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Abstract

Empirical optimizers like ATLAS have been very effective in optimizing computational kernels in libraries. The best
choice of parameters such as tile size and degree of loop unrolling is determined in ATLAS by executing different ver-
sions of the computation. In contrast, optimizing compilers use a model-driven approach to program transformation.
While the model-driven approach of optimizing compilers is generally orders of magnitude faster than ATLAS-like
library generators, its effectiveness can be limited by the accuracy of the performancemodels used. In this paper, we
describe an approach where a class of computations is modeled in terms of constituent operations that are empiri-
cally measured, thereby allowing modeling of the overall execution time. The performance model with empirically
determined cost components is used to select library calls and choose data layout transformations in the context of
the Tensor Contraction Engine, a compiler for a high-level domain-specific language for expressing computational
models in quantum chemistry. The effectiveness of the approach is demonstrated through experimental measurements
on representative computations from quantum chemistry.
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1. Introduction

Optimizing compilers use high-level program transformations to generate efficient code. The computation is
modeled in some form and its cost is derived in terms of metrics such as reuse distance. Program transformations are
then applied in order to reduce the cost. The large number of parameters and the variety of programs to be handled
limits optimizing compilers to employ model-driven optimization with relatively simple cost models. As a result,
there has been much recent interest in developing generalized tuning systems that can similarly tune and optimize
codes input by users or library developers [12, 60, 57]. Approaches to empirically optimize a computation, such
as ATLAS [59] (for linear algebra) and FFTW [19] generate solutions for different structures of the optimized code
and determine the parameters that optimize the execution time by running different versions of the code for a given
target architecture and choosing the optimal one. But empirical optimization of large complex applications can be
prohibitively expensive.

In this paper, we decompose a class of computations into its constituent operations and model the execution time
of the computation in terms of an empirical characterization of its constituent operations. The empirical measurements
allow modeling of the overall execution time of the computation, while decomposition enables off-line determination
of the cost model and efficient global optimization across multiple constituent operations. This approach combines
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the best features of empirical optimizations, namely, the incorporation of complex behavior of modern architectures,
and a model-driven approach that enables efficient exploration of the search space.

Our domain of interest is the calculation of electronic structure properties usingab initio quantum chemistry mod-
els, such as the coupled cluster models [48]. We have developed an automatic synthesis system called the Tensor
Contraction Engine (TCE) that generates efficient parallel programs from high-level expressions for a class of com-
putations expressible as tensor contractions [6, 26, 16, 15]. Tensor contractions are essentially matrix multiplications
generalized to higher-dimensional arrays (i.e., tensors). The computation is represented by an expression tree, in
which each node represents the contraction of two tensors toproduce a result tensor. The order of indices of the inter-
mediate tensors is not constrained. In contrast to our otherpapers on the TCE [6, 26, 16, 15], in this paper, we address
the problem of effective code generation for tensor contractions (products of multi-dimensional arrays) in terms of
calls to linear algebra libraries that are optimized for two-dimensional arrays for a variety of target architectures.

Computational kernels such as Basic Linear Algebra Subroutines (BLAS) [18] have been tuned to achieve very
high performance. These hand-tuned or empirically optimized kernels generally achieve better performance than con-
ventional general-purpose compilers [61]. Significant improvements in execution time can be obtained if program
transformations can identify these computational kernelsand use these libraries [3]. If General Matrix Multiplication
(GEMM) routines available in BLAS libraries are used to perform tensor contractions, the multi-dimensional inter-
mediate arrays that arise in tensor contractions must be transformed to group the indices to allow a two-dimensional
view of the arrays, as required by GEMM. We observe that the performance of the GEMM routines is significantly
influenced by the choice of parameters used in their invocation. We determine the layouts of the intermediate arrays
and the choice of parameters to the GEMM invocations that minimize the overall execution time. The overall execu-
tion time is estimated from the GEMM and index permutation times. Empirically-derived costs for these constituent
operations are used to determine the GEMM parameters and array layouts.

The approach presented in this paper may be viewed as an instance of the telescoping languages approach [33,
34, 11, 10]. The telescoping languages approach aims at facilitating a high-levelscripting interface for a domain-
specific computation to the user, while achieving high performance that is portable across machine architectures, and
compilation time that only grows linearly with the size of the user script. In this paper, we evaluate the performance
of the relevant libraries empirically. On distributed-memory machines, parallel code is generated using the Global
Arrays (GA) library [54, 24, 53]. Parallel matrix multiplication is performed using the Cannon matrix multiplication
algorithm [9, 25], extended to handle non-square distributions of matrices amongst the processors [21]. The matrix
multiplication within each node is performed using GEMM. The parallel matrix multiplication and parallel index
transformation costs are estimated from the local GEMM and transformation costs and the communication cost. We
then use the empirical results to construct a performance model that enables the code generator to determine the
appropriate choice of array layouts and distributions and usage modalities for library calls.

The paper is organized as follows. In Section 2, we elaborateon the computational context, demonstrate potential
optimization opportunities, and then define our problem. Section 3 discusses the constituent operations in the compu-
tation and the parameters to be determined to generate optimal parallel code. Section 4 describes the determination of
the constituent operation costs. Section 5 discusses the determination of the parameters of the generated code from the
constituent operation costs. Results are presented in Section 6. Section 7 discusses related work. Section 8 concludes
the paper.

2. The computational context

The Tensor Contraction Engine (TCE) [6, 26, 16, 15] is a domain-specific compiler for developing accurate ab
initio models in quantum chemistry. The TCE takes as input a high-level specification of a computation expressed as
a set of tensor contractions and transforms it into efficient parallel code. In the class of computations considered, the
final result to be computed can be expressed as multi-dimensional summations of the product of several input arrays.

The TCE incorporates several compile-time optimizations,including algebraic transformations [45, 46] and com-
mon subexpression elimination [26] for minimizing operation counts, finding the optimal evaluation order [44] and
loop fusion [43, 42] for reducing memory requirements, space-time trade-off optimization [15], data locality opti-
mization, which combines loop fusion and tiling for reducing disc-to-memory traffic [22, 7, 40], and communication
minimization [23, 16]. Regardless, of whether outer loops are fused or whether loops are tiled as a result of other
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optimizations, the inner-most perfectly-nested loop nests can be implemented as a combination of generalized matrix
multiplication and index permutation (multi-dimensionaltransposition) library calls. In this paper, we discuss the
optimal selection of these library calls together with determining the layout of intermediate arrays.

Consider the following tensor contraction expression, a sub-expression of the coupled cluster singles and doubles
(CCSD) equation [48],

S[a,b, i, j] =
∑

c,d,k,l

A[a,b, k, l] × B[c,d, k, l] ×C[c, i] × D[d, j]

where all indices range overN. The direct computation of this expression using eight perfectly nested loops would
requireO(N8) arithmetic operations. Instead, by computing the following intermediate partial results, the number of
operations can be reduced toO(N6).

T1[d, i, k, l] =
∑

c

B[c,d, k, l] ×C[c, i]

T2[i, j, k, l] =
∑

d

T1[d, i, k, l] × D[d, j]

S[a,b, i, j] =
∑

k,l

A[a,b, k, l] × T2[i, j, k, l]

It is possible for different (non-equivalent) operation-minimal codes to have different execution times, or even for
a non-operation-minimal code to out-perform the operation-minimal ones. However, because of the computational
complexity of operation minimization, we currently only use a single operation-minimal form as a starting point for
later optimizations.

Each of the summation expressions above is the contraction of a pair of tensors. As in matrix multiplication, the
summation indices in a tensor contraction occur twice whilenon-summation indices occur once. Tensor contraction
can, therefore, be viewed as a generalization of matrix multiplication.

Since efficient tuned library Generalized Matrix Multiplication (GEMM) routines exist, it is attractive to translate
the computation for each tensor contraction node into a GEMMcall. However, that may require restructuring the
layout (or permuting the indices) of the tensor, so that its layout can be viewed as a two-dimensional matrix.

The layout of an array is the order in which the elements are stored in adjacent locations of memory. If the
adjacent elements in memory correspond to differences in the left-most index followed by the indices in theright, the
array is said to be laid out in column-major order. Variationin indices from right-to-left is referred to as row-major
order. Following Fortran convention, the argument and result matrices in a GEMM call are assumed to be laid out in
column-major order. E.g., a matrixM[i, j] with n rows andm columns is laid out in memory as follows:

M[1,1],M[2,1], . . . ,M[n,1],M[1,2], . . . ,M[n,2], . . . ,M[1,m],M[2,m], . . . ,M[n,m]

The four-dimensional tensorS[a,b, i, j] has the following layout in memory:

S[1,1,1, 1], . . . ,S[N,1,1,1],S[1,2,1,1], . . . ,S[N,2,1,1], . . . ,S[1,N,1,1], . . . ,S[N,N,1,1],S[1,1, 2,1], . . . ,S[N,N,N,N]

Since the elements for the first two dimensions are consecutive in memory for fixed values ofi and j, this four-
dimensional tensor can be viewed as a three-dimensionalN2 × N × N tensorS[ab, i, j], where the meta indexab is
computed asa+N(b−1). In general, any consecutive indices can be grouped into ameta index. This tensor, therefore,
can be viewed as either of the matricesS[abi, j], S[ab, i j ], or S[a,bi j].

Each of the matrix arguments in a GEMM call has one summation and one non-summation index. In a normal
invocation, the summation index is the right index of the left argument and the left index of the right argument, but
GEMM allows one or both arguments to be supplied in transposed form. For a multi-dimensional tensor to be viewed
as a two-dimensional matrix, the summation and non-summation indices in the contraction must be grouped into
two contiguous sets of indices. This may involve changing the layout of the tensor to meet the requirements of the
GEMM call. For example, the tensorA[a,b, k, l] with summation indicesk andl can be viewed as the two-dimensional
N2 × N2 matrix A[ab, kl] with non-summation meta indexab and summation meta indexkl. In this case, no layout
transformation is necessary.
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T1{d, i, k, l} :
∑

c

A[a,b, k, l]

D[d, j]

B[c,d, k, l] C[c, i]

S[a,b, i, j] :
∑

k,l

T2{i, j, k, l} :
∑

d

(a) Expression tree

C[c, i]

S[a,b, i, j] : P

T2′{i, j, k, l} : PA′{a,b, k, l} : P

S′{a,b, i, j} :
∑

k,l

A[a,b, k, l] T2{i, j, k, l} :
∑

d

T1′{d, i, k, l} : P D′{d, j} : P

D[d, j]T1{d, i, k, l} :
∑

c

B′{c,d, k, l} : P C′{c, i} : P

B[c,d, k, l]
(b) Expanded expression tree

Figure 1: Expression tree for a sub-expression in the CCSD equation. (a) Original expression tree (b) The expanded expression tree used for
layout optimization

When the tensor expressions are executed in parallel, the arrays need to be distributed amongst the processors.
Optimized implementations of parallel matrix-matrix multiplication, such as ScaLAPACK [13], employ a blocked
Cartesian distribution of the two-dimensional arrays ontoa square processor grid.

For the above 3-contraction example, the first contraction can be implemented directly as a call to GEMM withB
viewed as anN × N3 rectangular matrixB[c,dkl] andC as anN × N matrix. For the GEMM call,B is provided as
a transposed operand andC as a normal operand. The intermediateT1 resulting from this GEMM call is generated
as the two-dimensional matrixT1[dkl, i], which corresponds to the tensorT1[d, k, l, i]. For the second GEMM call,
T1[d, k, l, i] can be viewed as anN × N3 rectangular matrixT1[d, kli] and D as anN × N matrix. The resulting
intermediateT2 is generated as the two-dimensional matrixT2[kli, j], which corresponds to the tensorT2[k, l, i, j],
which is then viewed as anN2×N2 matrixT2[kl, i j ] for the third GEMM call. By swapping the left and right operands
to the third GEMM call, the result tensorS can be generated in the desired layout asS[a,b, i, j].

However, suppose that the input tensorB is provided asB[d, c, l, k]. Since the summation indexc is neither the
left-most nor the right-most index, the layout of the tensormust be restructured. E.g., the indices could be permuted
to result inB′[c,d, l, k], which can then be used as a transposed operand in the GEMM call as above. Alternatively,
the indices could be permuted to result inB′[d, l, k, c], which is then used as a normal operand in the GEMM call.
As we will see in the next section, the execution times for these two combinations of index permutation and matrix
multiplication can be significantly different. In either case, however,T2 will eventually be generated asT2[l, k, i, j],
which requires an additional index permutation. If the index permutation ofB is chosen to result in eitherB′[c,d, k, l]
or B′[d, k, l, c], the index permutation ofT2 can be avoided.

We represent this computation as an expression tree. As an example, Fig. 1(a) shows the expression tree for the
sub-expression from the CCSD model discussed above. The root of the tree is the output array; input arrays form the
leaf nodes. Interior nodes correspond to contractions. Forcontraction nodes, we indicate the indices that are summed
over with a summation symbol. The layouts of leaf nodes and ofthe root of the tree are specified by the user and are
fixed in column major order of the indices. The array reference labels shown for interior nodes are for convenience in
referring to the result of the contraction, but do not constrain the layout, which we indicate with curly braces.

An intermediate array can benefit from different layouts when it is produced as the output of one GEMM call
and consumed as input in another GEMM call. This translates into the possibility of an index permutation for each
intermediate node. We represent this possibility in an expanded expression tree that is derived from the original
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expression tree. Each intermediate node in the original expression tree is duplicated in the expanded expression tree,
with the edge between the original and duplicate node corresponding to an an array reshaping or index permutation
operation, labeledP, on top of each of the original nodes. For example, Fig. 1(b) shows the expanded expression tree
derived from the expression tree in Fig. 1(a). These duplicated nodes will be referred to as array reshape nodes.

If the computation does not fit into the available memory, we employ loop fusion to minimize the memory re-
quirements. By fusing a loop that is in common between the producer and consumer of an intermediate array, the
corresponding dimension can be removed from the intermediate. E.g., by fusing thel loop between the production
and consumption ofT1 above,T1 can be reduced to a three-dimensional tensorT1[d, i, k]. A fully fused computation,
however, can be significantly slower because of poor cache behavior. E.g., ifT1 is fused to a scalar, it is no longer
possible to use a GEMM call to compute it. After loop fusion, we tile the fused loops and expand fused dimensions
to tile size. By moving all intra-tile loops inside the fusedtiling loops, we are left with perfectly nested loop nests
inside the tiling loops that can then be replaced by combinations of GEMM and index permutation calls. Since the
layout optimization problem presented in this paper is independent of whether loop fusion and tiling are employed or
not, we restrict our attention to expanded expression treesas shown in Fig. 1(b). Layout optimization has an effect on
memory usage as well, since index permutations are not performed in place. However, since buffers can be allocated
and deallocated dynamically, this effect is minimal and can be ignored.

Instead of implementing the computation represented by such an expression tree as a sequence of GEMM calls
interspersed with array reshaping operations, it is also possible to implement it directly as a collection of loop nests,
one for each node of the expression tree. Optimizing the cache behavior of the resulting collection of a large number of
loop nests directly, however, is a difficult challenge. In general, the best performance can be obtained by implementing
a sequence of multi-dimensional tensor contractions usingGEMM and array reshaping operations.

The problem addressed in this paper is the following:

Given a sequence of tensor contractions (expressed as an expanded expression tree), determine the layouts
(i.e., dimension order) of the intermediate tensors, the distributions (among multiple processors) of all
tensors, and the modes of invocation of GEMM so that the specified computation is executed in minimal
time.

To facilitate the data exchange between the TCE-generated code and a quantum chemistry package, the layouts
of the input and output tensors are determined by their declarations in the TCE input specification. Since in a dis-
tributed implementation inputs and outputs are stored on disk because of their size, their optimal distributions can be
determined by our algorithm.

In a sequential implementation, a tensor contraction node is implemented as a GEMM call and an array reshaping
operation is an index permutation (or a no-op), as shown in the example above. In a distributed implementation,
a tensor contraction node is implemented as a parallel matrix multiplication and an array reshaping operation may
involve a redistribution among the processors in addition to the index permutation. The details of the optimization
parameters are explained in the next section.

Since for ann-dimensional tensor there aren! possible index permutations and since there are four possible
choices for each GEMM invocations, and in the parallel case multiple possible distributions, the search space is
very large. Simple heuristics do not work, because a wrong layout decision can cause the need for additional index
permutations for ancestor nodes. E.g., choosing the wrong index permutation forB above resulted in an additional
index permutation forT2. However, as we will show in Section 5, the constraints imposed on the layouts by GEMM
reduce the size of the search space drastically and result inan algorithm that is linear in the size of the tree.

3. Constituent operations

In this section, we discuss the various operations within the computation and their influence on the execution time.
The parameters that influence these costs, and hence the overall execution time, are detailed.

3.1. General Matrix Multiplication (GEMM)

Matrix multiplication is one of the most important computational kernels. It has been tuned, sometimes at the
assembly language level, to achieve close-to-peak performance by machine and library vendors. These libraries obtain
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Table 1: Configuration of the Itanium 2 cluster at the Ohio Supercomputer Center

Node Memory OS Compilers TLB Network Interconnect Comm.
Latency Library

Dual 900MHz 4GB Linux g77, ifc 128 entry 17.8µs Myrinet 2000 ARMCI
Itanium 2 2.4.21smp

significantly higher performance than code generated for these kernels by general-purpose compilers. Recognizing
matrix multiplication operations and using these libraries can, therefore, significantly improve the generated code.

General Matrix Multiplication (GEMM) is a set of matrix multiplication subroutines in the BLAS library. It is
used to compute

C = alpha∗ op(A) ∗ op(B) + beta∗C

In this paper, we use the double precision version of the GEMMroutine of the form

DGEMM(ta, tb,m,n, k,alpha,A, lda, B, ldb,beta,C, ldc)

whereta (tb) specifies whetherA (B) is in transposed form. Whenta is ‘n’ or ‘N’, op(A) = A; whenta equals ‘t’ or
‘T’, op(A) = AT ; alphaandbetaare scalars;C is anM×N matrix;op(A) andop(B) are matrices of dimensionsM×K
andK × N, respectively. The matrices are assumed to have a column-major memory layout. The parameterslda, ldb,
andldc specify the sizes of the leading dimensions of matricesA, B, andC, respectively.

To illustrate the performance characteristics of DGEMM, wemeasured its performance with varying input pa-
rameters on the Itanium 2 Cluster at the Ohio Supercomputer Center (Dual 900MHz processors with 4GB memory,
interconnected by Myrinet 2000 network). The cluster’s configuration is shown in Table 1. The latency measurement
of the interconnect was obtained from the ARMCI Web page [1, 55].

Matrix multiplications of the formA∗Bwere performed, whereBwas a 4000×4000 matrix andA was anM×4000
matrix, with M varied from 1 to 300. Matrix multiplications involving suchoblong matrices are quite typical in
quantum chemistry computations, where for a multi-dimensional tensor only one dimension might be contracted. Two
BLAS libraries were evaluated on the Itanium 2 Cluster, the Intel Math Kernel Library (MKL) 9.0 [28] and ATLAS
3.6.0 [59]. Thetb argument was specified as ‘t’ for the results shown in Fig. 2(a) and Fig. 3(a). Fig. 2(b) and Fig. 3(b)
show the results fortb being ‘n’. The x-axis shows the value ofM and the y-axis shows the matrix multiplication
execution time per double word in clock cycles. The measurements were averages over a large number of runs.
The steady-state performance after the caches were warmed up showed very little variation and is representative of
quantum chemistry computations with large tensors.

We observe that the performance characteristics of the DGEMM operation differs between different libraries and
between the transposed and untransposed versions, and thatthe cost of the transposed version cannot be interpreted as
the sum of the cost of transposition and the cost of the untransposed version. For example, in some of the experiments
with the ATLAS library, the transposed version performs better. Furthermore, the performance can vary quite dras-
tically for small changes in dimension size. It is, therefore, not feasible to develop an accurate analytical cost model
that allows the compiler to predict the performance for given dimension sizes and invocation mode.

The cost of GEMM is influenced by the choice of its parameters.For any given tensor contraction, the summation
indices are fixed and cannot be modified. The stride parameters (lda, ldb, and ldc) as well as the scalars are not
beneficial for optimization purposes. The input arrays, however, may or may not be transposed, and their relative order
could be changed. Thus, these three parameters need to be determined for each GEMM invocation for optimizing the
overall execution time. Since an analytical cost model would not be accurate enough, these parameters are determined
based on performance measurements.

Note that the layout of input and output arrays for a DGEMM invocation uniquely determines its parameters. Thus
the problem of determining the DGEMM parameters is equivalent to determining the layouts of all intermediates.

For certain input sizes either BLAS implementation may outperform any others. It would, therefore, also be
possible to let the compiler determine which GEMM implementation to use for a given invocation. However, since
the vendor libraries typically outperforms ATLAS on average, especially for newer versions of the vendor libraries,
we chose not to make this choice an optimization parameter.
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(b) MKL (‘n’, ‘n’)

Figure 2: The matrix multiplication times using DGEMM from the MKL library for C = ABwhereC is of sizeM × N, A is of sizeM × K, B is of
sizeK × N, andK = N = 4000. (a)tb=’t’ (b) tb=‘n’ in input argument to DGEMM.M is varied along the x-axis. The y-axis shows the execution
time per double word in clock cycles.
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(a) ATLAS (‘n’, ‘t’)
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(b) ATLAS (‘n’, ‘n’)

Figure 3: The matrix multiplication times using DGEMM from the ATLAS library for C = ABwhereC is of sizeM×N, A is of sizeM×K, B is of
sizeK × N, andK = N = 4000. (a)tb=‘t’ (b) tb=‘n’ in input argument to DGEMM.M is varied along the x-axis. The y-axis shows the execution
time per double word in clock cycles.

Note that on computers with symmetric multiprocessing (SMP), where GEMM routines are often parallelized
using OpenMP, the above observations about the behavior of GEMM apply as well.

3.2. Cannon’s matrix multiplication algorithm

On computer clusters, i.e., in the case of distributed memory, several approaches have been proposed for imple-
menting parallel matrix multiplication [58, 18]. In this paper, we consider an extension to Cannon’s algorithm for
parallel matrix multiplication [21, 9, 25] that removes therestriction of using a square grid of processors for array
distribution. The local matrix multiplications on each processor are performed using DGEMM. While our layout
optimization approach can be applied to any parallel matrixmultiplication algorithm whose execution time can be
empirically modeled, we chose Cannon’s algorithm because it is very efficient with memory usage and communica-
tion, allows computation and communication to be overlapped, and provides flexibility for optimization.

Cannon’s algorithm assumes a logical view of a group of processors in which the processors form a two-dimensional
square grid. LetC(M,N) += A(M,K) ∗ B(K,N) be the multiplication being performed on a

√
P×
√

P processor grid.
The input arrays are distributed among the processors in an identical fashion with each processor holding one block
each ofA, B, andC. The algorithm proceeds in

√
P steps. At the beginning of the first step, the blocks ofA in the
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K
0,0 0,1 0,2 0,3
1,1 1,2 1,3 1,0

M 2,2 2,3 2,0 2,1
3,3 3,0 3,1 3,2

Step 1

⇒

K
0,0 0,1 0,2 0,3
1,1 1,2 1,3 1,0
2,2 2,3 2,0 2,1
3,3 3,0 3,1 3,3

Step 2

⇒

K
0,2 0,3 0,0 0,1
1,3 1,0 1,1 1,2
2,0 2,1 2,2 2,3
3,1 3,2 3,3 3,0

Step 3

⇒

K
0,2 0,3 0,0 0,1
1,3 1,0 1,1 1,2
2,0 2,1 2,2 2,3
3,1 3,2 3,3 3,0

Step 4

(a) Array A

N
0,0 2,1
1,0 3,1

K 2,0 0,1
3,0 1,1
Step 1

⇒

N
1,0 3,1
2,0 0,1
3,0 1,1
0,0 2,1

Step 2

⇒

N
2,0 0,1
3,0 1,1
0,0 2,1
1,0 3,1

Step 3

⇒

N
3,0 1,1
0,0 2,1
1,0 3,1
2,0 0,1

Step 4

(b) Array B

Figure 4: The processing steps in the extended Cannon Algorithm. Initially, processorPi j holds blocks labeledBi j andAi( j: j+1). The portion of
data accessed in each step is shown in bold.

i-th row of the processor grid are rotated lefti positions, and those ofB are rotated upi positions. At the beginning of
each subsequent step, every block ofA is rotated left one position, and every block ofB is rotated up one position. In
each step, the local blocks ofA andB are multiplied and added to the local block ofC.

Since Cannon’s algorithm does not replicate portions of theinput matrices on multiple processors, it uses memory
very efficiently. Individual matrix blocks can be as large as one fifthof the storage available on a processor, with
one block from each of the three matrices to perform the computation and storage for two more blocks to allow
communication to be overlapped with computation. Our extension generalizes the algorithm to allow for logical
views of a group of processors as rectangular processor grids and, unlike Lee et al.’s extension [47], it allows any of
the three indices to be the rotation index and limits the communication time toO(P+ Q) for a processor grid of size
P ∗ Q. Further details about our extension of Cannon’s algorithmcan be found in [21].

The extended Cannon algorithm for a 4× 2 processor grid is illustrated for the matrix multiplicationC(M,N) +=
A(M,K) ∗ B(K,N) in Fig. 4. The processors form a logical rectangular grid. All the arrays are distributed amongst
the processors in the grid. Each processor holds two blocks of A and one block of each of the arraysB andC. The
algorithm divides the common dimension (K in this illustration) to have the same number of sub-blocks.Each step
operates on a sub-block and not on the entire data local to each processor. In each step, if the sub-block required is
local to the processor, no communication is required. Fig. 4shows in bold the sub-blocks of arraysA andB accessed
in each step. It shows that the entire arrayB is accessed in each step.

Given a processor grid, the number of steps is given by the number of sub-blocks along the common dimension
(K). The number of blocks ofA that are needed by one processor corresponds to the number ofprocessors along the
common dimension, and that ofB correspond to the other dimension. Table 2 illustrates the number of steps and the
number of remote blocks required per processor for the possible distributions with sixteen processors. The number
of steps and the number of remote blocks required per processor depend on the distribution of the arrays amongst
the processors. The block size for communication is independent of the dimensions. It can be seen that different
distributions have different costs for each of the components.

The relative sizes of the arraysA andB determine the optimal distribution. When one array is much larger than
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Table 2: Extended Cannon algorithm’s per-processor costs for different distributions of a 16-processor grid

Distribution #steps #blocks communicated

Array A Array B

1 * 16 16 15 0
2 * 8 8 7 1
4 * 4 4 3 3
8 * 2 8 1 7
16 * 1 16 0 15

the other, the cost can be reduced by skewing the distribution to reduce the number of remote blocks accessed for that
array. The shape of the array that is local to each processor affects the local DGEMM cost. Thus, the array distribution
influences the communication and computation costs and is animportant parameter to be determined.

The optimization parameters for a parallel matrix multiplication using our extended version of Cannon’s algorithm,
therefore, are the shape of the processor grid and the selection of distribution index for each processor grid dimension
(the remaining index is the rotation index) in addition to the optimization parameters for the local DGEMM call.

3.3. Index permutation
DGEMM requires a two-dimensional matrix view of the inputs.This means that the summation and non-summation

indices of a tensor must be grouped into two contiguous sets of indices. The layout of a multi-dimensional tensor,
therefore, might have to be transformed to be used as input toDGEMM. Further, an additional index permutation
cost might be worth paying if it can reduce the DGEMM cost through the use of a transposed (or non-transposed)
argument form.

For each architecture of interest, we implemented a collection of index permutation routines, one each for a given
number of dimensions. On architectures without SIMD (single instruction, multiple data) support such as Itanium 2,
the routines were tiled in the fastest varying indices in thesource and target arrays. We observed that performing the
computation such that the target arrays are traversed in theorder of their storage resulted in better performance than
biasing the access to the source array. This can be explainedby the write-back L2 cache in the system, which causes
write-back of dirty blocks when they are replaced. Replacement of read blocks does not pay this penalty. Thus fully
writing a cache line of the target array reduces the cost due to these write-backs. The execution times for different tile
sizes was determined and the best tile size was chosen. The performance of the routines was evaluated on a number
of permutations to determine the tile sizes.

On the Itanium 2 platform, we measured the execution times ofthese routines for some index permutations on
four-dimensional arrays of sizeN×N×N×N, with N varying from 15 to 85. The measurements were averages over
a large number of runs. The steady-state performance after the caches were warmed up showed very little variation.
The results are shown in Fig. 5.

Unlike the cost of DGEMM, which for larger tensors is less than half a clock cycle per double word, the cost of
index permutation is in the range of 10–20 cycles per double word. GEMM implementations can achieve such a high
performance, since they use tiling for all levels in the memory hierarchy to optimize temporal locality. Since tensor
elements only get copied but not reused during an index permutation, there cannot be any temporal locality. Even
though index permutation is only anO(N2) operation while GEMM is anO(N3) operation, for the dimension sizes of
interest the cost of index permutation can be a significant part of the total cost.

Different permutations are observed to incur different costs. These differences are due to variations in spatial
locality because of differences in the memory access patterns of different permutations. We also notice that the use of
different compilers leads to differences in performance.

On architectures such as recent Intel x86 processors, whereSIMD instructions are available, we generate index
permutation routines following an automatic approach described in [51, 26, 50]. The basic idea is to apply loop tiling
at different cache/TLB levels and then to search automatically for the optimal loop order, tile sizes, and SIMD code
sequence for index permutation.
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Figure 5: Index permutation times on Itanium 2 for three different permutations for anN × N × N × N matrix using (a) Intel Fortran compiler (b)
g77 compiler.N is varied along the x-axis. The y-axis shows the execution time per double word in clock cycles.

The layout of the arrays influences the index permutation costs and is the parameter to be determined to evaluate
the index permutation cost. Parallel index permutation canbe viewed as a combination of local index permutation and
array redistribution. The extended Cannon algorithm requires that the summation and non-summation index groups
be distributed along the slowest varying index in that group. The number of processors along the dimension in the
processor grid corresponding to a group can also be varied todetermine the shape/size of arrays used in the local
DGEMM calls. Thus, in addition to the layout of the arrays, their distribution needs to be determined as well.

4. Empirical measurement of constituent operations

4.1. GEMM cost

For determining the precise cost of GEMM, it must be executedwith a range of parameter choices on the target
machine. For the purpose of this paper, we execute it at compile time for any parameter combinations considered
by our layout optimization algorithm. For small examples, such as the expression tree for the CCSD sub-expression
in Fig. 1(b), this is clearly prohibitively expensive, since it can result in compilation times that are larger than the
execution time by testing multiple GEMM parameter choices for each contraction node in the tree. Realistic tensor
contraction expressions in quantum chemistry, however, consist of dozens to hundreds of sub-expressions of this form
with repeated occurrences of the same tensor sizes. Cachingthe results of any GEMM measurements, therefore, will
be very effective. Furthermore, quantum chemistry computations often require out-of-core treatment [7, 40, 41], where
tiles of multi-dimensional arrays are brought into memory and operated upon. These loops are in turn enclosed in an
outermost loop in iterative chemical methods. Thus, each contraction node in the expression tree will correspond to
multiple invocations of GEMM. Even with performing GEMM measurements at compile time, the compilation time
will still be much less than the execution time.

Alternatively, the GEMM performance measurements could beperformed offline at TCE installation time. Since
the range of tensor dimension sizes is limited and since quantum chemistry models typically use no more than eight
dimensions and no more than two different dimension sizes per tensor, this would not lead to a combinatorial explo-
sion. Furthermore, for larger dimension sizes it would be possible to interpolate between measurements. The spikes
observed in our MKL measurements in Fig. 2 occurred whenM was a multiple of four. Using special treatment for
multiples of four and a careful selection of measured valuescan, therefore, make interpolation very precise. While
even with interpolation a few thousand measurements might be needed, this would be an acceptable one-time cost.

4.2. Cannon’s matrix multiplication

The cost of parallel matrix multiplication using Cannon’s algorithm is the sum of the computation and the com-
munication costs. Since the local computation is performedusing DGEMM, the computation cost can be derived from
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the DGEMM cost. The communication cost is the sum of the communication costs at the beginning of each step. We
summarize the model employed for the Cannon’s matrix multiplication algorithm [21]. A latency-bandwidth model
is used to determine the communication cost. Consider the matrix multiplicationC(M,N) += A(M,K) ∗ B(K,N) and
assume thatK is the rotation index. LetPM ,PK ,PN be the number of processors into which the array is distributed
along theM, N, andK dimensions, respectively. The total communication cost isgiven by

CommnCostA =

(

Ts +
M ∗ K

BW∗ PM ∗ PK

)

∗ (PK − PK/PM)

CommnCostB =

(

Ts +
K ∗ N

BW∗ PK ∗ PN

)

∗ (PK − PK/PN)

CommnCost = CommnCostA + CommnCostB,

whereCommnCostA andCommnCostB are the initialization and shift costs for matricesA andB, respectively.Ts is
the latency of the interconnect shown in Table 1.BW, the bandwidth, is estimated from a table constructed from the
bandwidth curve on the ARMCI Web page [1, 55]. Similar formulas are used if another rotation index is chosen.

4.3. Index permutation

Fig. 5 shows the performance of our index permutation routines for some permutations. The performance of the
implementation appears to be relatively independent of thearray dimensions, but is influenced by the permutation
being performed.

An analysis of the implementation revealed that the variation in the per-element permutation cost was primarily
influenced by the variation in the TLB misses for different permutations and the capability of compilers to perform
efficient register tiling.

We estimated the index permutation cost to consist of two components. The first component is the basic copy cost,
the minimum cost required to copy a multi-dimensional array, together with the index calculation. We determined two
types of basic copy costs. The first, referred to asc0, is the one in which both the source and target arrays are traversed
with sufficient locality. The other basic copy cost, referred to asc1, is one in which there is only locality in traversing
the target array. Depending on the permutation and the size of the arrays, one of these basic copy costs is chosen. The
basic costsc0 andc1 were found to be compiler dependent. On the Itanium 2 system,they were determined to be 9.5
and 11.3 cycles, respectively, per double word with the Intel Fortran Compiler and 12.9 and 15.9 cycles, respectively,
per double word with g77. The second component is the TLB misscost. Each processor on the Itanium 2 cluster
had an 128 entry fully-associative TLB with a miss penalty of25 cycles. Different permutations can lead to different
blocks of data being contiguously accessed and at different strides. The permutation to be performed and the array
size are used to determine the TLB cost.

In the parallel version of the algorithm, index permutationis coupled with array redistribution. Transformation
from one layout and distribution configuration to another isaccomplished in two steps, a local index permutation
followed by array redistribution.

A combination of index permutation and redistribution can result in each processor communicating its data to
more than one processor. The communication cost is estimated differently for different cases. When the target patch
written to is local to a processor no communication is required. When the layout transformation is such that each
processor needs to communicate its data to exactly one otherprocessor, the cost is uniform across all the processors
and is estimated as the cost of communicating that block. In all other cases, we estimate the communication cost to
be the cost incurred by the processor whose data is scatteredamong the most number of processors.

5. Composite performance model

In this section, we discuss how the empirical measurements of the constituent operations are used to determine
the parameters that optimize the overall execution time.
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5.1. Constraints on array layouts and distributions

Each of the input and output arrays is constrained to have onespecified layout. Each array corresponding to
a contraction node is produced as the output of a GEMM call. Asexplained earlier, GEMM operates on a two-
dimensional view of the input arrays producing as output a two-dimensional array represented by an index order with
the non-summation indices of the first input array followed by the non-summation indices of the second input. For
the set of non-summation indices for each input array, all possible permutations are valid.

The array reshape (or index permutation) nodes act as inputsto the GEMM calls. Thus, the layout of arrays
represented by the array reshape nodes is constrained by therestrictions imposed on the inputs to GEMM calls. All
summation indices are grouped together and laid out contiguously, with some choices for the remaining indices.

In the expanded expression tree, each intermediate node is either a contraction node or an array reshape node. A
contraction node corresponds to an array that is the output of the contraction and does not serve as the input to another
GEMM call. An array reshape node corresponds to an array thatis the input of a GEMM call and is produced as the
result of an array reshape operation. In particular, it is not produced as the output of another GEMM call. Thus, each
interior node isassociatedwith exactly one contraction, with each contraction node corresponding to the output of
the associated contraction and each array reshape node corresponding to input of the associated contraction.

We now formally define the set of possible permutations to be evaluated for each intermediate node. The summa-
tion (contraction) and non-summation indices in each contraction are identified as explained in Section 2. For each
noden, we define the summation indices and non-summation indices as those in the associated contraction:

SI(n) Set of summation indices in contraction associated with noden

NSI(n) Set of non-summation indices contributed by noden to its associated contraction

Let P(s) denote the set of all permutations of the indices in index set s. The indices in each interior node can
be partitioned into two groups. For a contraction node, these correspond to the set of indices from each of the input
arrays. For an array reshape node, these correspond to the set of summation and non-summation indices. The two
groups themselves can be permuted with one another, with either group appearing on the left.

Let i1 and i2 represent the input arrays contributing to contraction node n. The set of all valid permutations for
each interior node is given by:

S(n) =

{

{[l, r], [r, l]} ∀l ∈ P(NSI(i1)), r ∈ P(NSI(i2)) if n is contraction node
{[l, r], [r, l]} ∀l ∈ P(SI(n)), r ∈ P(NSI(n)) if n is an index permutation node

where [l, r] is the concatenation of the ordered lists of indicesl andr to produce a complete index list (and similarly
for [r, l]). The size of the resulting set is given by:

|S(n)| =
{

2× |P(NSI(i1))| × |P(NSI(i2))| if n is contraction node
2× |P(SI(n))| × |P(NSI(n))| if n is an index permutation node

where the size of permutation setP, |P(s)| is |s|!. For example, consider the contraction nodeT2 in Fig. 1(b). The
indices inT2 are grouped into{i, k, l} and{ j} based on whether they are provided by the input arrayT1′ or by D′.
The number of possible layouts is thus 2∗ 3! ∗ 1! = 12. Similarly, the indices in the contraction nodeT2′ can be
grouped into the non-summation indices{i, j} and the summation indices{k, l}. The number of possible layouts is thus
2 ∗ 2! ∗ 2! = 8.

The extended Cannon algorithm requires the processor grid for each tensor contraction to be Cartesian in nature.
In addition, the children of each contraction node in the expression tree are required to have the same processor grid
as that node. Thus, for each distribution of a contraction node, there is a corresponding distribution for its children.
There is no restriction on the distribution of the contraction nodes themselves.

The indices in an intermediate tensor, corresponding to an interior node, are divided into two groups as explained
above. Each of these groups of tensor indices form one meta index for the matrix view of the tensor. We assume
a two-dimensional processor grid with blocked data distribution to match the needs of the Cannon algorithm. The
choice of distribution of the tensor onto a processor grid involves picking one index from each group and partitioning
it amongst the processors. These indices are referred to as the distribution indices. A choice of distribution is uniquely
defined by the processor grid employed in the distribution (e.g., 2× 2, 1× 4, etc.) and the distribution indices. For the
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discussion of the algorithm, a distribution is defined to be the pair of processor grid and distribution indices; in other
contexts, it is often synonymous with processor grid.

The block of data owned by a process can be laid out in any one ofthe possible permutations enumerated above.
Note that the choice of data distribution amongst the processors is orthogonal to the choice of data layout within each
process, with neither constraining the other. Both choicesare only constrained by the role of the tensor in the GEMM
operation it participates in.

5.2. Determination of optimal parameters

For the specified layouts of the root and leaves of the expanded expression tree, we determine the distributions
of the root and leaves and the layouts and distributions of the intermediate arrays. The layouts of the root and leaves
are fixed to facilitate the data exchange with a quantum chemistry package. For each layout of an array produced
by GEMM, the arrays corresponding to its children nodes are required to have a compatible layout, i.e., the order in
which the summation and non-summation indices are grouped is required to be identical in the produced and consumed
arrays. This is because GEMM does not perform any index permutation within a group. Such layouts of the input
arrays are said to be compatible with the given layout of the array output by the contraction node. Similarly, the
distribution (processor grid and distribution indices) ofthe children must be compatible with the parent as explained
above.

The algorithm proceeds by recursively computing the cost associated with a node for each layout and distribution
as the sum of the costs associated with producing its inputs (children in the expanded expression tree) in all compatible
layouts and distributions and transforming the layout and distribution to produce that node. This assumes that the
performance of the individual operations is independent from one another. While this may not hold for small arrays
due to cache effects, it is a valid assumption for the large tensors used in our computational domain. Note that the
cost to compute a node for a given layout and distribution is independent of its use in another contraction or index
permutation operation. Such a decoupled cost function enables a dynamic programming solution in which the costs
are propagated in a bottom-up fashion with any given alternative configuration (layout and distribution) for each node
evaluated at most once.

The configuration of an arrayn is represented by a distribution-layout pair (d, l). The cost of a node is determined
as the least cost to compute its children and subsequently compute it from its children. The cost to evaluate noden,
together with all intermediates in the subtree rooted atn, with distributiond and layoutl is computed as follows:

Ct(n,d, l) =































min∀d′∈D(n),∀l′∈L(n) Ct(i1,d′, l′) + Cip((i1,d′, l′)→ (n,d, l))
if n is a index permutation node

min∀l′,l′′∈L(n) Ct(i1,d, l′) + Ct(i2,d, l′′) + Cdg((i1,d, l′) × (i2,d, l′′)→ (n,d, l))
if n is a contraction node

where

Ct ≡ Total cost of computing a node with given distribution and layout

Cip ≡ Cost of the required index permutation

Cdg ≡ Cost of the required DGEMM invocation

D/L ≡ All feasible distributions/layouts of a node

i1/i2 ≡ Left/right child ofn

As shown by the above expressions, the total cost of computation of each non-leaf node, for different configura-
tions, can be determined from the cost of computing its children from the leaf nodes and the cost of the basic operation,
index permutation or GEMM, to compute the node from its children. The algorithm first determines the feasible lay-
outs for each of the nodes in the expanded expression tree. The optimal cost of the root node is subsequently computed
using the dynamic programming formulation.

A traversal of the tree together with memoization of the intermediate results for all valid layouts and distributions
ensures that each node in the expanded expression tree is traversed exactly once. Thus, the cost incurred by this
algorithm is linear in the number of nodes in the tree. For each contraction node, the layout chosen for the output
array constrains the layouts of its inputs to two choices — whether each is transposed or not. Thus the evaluation of
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Table 3: Configuration of the Intel Xeon workstation

Processor Num. of Memory OS Compiler BLAS
Processors Library

Intel Xeon E5530 1 4GB Linux Intel Compiler Intel Math Kernel
2.4GHz quad-core 2.6.31 11.1 Library 10.2

Table 4: Configuration of the AMD Opteron workstation

Processor Num. of Memory OS Compiler BLAS
Processors Library

AMD Opteron 8218 4 16GB Linux Intel Compiler AMD Core Math
2.6GHz dual-core 2.6.18 10 Library 14.3.0

a GEMM node considers four alternatives ((‘n’, ‘n’), (‘n’, ‘t’), (‘t’, ‘n’), (‘t’, ‘t’)) for each layout. The evaluationof
the cost of an index permutation node needs to consider more alternatives. In particular, the number of alternatives is
given by the cross product of all possible layouts of the input and output arrays. Given that the number of possible
layouts in itself is non-linear, this operation could be expensive to compute. We overcome this limitation using the
insights gleaned from Section 3.3. The similarity in the costs per element for a variety of permutations is used to
categorize the permutations into a small number of choices,each of which is evaluated in terms of the basic copy cost
and the TLB miss cost.

Thus, the only non-linear component in the cost associated with the approach presented is the factor corresponding
to the number of possible layouts of an output array to be evaluated in each contraction node. Even this factor is
eliminated when we consider the performance profile associated with a GEMM call. Recall that the GEMM call does
not recognize the different layouts of indices within the two groups of indices — one each corresponding to the non-
summation indices from the two input arrays. In particular,all such layouts result in array dimensions of the same
size when viewed as a two-dimensional array. Therefore, allsuch layouts incur the same GEMM cost, and only the
four choices corresponding to possible transpositions of inputs need to be evaluated.

The cost incurred by the algorithm is, therefore, linear in the number of nodes. The cost associated with each node
is a small constant, corresponding to the few alternatives to be evaluated.

6. Experimental results

We evaluated our approach on three different systems. The only distributed-memory computer is theItanium 2
cluster at the Ohio Supercomputer Center, whose configuration is shown in Table 1. The other two systems that we
used are a single-processor four-core Intel Xeon E5530 workstation and a four-processor dual-core AMD Opteron
8218 workstation. The configuration details of these two systems are listed in Tables 3 and 4, respectively. We believe
these two workstation systems represent the typical environments where small- to mid-scale tensor contraction com-
putations are carried out while large computations are often performed on clusters. All the experiment programs were
compiled with the Intel Fortran Compiler for its better performance. Our extension of Cannon’s algorithm was only
used on the Itanium 2 cluster. We used the natively optimizedBLAS library for each system. With Intel processors
it was the Intel Math Kernel Library (MKL) [28] and with AMD processors it was the AMD Core Math Library
(ACML) [4]. We did not use ATLAS to report our results as recent CPU vendor-provided libraries often perform bet-
ter than ATLAS and most large-scale computational environments have CPU vendor-provided libraries pre-installed
and maintained. We measured the constituent operations on all three platforms and performed benchmarks using the
following two computations in our domain:

CCSD. We used a typical sub-expression from the CCSD theory for determining electronic structures. It is the same
example as in Fig. 1, except that the layouts of the input and result tensors have been reversed to allow interfacing
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Table 5: Layouts and distributions for the CCSD computation for the unoptimized and optimized versions of the code
Unoptimized Optimized

Array Distribution/ Dist./ Layout GEMM Distribution/ Dist./ Layout GEMM
Proc. Grid Indices Parameters Proc. Grid Indices Parameters

A (2,2) (k,a) (l, k,b,a) – (1,4) (k,a) (l, k,b, a) –
A′ (2,2) (a, k) (b,a, l, k) – – – – –
B (2,2) (c, k) (d, c, l, k) – (1,4) (c, k) (d, c, l, k) –
B′ (2,2) (k, c) (d, l, k, c) – (1,4) (c, k) (c,d, l, k) –
C (2,2) (i, c) (i, c) – (1,4) (i, c) (i, c) –
C′ (2,2) (c, i) (c, i) – – – – –
D (2,2) ( j, d) ( j, d) – (1,4) ( j,d) ( j,d) –
D′ (2,2) (d, j) (d, j) – – – – –
T1 (2,2) (k, i) (d, l, k, i) B′,C′,(‘n’, ‘n’) (1 ,4) (i, k) (i,d, l, k) C,B′,(‘n’, ‘n’)
T1′ (2,2) (i,d) (l, k, i,d) – (1,4) (d, k) (d, i, l, k) –
T2 (2,2) (i, j) (l, k, i, j) T1′,D′,(‘n’, ‘n’) (1 ,4) ( j, k) ( j, i, l, k) D,T1′,(‘n’, ‘n’)
T2′ (2,2) (k, j) (l, k, i, j) – – – – –
S′ (2,2) (a, j) (b,a, i, j) A′,T2,(‘n’, ‘n’) (4 ,1) (a, j) (b,a, j, i) A,T2, (‘t’, ‘t’)
S (2,2) (i,a) ( j, i, b,a) – (1,4) (i,a) ( j, i,b,a) –

with Fortran code.

S[ j, i,b,a] =
∑

l,k

A[l, k,b,a] ×
∑

d















∑

c

B[d, c, l, k] ×C[i, c]















× D[ j,d]

On the Itanium 2 cluster, all the array dimensions were 64 forthe sequential experiments and 96 for the parallel
experiments. On the two workstation systems, due to the smaller memory sizes, we used 64 and 80 for the sequential
and parallel experiments, respectively.

AO-to-MO transform.This expression, henceforth referred to as the 4-index transform, is commonly used to trans-
form two-electron integrals from atomic orbital (AO) basisto molecular orbital (MO) basis.

B[a,b, c,d] =
∑

s

C1[s,d] ×
∑

r

C2[r, c] ×
∑

q

C3[q,b] ×
∑

p

C4[p,a] × A[p,q, r, s]

On the Itanium 2 cluster, the array dimensions were 80 and 96 for the sequential and parallel experiments, respectively.
On the two workstation systems, we used 64 and 80 for the sequential and parallel experiments, respectively.

The chosen dimension sizes are fairly large. A four-dimensional tensor with dimension size 96 and double-
precision floating point numbers as elements requires 648MBof storage. With dimension size 64, such a tensor
requires 128MB of storage. Since the computations involve multiple tensors, any significant increase would require
more processors or out-of-core computation.

We compared our approach with the baseline implementation in which an initial layout for the arrays is provided
and, in case of a cluster withP processors, a fixed

√
P×
√

P array distribution is required throughout the computation.
The order of parameters in the GEMM call is the same as the order of subtrees in the expression tree, with an (‘n’, ‘n’)
invocation mode. This approach was, in fact, used in our early implementations. The optimized version is allowed
flexibility in the distribution (but not the layout) of the input and output arrays.

Table 5 shows the configurations chosen for each array in the parallel experiment on the Itanium 2 system for the
unoptimized and optimized cases. A first look reveals that the number of intermediate arrays is reduced by effective
choice of layouts and distributions. The GEMM parameters for all three GEMM invocations are different, either in
the order chosen for the input arrays or in the transpositionof the input parameters. The distribution chosen for all the
arrays is different from those for the unoptimized version of the computation.

As explained in Section 2, bothB′ andT1′ are viewed asN × N3 rectangular matrices for the purpose of GEMM,
while T2 is viewed as anN2 × N2 matrix. Because of the rectangular shapes ofB′ andT1′, the algorithm chose
rectangular processor grids for all matrices. While a square(2,2) processor grid would have been more efficient
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Table 6: Sequential performance results for CCSD and 4index-transform on Itanium 2

Unoptimized (secs) Optimized (secs)

GEMM Index Exec. GEMM Index Exec.
Permutation Time Permutation Time

CCSD 55.28 1.41 56.69 45.58 0.78 46.36
4index 10.06 2.58 12.64 10.58 0.0 10.58

Table 7: Parallel performance results on 4 processors for CCSD and 4index-transform on Itanium 2

Unoptimized (secs) Optimized (secs)

GEMM Index Exec. GEMM Index Exec.
Permutation Time Permutation Time

CCSD 157.93 7.21 165.14 136.41 2.86 139.27
4index 12.23 7.74 19.97 7.57 3.64 11.21

Table 8: Sequential performance results for CCSD and 4index-transform on Intel Xeon

Unoptimized (secs) Optimized (secs)

GEMM Index Exec. GEMM Index Exec.
Permutation Time Permutation Time

CCSD 15.71 0.30 16.01 15.66 0.07 15.73
4index 1.19 0.22 1.41 1.30 0.0 1.30

for the GEMM call involving the square matrix view ofT2, the elimination of the redistribution operation forT2
outweighed the benefit of a more efficient GEMM call.

The final array reshape operation fromS′ to S involves only a layout transformation and no redistribution, since
the processor dimensions for indicesi and j, respectively, contain only one processor. (Alternatively, the resulting
distribution indices could have been chosen to be (j,a).)

Table 6 and Table 7 show the sequential and parallel results on Itanium 2, respectively. In the parallel CCSD exper-
iments, the GEMM and index permutation times reported subsume the communication costs. The optimized version
has close to 20% improvement over the unoptimized version inalmost all cases. The parallel 4-index transform has
an improvement of more than 75% over the unoptimized version. The effective choice of GEMM parameters results
in a noticeable improvement in the GEMM cost for most cases. The index permutation cost is either improved or
completely eliminated. The trade-off between the GEMM and the index permutation costs can be observed in the se-
quential 4-index transform experiment. In this experiment, the optimization process chooses an inferior configuration
for the GEMM computation, so as to eliminate the index permutation cost completely, and hence reduce the overall
execution time.

Table 8 and Table 9 show the sequential and parallel results on the Intel Xeon workstation, respectively. The
parallel version has four threads each running on its own processor core. As index permutation is highly optimized on
this processor, the sequential and parallel improvements with CCSD are 1.8% and 2.1%, respectively. However, the
parallel 4-index transform still has an improvement of 32.1% over the unoptimized version. Table 10 and Table 11
show the sequential and parallel results on the AMD Opteron workstation, respectively. The parallel version has eight
threads each running on its own processor core. Compared to the Intel Xeon workstation, on the AMD platform
index permutation is not as highly optimized due to its multi-processor structure and other micro-architectural factors.
Hence, we achieved a 147.7% improvement with the parallel 4-index code.

Fig. 6 and Fig. 7 show the relative improvements of the optimized over the unoptimized versions of CCSD and
the 4-index transform, respectively, for all configurations. As these figures show, our algorithm in all cases reduces
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Table 9: Parallel performance results on 4 processors for CCSD and 4index-transform on Intel Xeon

Unoptimized (secs) Optimized (secs)

GEMM Index Exec. GEMM Index Exec.
Permutation Time Permutation Time

CCSD 15.01 0.67 15.68 15.18 0.18 15.36
4index 0.99 0.42 1.43 1.07 0.0 1.07

Table 10: Sequential performance results for CCSD and 4index-transform on AMD Opteron

Unoptimized (secs) Optimized (secs)

GEMM Index Exec. GEMM Index Exec.
Permutation Time Permutation Time

CCSD 30.21 2.14 32.35 30.08 0.25 30.34
4index 2.14 0.56 2.70 2.52 0.0 2.52

Table 11: Parallel performance results on 4 processors for CCSD and 4index-transform on AMD Opteron

Unoptimized (secs) Optimized (secs)

GEMM Index Exec. GEMM Index Exec.
Permutation Time Permutation Time

CCSD 14.53 2.66 17.19 14.69 0.54 15.23
4index 2.70 1.24 3.94 1.59 0.0 1.59

or eliminates the index permutation cost. In some cases, it chooses less efficient DGEMM modes in exchange for
eliminating the index permutation cost, while in several instances it is also able to improve the DGEMM performance.

Our measurements show that our layout optimization is beneficial for any architecture, multi-core, SMP, or cluster.
Since DGEMM performs best on large arrays, and since even forcomputations that are near the memory limit we see
significant improvements, we can conclude that we would see improvements on larger clusters as well. With larger
dimension sizes and a larger cluster, theO(N3) cost of DGEMM would dominate more over theO(N2) cost of index
permutation. On the other hand, the cost of array redistributions would increase wherever all-to-all communication
is needed. Since in many cases our optimization was able to reduce the DGEMM cost, we would expect similar
reductions to the local DGEMM computation on a larger cluster. Similarly, the ability of our algorithm to eliminate
some redistributions would be of benefit on a larger cluster,and the improvement obtained by adapting the geometry
of the processor grid to the geometry of the input tensors is expected to carry over to any cluster size.

7. Related work

There has been prior work that has attempted to use data layout optimizations to improve spatial locality in pro-
grams, either in addition to or instead of loop transformations. Leung and Zahorjan [49] were the first to demonstrate
cases where loop transformations fail (for a variety of reasons) for which data transformations are useful. The data
transformations they consider correspond to non-singularlinear transformations of the data space. O’Boyle and
Knijnenburg [56] present techniques for generating efficient code for several layout optimizations such as linear trans-
formations of memory layouts, alignment of arrays to page boundaries, and page replication. Several authors [5, 29]
discuss the use of data transformations to improve localityon shared memory machines. Kandemir et al. [32] present
a hyperplane representation of memory layouts of multi-dimensional arrays and show how to use this representation
to derive very general data transformations for a single perfectly-nested loop. In the absence of dynamic data layouts,
the layout of an array has an impact on the spatial locality characteristic of all the loop nests in the program that access
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Figure 6: CCSD performance relative to unoptimized code.
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Figure 7: 4-index performance relative to unoptimized code.

the array. As a result, Kandemir et al. [30, 31, 32] and Leung and Zahorjan [49] present a global approach to this
problem; of these, [30] considers dynamic layouts. Some authors have addressed unifying loop and data transforma-
tions into a single framework. These works [14, 31] use loop permutations and array dimension permutations in an
exhaustive search to determine the appropriate loop and data transformations for a single nest and then extend it to
handle multiple nests.

Researchers have explored the use of a performance-model driven approach in combination with empirical search
[52, 12]; of these, Mitchell et al. [52] have explored the useof offline exploration. Iterative compilation [37, 36, 20]
has received a lot of attention but it is time consuming. Motivated by this, Knijnenburg et al. [38, 39] have explored
the use of static models in the context of caches along with empirical search to reduce the time needed for iterative
compilation by as much as 50%. More recently, Yuki et al. [62]have explored the automatic creation of performance
models for tile selection for use in machine learning through the use of simple program features, running synthesized
kernels.

We are not aware of any work that addresses the kind of data layout optimization problem considered in this
paper. Moreover, our approach is driven by empirically derived cost models and is constrained by the data layout
requirements of the library calls used.

FFTW [19], PHiPAC [8] and ATLAS [59] produce high performance libraries for specific computation kernels,
by executing different versions of the computation and choosing the parameters that optimize the overall execution
time. Our approach is similar to these in that we perform empirical evaluation of the constituent operations for various
possible parameters. However, our work focuses on a more general class of computations than a single kernel. This
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forbids an exhaustive search strategy. The Sparsity system[27] also uses offline benchmarking to get parameters for
a run-time tuning model, specifically for run-time data structure tuning in sparse linear algebra kernels.

As mentioned earlier, the approach presented in this paper may be viewed as an instance of the telescoping lan-
guages approach [33, 34, 11, 10]. The telescoping languagesapproach provides a high-level scripting interface for a
computation to the user, while achieving high performance that is portable across machine architectures. It focuses
on mechanisms to pre-optimize libraries and expose their performance trade-offs to allow the code generator to make
effective use of the libraries.

Templates for algorithm recognition were presented by Alias et al. [2]. Building on this, Alias and Barthou [3]
proposed a method that helps a user locate all fragments of code that can be replaced by library calls. Their approach
does not include data layout transformations, which we address. Djoudi et al. [17] have explored the use of code (i.e.,
loop) specialization for different inputs through run-time switching among pre-generated versions. Khan et al. [35]
have developed an approach for improving the performance ofcomputational kernels through fast instantiations of
templates done mostly at compile-time and occasionally, with negligible overhead, at run time. None of these works
address layout transformations.

8. Conclusions

We have described an approach to the synthesis of efficient parallel code for tensor contractions that reduces the
overall execution time. The approach has been developed fora program synthesis system targeted at the quantum
chemistry domain. The code is generated as a sequence of DGEMM calls interspersed with index permutation and
redistribution to enable the use of the BLAS libraries and toimprove overall performance. The costs of the constituent
operations in the computation were empirically measured and were used to model the cost of the computation. This
computational model has been used to determine layouts and distributions that minimize the overall execution time.
Experimental results on three different architectures have been provided that show the effectiveness of our optimization
approach.

This approach combines the best features of empirical optimizations, namely, the incorporation of complex behav-
ior of modern architectures, and a model-driven approach that enables efficient exploration of the search space. The
regularity of the constituent operations encountered in the target application has been used to empirically measure the
constituent operations. We have presented a dynamic programming solution to choose the data layouts and calls to
optimized GEMM kernels that is linear in the number of tensorexpressions to be optimized.

Since layout optimization applies to any GEMM or index permutation library, we plan to generalize the approach
to select between different GEMM implementations. E.g., it would be straightforward to let our algorithm decide
whether to use the vendor library or ATLAS for GEMM calls if for certain dimension sizes ATLAS is found to
outperform the vendor library. Similarly, on a cluster, thealgorithm might choose among our extended version of
Cannon’s algorithm, Global Arrays DGEMM [54, 24, 53], and ScaLAPACK [13]. We are currently working on a new
software infrastructure for the Tensor Contraction Enginethat would facilitate such experiments as well as additional
measurements using larger equations on a wider variety of architectures.

We are planning to conduct experiments on larger clusters and clusters of multi-core processors that would let us
better understand the trade-offs between GEMM computation time and redistribution cost in order to further optimize
tensor computations on large machines. For our extension ofCannon’s algorithm, we are planning to explore the
relative impacts on the performance due to the shape of the processor grid, the choice of distribution indices, and
redistribution. Finally, we intend to further explore the trade-offs between empirical measurements and estimation of
the cost of constituent operations, so that it can be tuned bythe user to achieve the level of accuracy desired.

The empirical data-layout optimization described in this paper can be viewed as an instance of telescoping lan-
guages, which understands and optimizes the library components as if they were primitive operations in the base
language. We believe that this approach can be generalized and applied to other computational problems that consist
of a sequence of basic operations with data layouts as optimization parameters.
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