1024000 409600 839680
Outside/Replica. 307200.64 0.64 245760 512000 409600 438563

Outside/Accumula. 921600.16 819200 778240 204800.64 1.28 163840
Inside/Rotation 307200.16 205824.32 256051 204800.16 409600 184320
Inside/Replica. - - - 921600.32 409600 766243

Outside/Accumula. 512000 1146880 466944 - -

Table 10: Predicted performance results on 4 processors for ccsd and 4index-transform

I=J=K=160000 , 4 Processors I = J = K =640000, 16 Processors
Bc = 10MB/s Bc = 200MB/s Bc = 10MB/s Bc = 200MB/s

Outside/Rotation 281920 262464 3855360 3699712
Outside/Replication 259683 232168 4224000 3601408

Outside/Accumulation 318784 264307 6018048 4274790
Inside/Rotation 310240 120240 4040960 1000960

Inside/Replication 268248 123502 4636610 1330921
Inside/Accumulation 298304 243827 5690368 3947110

Table 11: WhenBd=10MB/s, predicted best disk/communication overheads (in sec.)
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