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Abstract

Empirical optimizers like ATLAS have been verffective in optimizing computational kernels in librariehéelbest
choice of parameters such as tile size and degree of looflingris determined in ATLAS by executing flierent ver-
sions of the computation. In contrast, optimizing compgilese a model-driven approach to program transformation.
While the model-driven approach of optimizing compilers éngrally orders of magnitude faster than ATLAS-like
library generators, itsfeectiveness can be limited by the accuracy of the performaroziels used. In this paper, we
describe an approach where a class of computations is nibiteterms of constituent operations that are empiri-
cally measured, thereby allowing modeling of the overai@iion time. The performance model with empirically
determined cost components is used to select library catlschoose data layout transformations in the context of
the Tensor Contraction Engine, a compiler for a high-lexahdin-specific language for expressing computational
models in quantum chemistry. Th&ectiveness of the approach is demonstrated through expetatirmeasurements
on representative computations from quantum chemistry.
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1. Introduction

Optimizing compilers use high-level program transforimiasi to generatefigcient code. The computation is
modeled in some form and its cost is derived in terms of me#ich as reuse distance. Program transformations are
then applied in order to reduce the cost. The large numbear@peters and the variety of programs to be handled
limits optimizing compilers to employ model-driven optiration with relatively simple cost models. As a result,
there has been much recent interest in developing genedaiiming systems that can similarly tune and optimize
codes input by users or library developers [12, 60, 57]. Apphes to empirically optimize a computation, such
as ATLAS [59] (for linear algebra) and FFTW [19] generateusioins for diferent structures of the optimized code
and determine the parameters that optimize the executima ltiy running dierent versions of the code for a given
target architecture and choosing the optimal one. But a@ogbioptimization of large complex applications can be
prohibitively expensive.

In this paper, we decompose a class of computations intoitstituent operations and model the execution time
of the computation in terms of an empirical characterizatibits constituent operations. The empirical measurement
allow modeling of the overall execution time of the compiatat while decomposition enablefdine determination
of the cost model andficient global optimization across multiple constituent@piens. This approach combines
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the best features of empirical optimizations, namely, tl@iporation of complex behavior of modern architectures,
and a model-driven approach that enabl@sient exploration of the search space.

Our domain of interest is the calculation of electronic stuwe properties usingb initio quantum chemistry mod-
els, such as the coupled cluster models [48]. We have deslap automatic synthesis system called the Tensor
Contraction Engine (TCE) that generatéagent parallel programs from high-level expressions foless of com-
putations expressible as tensor contractions [6, 26, 16,T&hsor contractions are essentially matrix multipiicas
generalized to higher-dimensional arrays (i.e., tensof$le computation is represented by an expression tree, in
which each node represents the contraction of two tensgn®thuce a result tensor. The order of indices of the inter-
mediate tensors is not constrained. In contrast to our pidugers on the TCE [6, 26, 16, 15], in this paper, we address
the problem of &ective code generation for tensor contractions (produictaudti-dimensional arrays) in terms of
calls to linear algebra libraries that are optimized for{simensional arrays for a variety of target architectures.

Computational kernels such as Basic Linear Algebra Subresif BLAS) [18] have been tuned to achieve very
high performance. These hand-tuned or empirically optehizernels generally achieve better performance than con-
ventional general-purpose compilers [61]. Significantiioyements in execution time can be obtained if program
transformations can identify these computational keraptsuse these libraries [3]. If General Matrix Multiplicati
(GEMM) routines available in BLAS libraries are used to penfi tensor contractions, the multi-dimensional inter-
mediate arrays that arise in tensor contractions must bheftraned to group the indices to allow a two-dimensional
view of the arrays, as required by GEMM. We observe that thitopaance of the GEMM routines is significantly
influenced by the choice of parameters used in their invocatiVe determine the layouts of the intermediate arrays
and the choice of parameters to the GEMM invocations thaimine the overall execution time. The overall execu-
tion time is estimated from the GEMM and index permutationets. Empirically-derived costs for these constituent
operations are used to determine the GEMM parameters aayllagouts.

The approach presented in this paper may be viewed as andestd the telescoping languages approach [33,
34, 11, 10]. The telescoping languages approach aims ditdtiog a high-levelscripting interface for a domain-
specific computation to the user, while achieving high pennce that is portable across machine architectures, and
compilation time that only grows linearly with the size oéthser script. In this paper, we evaluate the performance
of the relevant libraries empirically. On distributed-nmam machines, parallel code is generated using the Global
Arrays (GA) library [54, 24, 53]. Parallel matrix multipktion is performed using the Cannon matrix multiplication
algorithm [9, 25], extended to handle non-square distigimst of matrices amongst the processors [21]. The matrix
multiplication within each node is performed using GEMM. eTparallel matrix multiplication and parallel index
transformation costs are estimated from the local GEMM aawdsformation costs and the communication cost. We
then use the empirical results to construct a performancgehtbat enables the code generator to determine the
appropriate choice of array layouts and distributions asaye modalities for library calls.

The paper is organized as follows. In Section 2, we elabamatbe computational context, demonstrate potential
optimization opportunities, and then define our problenttiSe 3 discusses the constituent operations in the compu-
tation and the parameters to be determined to generateatareallel code. Section 4 describes the determination of
the constituent operation costs. Section 5 discusses temuaation of the parameters of the generated code from the
constituent operation costs. Results are presented il8déctSection 7 discusses related work. Section 8 concludes
the paper.

2. The computational context

The Tensor Contraction Engine (TCE) [6, 26, 16, 15] is a donspiecific compiler for developing accurate ab
initio models in quantum chemistry. The TCE takes as inpugh-tevel specification of a computation expressed as
a set of tensor contractions and transforms it irfficient parallel code. In the class of computations consajehe
final result to be computed can be expressed as multi-dimealssummations of the product of several input arrays.

The TCE incorporates several compile-time optimizatiomsduding algebraic transformations [45, 46] and com-
mon subexpression elimination [26] for minimizing opepaticounts, finding the optimal evaluation order [44] and
loop fusion [43, 42] for reducing memory requirements, sptime trade-G optimization [15], data locality opti-
mization, which combines loop fusion and tiling for reduglisc-to-memory trdic [22, 7, 40], and communication
minimization [23, 16]. Regardless, of whether outer loopsfased or whether loops are tiled as a result of other
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optimizations, the inner-most perfectly-nested loop :ieah be implemented as a combination of generalized matrix
multiplication and index permutation (multi-dimensioriednsposition) library calls. In this paper, we discuss the
optimal selection of these library calls together with deii@ing the layout of intermediate arrays.

Consider the following tensor contraction expression,taexpression of the coupled cluster singles and doubles
(CCSD) equation [48],

Sla,b,i, j] = Z Ala, b,k 1] x B[c,d, k, 1] x C[c,i] x D[d, j]
c,d.k

where all indices range ovéd. The direct computation of this expression using eightquly nested loops would
requireO(N®) arithmetic operations. Instead, by computing the follogvintermediate partial results, the number of
operations can be reduced@gN®).

Tidikl] =  Bledkl]xClei]
T2 gkl = > Ti[d.i.kI]x D[d. ]
d

Sla.bi,j] =

D A bk 1] x T2 . k.1
kl

It is possible for diferent (non-equivalent) operation-minimal codes to hafeint execution times, or even for
a non-operation-minimal code to out-perform the operationimal ones. However, because of the computational
complexity of operation minimization, we currently onlyeua single operation-minimal form as a starting point for
later optimizations.

Each of the summation expressions above is the contractiampair of tensors. As in matrix multiplication, the
summation indices in a tensor contraction occur twice whida-summation indices occur once. Tensor contraction
can, therefore, be viewed as a generalization of matrixiplicition.

Since dficient tuned library Generalized Matrix Multiplication (&) routines exist, it is attractive to translate
the computation for each tensor contraction node into a GEG4N However, that may require restructuring the
layout (or permuting the indices) of the tensor, so that&y®ut can be viewed as a two-dimensional matrix.

The layout of an array is the order in which the elements argedtin adjacent locations of memory. If the
adjacent elements in memory correspond feedences in the left-most index followed by the indices inrigat, the
array is said to be laid out in column-major order. Variatiorindices from right-to-left is referred to as row-major
order. Following Fortran convention, the argument andltesatrices in a GEMM call are assumed to be laid out in
column-major order. E.g., a matrM([i, j] with n rows andm columns is laid out in memory as follows:

M[1,1], M[2,1],...,M[n, 1], M[L,2],...,M[n,2],..., M[1,m], M[2,m], ..., M[n, m]
The four-dimensional tens@a, b, i, j] has the following layout in memory:
S[1,1,1,1],...,S[N,1,1,1],S[1,2,1,1],...,S[N,2,1,1],...,S[1,N,1,1],...,S[N,N, 1, 1], S[1,1,2,1],..., S[N, N, N, N]

Since the elements for the first two dimensions are consecirtimemory for fixed values dfand j, this four-
dimensional tensor can be viewed as a three-dimensihal N x N tensorS[ab, i, j], where the meta indeab is
computed aa+N(b—1). In general, any consecutive indices can be grouped imeta index. This tensor, therefore,
can be viewed as either of the matri&sbi, j], S[ab,ij], or S[a, bij].

Each of the matrix arguments in a GEMM call has one summatishame non-summation index. In a normal
invocation, the summation index is the right index of the &&fjlument and the left index of the right argument, but
GEMM allows one or both arguments to be supplied in trangpésen. For a multi-dimensional tensor to be viewed
as a two-dimensional matrix, the summation and non-sunemaitidices in the contraction must be grouped into
two contiguous sets of indices. This may involve changirgglélyout of the tensor to meet the requirements of the
GEMM call. For example, the tenséfa, b, k, I] with summation indicek& andl can be viewed as the two-dimensional
N? x N? matrix Alab, k] with non-summation meta indead and summation meta indést. In this case, no layout
transformation is necessary.
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Figure 1: Expression tree for a sub-expression in the CCSatemn. (a) Original expression tree (b) The expanded asiwa tree used for
layout optimization

When the tensor expressions are executed in parallel, thgsaneed to be distributed amongst the processors.
Optimized implementations of parallel matrix-matrix nipliication, such as ScaLAPACK [13], employ a blocked
Cartesian distribution of the two-dimensional arrays angguare processor grid.

For the above 3-contraction example, the first contractaonte implemented directly as a call to GEMM wigh
viewed as arN x N2 rectangular matrixB[c, dkl] andC as anN x N matrix. For the GEMM callB is provided as
a transposed operand a@das a normal operand. The intermedi@ite resulting from this GEMM call is generated
as the two-dimensional matrik1[dkl, i], which corresponds to the tensbi[d, k,1,i]. For the second GEMM call,
T1[d,k,1,i] can be viewed as aN x N2 rectangular matrixT 1[d, kli] and D as anN x N matrix. The resulting
intermediateT 2 is generated as the two-dimensional mailr&kli, j], which corresponds to the tensdR[k, l,i, j],
which is then viewed as ai? x N2 matrix T2[kl, ij] for the third GEMM call. By swapping the left and right opads
to the third GEMM call, the result tens&can be generated in the desired layouSges b, i, j].

However, suppose that the input tengis provided asB[d, c,I,k]. Since the summation indexis neither the
left-most nor the right-most index, the layout of the tensmist be restructured. E.g., the indices could be permuted
to result inB’[c, d, 1, K], which can then be used as a transposed operand in the GENMkabove. Alternatively,
the indices could be permuted to resultBfd, |, k, c], which is then used as a normal operand in the GEMM call.
As we will see in the next section, the execution times fos¢éhevo combinations of index permutation and matrix
multiplication can be significantly fiierent. In either case, howevéar2 will eventually be generated a2[l, k, i, j],
which requires an additional index permutation. If the kgermutation oB is chosen to result in eithd®’[c, d, k, I]
or B'[d, k, I, ¢], the index permutation of 2 can be avoided.

We represent this computation as an expression tree. Asaanpd®, Fig. 1(a) shows the expression tree for the
sub-expression from the CCSD model discussed above. Thefrdw tree is the output array; input arrays form the
leaf nodes. Interior nodes correspond to contractionscétraction nodes, we indicate the indices that are summed
over with a summation symbol. The layouts of leaf nodes arntiefoot of the tree are specified by the user and are
fixed in column major order of the indices. The array refeediabels shown for interior nodes are for convenience in
referring to the result of the contraction, but do not caaistthe layout, which we indicate with curly braces.

An intermediate array can benefit fromfférent layouts when it is produced as the output of one GEMM cal
and consumed as input in another GEMM call. This translatesthe possibility of an index permutation for each
intermediate node. We represent this possibility in an eelpd expression tree that is derived from the original
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expression tree. Each intermediate node in the originalesson tree is duplicated in the expanded expression tree,
with the edge between the original and duplicate node goorating to an an array reshaping or index permutation
operation, labele@, on top of each of the original nodes. For example, Fig. lifoys the expanded expression tree
derived from the expression tree in Fig. 1(a). These dujgltcaodes will be referred to as array reshape nodes.

If the computation does not fit into the available memory, wey loop fusion to minimize the memory re-
quirements. By fusing a loop that is in common between thelywer and consumer of an intermediate array, the
corresponding dimension can be removed from the interrteedi.g., by fusing thé loop between the production
and consumption of 1 above;T 1 can be reduced to a three-dimensional teiiddd, i, k]. A fully fused computation,
however, can be significantly slower because of poor cachavia. E.g., ifT1 is fused to a scalar, it is no longer
possible to use a GEMM call to compute it. After loop fusiorg tite the fused loops and expand fused dimensions
to tile size. By moving all intra-tile loops inside the fustlihg loops, we are left with perfectly nested loop nests
inside the tiling loops that can then be replaced by comlinatof GEMM and index permutation calls. Since the
layout optimization problem presented in this paper is jpreatelent of whether loop fusion and tiling are employed or
not, we restrict our attention to expanded expression aisashiown in Fig. 1(b). Layout optimization has dfeet on
memory usage as well, since index permutations are notnpeefbin place. However, since fiers can be allocated
and deallocated dynamically, thifect is minimal and can be ignored.

Instead of implementing the computation represented bl ancexpression tree as a sequence of GEMM calls
interspersed with array reshaping operations, it is alssipte to implement it directly as a collection of loop nests
one for each node of the expression tree. Optimizing theechehavior of the resulting collection of a large number of
loop nests directly, however, is &fiicult challenge. In general, the best performance can bénalkay implementing
a sequence of multi-dimensional tensor contractions USIBNIM and array reshaping operations.

The problem addressed in this paper is the following:

Given a sequence of tensor contractions (expressed as andegexpression tree), determine the layouts
(i.e., dimension order) of the intermediate tensors, tis¢ridutions (among multiple processors) of all
tensors, and the modes of invocation of GEMM so that the §pdaiomputation is executed in minimal
time.

To facilitate the data exchange between the TCE-generaidel @nd a quantum chemistry package, the layouts
of the input and output tensors are determined by their detadas in the TCE input specification. Since in a dis-
tributed implementation inputs and outputs are stored sk loecause of their size, their optimal distributions can be
determined by our algorithm.

In a sequential implementation, a tensor contraction nedaplemented as a GEMM call and an array reshaping
operation is an index permutation (or a no-op), as shown enettample above. In a distributed implementation,
a tensor contraction node is implemented as a parallel xnauitiplication and an array reshaping operation may
involve a redistribution among the processors in additmthe index permutation. The details of the optimization
parameters are explained in the next section.

Since for ann-dimensional tensor there arg possible index permutations and since there are four plessi
choices for each GEMM invocations, and in the parallel caséiphe possible distributions, the search space is
very large. Simple heuristics do not work, because a wropgutdecision can cause the need for additional index
permutations for ancestor nodes. E.g., choosing the wnotexi permutation foB above resulted in an additional
index permutation foll 2. However, as we will show in Section 5, the constraints isgabon the layouts by GEMM
reduce the size of the search space drastically and reitafgorithm that is linear in the size of the tree.

3. Constituent operations

In this section, we discuss the various operations withercttmputation and their influence on the execution time.
The parameters that influence these costs, and hence tted exeicution time, are detailed.

3.1. General Matrix Multiplication (GEMM)

Matrix multiplication is one of the most important computaial kernels. It has been tuned, sometimes at the
assembly language level, to achieve close-to-peak peafocenby machine and library vendors. These libraries obtain
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Table 1: Configuration of the Itanium 2 cluster at the Ohio&upmputer Center

Node Memory oS Compilers TLB Network Interconnect Comm.
Latency Library
Dual 900MHz 4GB Linux g77,ifc  128entry 178  Myrinet 2000 ARMCI
Itanium 2 2.4.21smp

significantly higher performance than code generated fesetkernels by general-purpose compilers. Recognizing
matrix multiplication operations and using these libraigan, therefore, significantly improve the generated code.
General Matrix Multiplication (GEMM) is a set of matrix migtication subroutines in the BLAS library. It is
used to compute
C = alphax op(A) = op(B) + betax C

In this paper, we use the double precision version of the GEldiine of the form
DGEMM(ta, th, m, n, k, alpha A, Ida, B, Idb, beta C, Idc)

whereta (tb) specifies whetheA (B) is in transposed form. Whea is ‘n’ or ‘N’, op(A) = A; whenta equals ‘t’ or
‘T’, op(A) = AT; alphaandbetaare scalarsC is anM x N matrix; op(A) andop(B) are matrices of dimensiond x K
andK x N, respectively. The matrices are assumed to have a colunor-mamory layout. The parametdds, Idb,
andldc specify the sizes of the leading dimensions of matriseB, andC, respectively.

To illustrate the performance characteristics of DGEMM, mweasured its performance with varying input pa-
rameters on the Itanium 2 Cluster at the Ohio SupercompugateC (Dual 900MHz processors with 4GB memory,
interconnected by Myrinet 2000 network). The cluster’sfiumration is shown in Table 1. The latency measurement
of the interconnect was obtained from the ARMCI Web page $1, 5

Matrix multiplications of the formAx«B were performed, wherm® was a 40064000 matrix andA was anv x4000
matrix, with M varied from 1 to 300. Matrix multiplications involving suablong matrices are quite typical in
guantum chemistry computations, where for a multi-dimamai tensor only one dimension might be contracted. Two
BLAS libraries were evaluated on the Itanium 2 Cluster, titellMath Kernel Library (MKL) 9.0 [28] and ATLAS
3.6.0[59]. Theb argument was specified as ‘t’ for the results shown in Fig) &al Fig. 3(a). Fig. 2(b) and Fig. 3(b)
show the results fotb being ‘n’. The x-axis shows the value M and the y-axis shows the matrix multiplication
execution time per double word in clock cycles. The measergsmwere averages over a large number of runs.
The steady-state performance after the caches were wanmsidowed very little variation and is representative of
guantum chemistry computations with large tensors.

We observe that the performance characteristics of the DBlderation difers between dlierent libraries and
between the transposed and untransposed versions, atitkticatt of the transposed version cannot be interpreted as
the sum of the cost of transposition and the cost of the uspi@sed version. For example, in some of the experiments
with the ATLAS library, the transposed version performstéetFurthermore, the performance can vary quite dras-
tically for small changes in dimension size. It is, therefarot feasible to develop an accurate analytical cost model
that allows the compiler to predict the performance for gidenension sizes and invocation mode.

The cost of GEMM is influenced by the choice of its parametéos.any given tensor contraction, the summation
indices are fixed and cannot be modified. The stride paraméti, Idb, andldc) as well as the scalars are not
beneficial for optimization purposes. The input arrays, &@v, may or may not be transposed, and their relative order
could be changed. Thus, these three parameters need tcebenithetd for each GEMM invocation for optimizing the
overall execution time. Since an analytical cost model wawlt be accurate enough, these parameters are determined
based on performance measurements.

Note that the layout of input and output arrays for a DGEMMbication uniquely determines its parameters. Thus
the problem of determining the DGEMM parameters is equivaie determining the layouts of all intermediates.

For certain input sizes either BLAS implementation may etfiqgrm any others. It would, therefore, also be
possible to let the compiler determine which GEMM implenagion to use for a given invocation. However, since
the vendor libraries typically outperforms ATLAS on avesagspecially for newer versions of the vendor libraries,
we chose not to make this choice an optimization parameter.
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Figure 2: The matrix multiplication times using DGEMM from theM library for C = ABwhereC is of sizeM x N, Ais of sizeM x K, B is of
sizeK x N, andK = N = 4000. (a)tb="t' (b) tb="'n’in input argument to DGEMMM is varied along the x-axis. The y-axis shows the execution
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Figure 3: The matrix multiplication times using DGEMM from th&I8AS library for C = ABwhereC is of sizeM x N, Ais of sizeM x K, Bis of

sizeK x N, andK = N = 4000. (a)tb="t" (b) tb='n’in input argument to DGEMMM is varied along the x-axis. The y-axis shows the execution
time per double word in clock cycles.

Note that on computers with symmetric multiprocessing ($M¥here GEMM routines are often parallelized
using OpenMP, the above observations about the behavioEbfNGapply as well.

3.2. Cannon’s matrix multiplication algorithm

On computer clusters, i.e., in the case of distributed mgnsaveral approaches have been proposed for imple-
menting parallel matrix multiplication [58, 18]. In this jpar, we consider an extension to Cannon'’s algorithm for
parallel matrix multiplication [21, 9, 25] that removes trestriction of using a square grid of processors for array
distribution. The local matrix multiplications on each pessor are performed using DGEMM. While our layout
optimization approach can be applied to any parallel matnittiplication algorithm whose execution time can be
empirically modeled, we chose Cannon'’s algorithm becatusevery dficient with memory usage and communica-
tion, allows computation and communication to be overlappad provides flexibility for optimization.

Cannon’s algorithm assumes a logical view of a group of saes in which the processors form a two-dimensional
square grid. Le€(M, N) += A(M, K) * B(K, N) be the multiplication being performed om#P x VP processor grid.
The input arrays are distributed among the processors ideartical fashion with each processor holding one block
each ofA, B, andC. The algorithm proceeds iWP steps. At the beginning of the first step, the block#\dh the
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Figure 4: The processing steps in the extended Cannon Aigurilnitially, processoP;j; holds blocks labeledjj and Ajj:j+1). The portion of
data accessed in each step is shown in bold.

i-th row of the processor grid are rotated ligfiositions, and those & are rotated up positions. At the beginning of
each subsequent step, every bloclda$ rotated left one position, and every blockBfs rotated up one position. In
each step, the local blocks AfandB are multiplied and added to the local block@f

Since Cannon’s algorithm does not replicate portions ofrthat matrices on multiple processors, it uses memory
very diiciently. Individual matrix blocks can be as large as one fiftlihe storage available on a processor, with
one block from each of the three matrices to perform the cdatipm and storage for two more blocks to allow
communication to be overlapped with computation. Our esiten generalizes the algorithm to allow for logical
views of a group of processors as rectangular processa gnid, unlike Lee et al.'s extension [47], it allows any of
the three indices to be the rotation index and limits the camination time taO(P + Q) for a processor grid of size
P« Q. Further details about our extension of Cannon'’s algoritambe found in [21].

The extended Cannon algorithm for &£ processor grid is illustrated for the matrix multiplicatiC(M, N) +=
AM, K) = B(K,N) in Fig. 4. The processors form a logical rectangular gridl.the arrays are distributed amongst
the processors in the grid. Each processor holds two blocksamd one block of each of the arraBsandC. The
algorithm divides the common dimensiol (n this illustration) to have the same number of sub-blodkach step
operates on a sub-block and not on the entire data local togacessor. In each step, if the sub-block required is
local to the processor, no communication is required. Fghaes in bold the sub-blocks of arrafsandB accessed
in each step. It shows that the entire arBaig accessed in each step.

Given a processor grid, the number of steps is given by thebeuwf sub-blocks along the common dimension
(K). The number of blocks of that are needed by one processor corresponds to the numir@rcessors along the
common dimension, and that Bfcorrespond to the other dimension. Table 2 illustrates theher of steps and the
number of remote blocks required per processor for the plesdistributions with sixteen processors. The number
of steps and the number of remote blocks required per proceepend on the distribution of the arrays amongst
the processors. The block size for communication is indépenof the dimensions. It can be seen thaffedent
distributions have dierent costs for each of the components.

The relative sizes of the arraysand B determine the optimal distribution. When one array is mucgeathan
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Table 2: Extended Cannon algorithm’s per-processor costiifferent distributions of a 16-processor grid

Distribution  #steps #blocks communicated

Array A Array B

1*16 16 15 0
2*8 8 7 1
4*4 4 3 3
8*2 8 1 7
16*1 16 0 15

the other, the cost can be reduced by skewing the distribttioeduce the number of remote blocks accessed for that
array. The shape of the array that is local to each proceffiectathe local DGEMM cost. Thus, the array distribution
influences the communication and computation costs andirspartant parameter to be determined.

The optimization parameters for a parallel matrix multiption using our extended version of Cannon’s algorithm,
therefore, are the shape of the processor grid and theiselettdistribution index for each processor grid dimension
(the remaining index is the rotation index) in addition te tiptimization parameters for the local DGEMM call.

3.3. Index permutation

DGEMM requires a two-dimensional matrix view of the inpufbis means that the summation and non-summation
indices of a tensor must be grouped into two contiguous dateliwes. The layout of a multi-dimensional tensor,
therefore, might have to be transformed to be used as inpDB&MM. Further, an additional index permutation
cost might be worth paying if it can reduce the DGEMM cost tlgio the use of a transposed (or non-transposed)
argument form.

For each architecture of interest, we implemented a cadlectf index permutation routines, one each for a given
number of dimensions. On architectures without SIMD (rigktruction, multiple data) support such as Itanium 2,
the routines were tiled in the fastest varying indices indberce and target arrays. We observed that performing the
computation such that the target arrays are traversed iorthez of their storage resulted in better performance than
biasing the access to the source array. This can be explajné write-back L2 cache in the system, which causes
write-back of dirty blocks when they are replaced. Replametnof read blocks does not pay this penalty. Thus fully
writing a cache line of the target array reduces the costaltieese write-backs. The execution times fdfatent tile
sizes was determined and the best tile size was chosen. Tieenpance of the routines was evaluated on a number
of permutations to determine the tile sizes.

On the Itanium 2 platform, we measured the execution timabexe routines for some index permutations on
four-dimensional arrays of si2¢ x N x N x N, with N varying from 15 to 85. The measurements were averages over
a large number of runs. The steady-state performance h#iaraches were warmed up showed very little variation.
The results are shown in Fig. 5.

Unlike the cost of DGEMM, which for larger tensors is lessrtlnalf a clock cycle per double word, the cost of
index permutation is in the range of 10—20 cycles per doublelWGEMM implementations can achieve such a high
performance, since they use tiling for all levels in the mgniaerarchy to optimize temporal locality. Since tensor
elements only get copied but not reused during an index ptation, there cannot be any temporal locality. Even
though index permutation is only &(N?) operation while GEMM is a®(N®) operation, for the dimension sizes of
interest the cost of index permutation can be a significaritqgfahe total cost.

Different permutations are observed to incufadent costs. Theseftirences are due to variations in spatial
locality because of dierences in the memory access patternsééint permutations. We also notice that the use of
different compilers leads toftirences in performance.

On architectures such as recent Intel x86 processors, V8IBID instructions are available, we generate index
permutation routines following an automatic approach diesd in [51, 26, 50]. The basic idea is to apply loop tiling
at different cach@ LB levels and then to search automatically for the optiroall order, tile sizes, and SIMD code
sequence for index permutation.
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Figure 5: Index permutation times on Itanium 2 for thre@edent permutations for ad x N x N x N matrix using (a) Intel Fortran compiler (b)
g77 compiler.N is varied along the x-axis. The y-axis shows the executioe fper double word in clock cycles.

The layout of the arrays influences the index permutatiotscsd is the parameter to be determined to evaluate
the index permutation cost. Parallel index permutationtzawiewed as a combination of local index permutation and
array redistribution. The extended Cannon algorithm meguihat the summation and non-summation index groups
be distributed along the slowest varying index in that grotipe number of processors along the dimension in the
processor grid corresponding to a group can also be varig@termine the shapsze of arrays used in the local
DGEMM calls. Thus, in addition to the layout of the arraysitidistribution needs to be determined as well.

4. Empirical measurement of constituent operations

4.1. GEMM cost

For determining the precise cost of GEMM, it must be execwigl a range of parameter choices on the target
machine. For the purpose of this paper, we execute it at dertipie for any parameter combinations considered
by our layout optimization algorithm. For small examples;isas the expression tree for the CCSD sub-expression
in Fig. 1(b), this is clearly prohibitively expensive, sinit can result in compilation times that are larger than the
execution time by testing multiple GEMM parameter choigasefach contraction node in the tree. Realistic tensor
contraction expressions in quantum chemistry, howevessisbof dozens to hundreds of sub-expressions of this form
with repeated occurrences of the same tensor sizes. Cattigimgsults of any GEMM measurements, therefore, will
be very dfective. Furthermore, quantum chemistry computationsaéquire out-of-core treatment [7, 40, 41], where
tiles of multi-dimensional arrays are brought into memany aperated upon. These loops are in turn enclosed in an
outermost loop in iterative chemical methods. Thus, eacttraction node in the expression tree will correspond to
multiple invocations of GEMM. Even with performing GEMM nmaements at compile time, the compilation time
will still be much less than the execution time.

Alternatively, the GEMM performance measurements coulgdréormed dfine at TCE installation time. Since
the range of tensor dimension sizes is limited and sincetgoanhemistry models typically use no more than eight
dimensions and no more than twdfdrent dimension sizes per tensor, this would not lead to @owtorial explo-
sion. Furthermore, for larger dimension sizes it would bgsjiae to interpolate between measurements. The spikes
observed in our MKL measurements in Fig. 2 occurred whiewas a multiple of four. Using special treatment for
multiples of four and a careful selection of measured vatass therefore, make interpolation very precise. While
even with interpolation a few thousand measurements migiheleded, this would be an acceptable one-time cost.

4.2. Cannon’s matrix multiplication

The cost of parallel matrix multiplication using Cannonfgaithm is the sum of the computation and the com-
munication costs. Since the local computation is perforaséidg DGEMM, the computation cost can be derived from
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the DGEMM cost. The communication cost is the sum of the comoation costs at the beginning of each step. We
summarize the model employed for the Cannon’s matrix midéfion algorithm [21]. A latency-bandwidth model
is used to determine the communication cost. Consider thexmaultiplication C(M, N) += A(M, K) *« B(K, N) and
assume thakK is the rotation index. LePy, Pk, Py be the number of processors into which the array is distibut
along theM, N, andK dimensions, respectively. The total communication coghisn by

M x K

CommnCost = (T,S + WM*PK) # (Pk — Px/Pwm)
K % N

CommnCost = (TS + m) # (Pk — Px/Pn)

CommnCost = CommnCogst+ CommnCosgi,

whereCommnCogt and CommnCogt are the initialization and shift costs for matric&sand B, respectively.Ts is
the latency of the interconnect shown in TableBW, the bandwidth, is estimated from a table constructed fioen t
bandwidth curve on the ARMCI Web page [1, 55]. Similar foramiare used if another rotation index is chosen.

4.3. Index permutation

Fig. 5 shows the performance of our index permutation restiior some permutations. The performance of the
implementation appears to be relatively independent ofath@y dimensions, but is influenced by the permutation
being performed.

An analysis of the implementation revealed that the vamin the per-element permutation cost was primarily
influenced by the variation in the TLB misses foffdrent permutations and the capability of compilers to perfo
efficient register tiling.

We estimated the index permutation cost to consist of twopmrants. The first component is the basic copy cost,
the minimum cost required to copy a multi-dimensional grtegether with the index calculation. We determined two
types of basic copy costs. The first, referred tagss the one in which both the source and target arrays arersest
with sufficient locality. The other basic copy cost, referred t@;ass one in which there is only locality in traversing
the target array. Depending on the permutation and the sibe @arrays, one of these basic copy costs is chosen. The
basic costg, andc; were found to be compiler dependent. On the Itanium 2 sydtesg,were determined to be 9.5
and 11.3 cycles, respectively, per double word with thel Frdetran Compiler and 12.9 and 15.9 cycles, respectively,
per double word with g77. The second component is the TLB wus$. Each processor on the Itanium 2 cluster
had an 128 entry fully-associative TLB with a miss penalt2bfcycles. Diferent permutations can lead tdtdrent
blocks of data being contiguously accessed andfédreént strides. The permutation to be performed and the array
size are used to determine the TLB cost.

In the parallel version of the algorithm, index permutatisrcoupled with array redistribution. Transformation
from one layout and distribution configuration to anotheaésomplished in two steps, a local index permutation
followed by array redistribution.

A combination of index permutation and redistribution casuit in each processor communicating its data to
more than one processor. The communication cost is estindétferently for diferent cases. When the target patch
written to is local to a processor no communication is regpirWWhen the layout transformation is such that each
processor needs to communicate its data to exactly one ptbeessor, the cost is uniform across all the processors
and is estimated as the cost of communicating that blockll tlzer cases, we estimate the communication cost to
be the cost incurred by the processor whose data is scattarexdg the most number of processors.

5. Composite performance model

In this section, we discuss how the empirical measuremdrttseecconstituent operations are used to determine
the parameters that optimize the overall execution time.
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5.1. Constraints on array layouts and distributions

Each of the input and output arrays is constrained to havespeeified layout. Each array corresponding to
a contraction node is produced as the output of a GEMM call.e¥sained earlier, GEMM operates on a two-
dimensional view of the input arrays producing as output@dimensional array represented by an index order with
the non-summation indices of the first input array followegcttlee non-summation indices of the second input. For
the set of non-summation indices for each input array, abjide permutations are valid.

The array reshape (or index permutation) nodes act as inputee GEMM calls. Thus, the layout of arrays
represented by the array reshape nodes is constrained bystnietions imposed on the inputs to GEMM calls. All
summation indices are grouped together and laid out comtigly, with some choices for the remaining indices.

In the expanded expression tree, each intermediate nodtbés a contraction node or an array reshape node. A
contraction node corresponds to an array that is the oufplie@ontraction and does not serve as the input to another
GEMM call. An array reshape node corresponds to an arraystiae input of a GEMM call and is produced as the
result of an array reshape operation. In particular, it ispnoduced as the output of another GEMM call. Thus, each
interior node isassociatedvith exactly one contraction, with each contraction nodeegponding to the output of
the associated contraction and each array reshape no@sponding to input of the associated contraction.

We now formally define the set of possible permutations tovaduated for each intermediate node. The summa-
tion (contraction) and non-summation indices in each emtivn are identified as explained in Section 2. For each
noden, we define the summation indices and non-summation indeésose in the associated contraction:

SI(n) Setof summation indices in contraction associated withemod
NSI(n) Set of non-summation indices contributed by node its associated contraction

Let P(s) denote the set of all permutations of the indices in indéxsselhe indices in each interior node can
be partitioned into two groups. For a contraction node,dlesrespond to the set of indices from each of the input
arrays. For an array reshape node, these correspond tottbhessenmation and non-summation indices. The two
groups themselves can be permuted with one another, whtbrajtoup appearing on the left.

Leti; andi, represent the input arrays contributing to contractionemodThe set of all valid permutations for
each interior node is given by:

S() = {[1,r],[r, 1]} VI e P(NSI(i1)), r € P(NSI(i»)) if nis contraction node
S AL LI VI e P(SI(R)), r e P(NSI(n)) if nis anindex permutation node

where [, r] is the concatenation of the ordered lists of inditesdr to produce a complete index list (and similarly
for [r,1]). The size of the resulting set is given by:

S(r)] = 2 |P(NSI(i1))| x [P(NSI(i»))|l if nis contraction node
Tl 2x[P(SI())| x [P(NSI(n))| if nis anindex permutation node

where the size of permutation set[P(s)| is |g!. For example, consider the contraction nad2in Fig. 1(b). The
indices inT2 are grouped intdi, k, 1} and{j} based on whether they are provided by the input afr&yor by D’.
The number of possible layouts is thus 3! = 1! = 12. Similarly, the indices in the contraction no@& can be
grouped into the non-summation indidésj} and the summation indicék, |}. The number of possible layouts is thus
2% 2! %2!1 =8,

The extended Cannon algorithm requires the processora@rigkich tensor contraction to be Cartesian in nature.
In addition, the children of each contraction node in thereggion tree are required to have the same processor grid
as that node. Thus, for each distribution of a contractiatenehere is a corresponding distribution for its children.
There is no restriction on the distribution of the contracthodes themselves.

The indices in an intermediate tensor, corresponding toi@nior node, are divided into two groups as explained
above. Each of these groups of tensor indices form one md&x ifor the matrix view of the tensor. We assume
a two-dimensional processor grid with blocked data diatidn to match the needs of the Cannon algorithm. The
choice of distribution of the tensor onto a processor gnolives picking one index from each group and partitioning
it amongst the processors. These indices are referred e alstribution indices. A choice of distribution is unidye
defined by the processor grid employed in the distributiog. (2% 2, 1x 4, etc.) and the distribution indices. For the
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discussion of the algorithm, a distribution is defined tohee pair of processor grid and distribution indices; in other
contexts, it is often synonymous with processor grid.

The block of data owned by a process can be laid out in any otfegdossible permutations enumerated above.
Note that the choice of data distribution amongst the pismrsss orthogonal to the choice of data layout within each
process, with neither constraining the other. Both choézesonly constrained by the role of the tensor in the GEMM
operation it participates in.

5.2. Determination of optimal parameters

For the specified layouts of the root and leaves of the exgherpression tree, we determine the distributions
of the root and leaves and the layouts and distributionsefritermediate arrays. The layouts of the root and leaves
are fixed to facilitate the data exchange with a quantum céteynpackage. For each layout of an array produced
by GEMM, the arrays corresponding to its children nodes egeliired to have a compatible layout, i.e., the order in
which the summation and non-summation indices are growgredjuired to be identical in the produced and consumed
arrays. This is because GEMM does not perform any index pation within a group. Such layouts of the input
arrays are said to be compatible with the given layout of tiayaoutput by the contraction node. Similarly, the
distribution (processor grid and distribution indices)}toé children must be compatible with the parent as explained
above.

The algorithm proceeds by recursively computing the cast@ated with a node for each layout and distribution
as the sum of the costs associated with producing its inphilsi(en in the expanded expression tree) in all compatible
layouts and distributions and transforming the layout aistribution to produce that node. This assumes that the
performance of the individual operations is independemnfone another. While this may not hold for small arrays
due to cacheféects, it is a valid assumption for the large tensors used ircomputational domain. Note that the
cost to compute a node for a given layout and distributiomdependent of its use in another contraction or index
permutation operation. Such a decoupled cost functionlesabdynamic programming solution in which the costs
are propagated in a bottom-up fashion with any given altemaonfiguration (layout and distribution) for each node
evaluated at most once.

The configuration of an arrayis represented by a distribution-layout parlj. The cost of a node is determined
as the least cost to compute its children and subsequentipute it from its children. The cost to evaluate natle
together with all intermediates in the subtree rooteq atith distributiond and layout is computed as follows:

mian'ED(n),W’GL(n) C’[(il9 d” I’) + Cip((il, d/5 |/) - (n’ d’ I))
if nis a index permutation node

G AN = mingesey Celin, d. 1) + Cliz 6, 17) + Cagl(in, 1) X (i, 17) = (n, . 1))
if nis a contraction node
where
C: = Total cost of computing a node with given distribution angblat
Cip = Cost of the required index permutation
Cdqg = Cost of the required DGEMM invocation

D/L = Allfeasible distributiongayouts of a node
i1/ip = Left/right child ofn

As shown by the above expressions, the total cost of conipataf each non-leaf node, forféiérent configura-
tions, can be determined from the cost of computing its childrom the leaf nodes and the cost of the basic operation,
index permutation or GEMM, to compute the node from its afeifd The algorithm first determines the feasible lay-
outs for each of the nodes in the expanded expression tresopiimal cost of the root node is subsequently computed
using the dynamic programming formulation.

A traversal of the tree together with memoization of therimediate results for all valid layouts and distributions
ensures that each node in the expanded expression tre@asstrd exactly once. Thus, the cost incurred by this
algorithm is linear in the number of nodes in the tree. Foheamntraction node, the layout chosen for the output
array constrains the layouts of its inputs to two choices —etivér each is transposed or not. Thus the evaluation of
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Table 3: Configuration of the Intel Xeon workstation

Processor Num. of Memory  OS Compiler BLAS
Processors Library
Intel Xeon E5530 1 4GB Linux Intel Compiler Intel Math Kernel
2.4GHz quad-core 2.6.31 11.1 Library 10.2

Table 4: Configuration of the AMD Opteron workstation

Processor Num. of Memory  OS Compiler BLAS
Processors Library
AMD Opteron 8218 4 16GB Linux Intel Compiler AMD Core Math
2.6GHz dual-core 2.6.18 10 Library 14.3.0

a GEMM node considers four alternatives ((‘'n’, ‘n”), (‘nt), (‘t', ‘n’), (‘t’, t")) for each layout. The evaluationof

the cost of an index permutation node needs to consider niteraeaives. In particular, the number of alternatives is
given by the cross product of all possible layouts of the irgnd output arrays. Given that the number of possible
layouts in itself is non-linear, this operation could be exgive to compute. We overcome this limitation using the
insights gleaned from Section 3.3. The similarity in thetsqeer element for a variety of permutations is used to
categorize the permutations into a small number of choaash of which is evaluated in terms of the basic copy cost
and the TLB miss cost.

Thus, the only non-linear component in the cost associaittdie approach presented is the factor corresponding
to the number of possible layouts of an output array to beuatatl in each contraction node. Even this factor is
eliminated when we consider the performance profile astatisith a GEMM call. Recall that the GEMM call does
not recognize the elierent layouts of indices within the two groups of indices —e @ach corresponding to the non-
summation indices from the two input arrays. In particuddrsuch layouts result in array dimensions of the same
size when viewed as a two-dimensional array. Thereforesual layouts incur the same GEMM cost, and only the
four choices corresponding to possible transpositionsmits need to be evaluated.

The cost incurred by the algorithm is, therefore, lineahmnumber of nodes. The cost associated with each node
is a small constant, corresponding to the few alternativéetevaluated.

6. Experimental results

We evaluated our approach on threffetient systems. The only distributed-memory computer idtdreum 2
cluster at the Ohio Supercomputer Center, whose configuréishown in Table 1. The other two systems that we
used are a single-processor four-core Intel Xeon E5530 statikbn and a four-processor dual-core AMD Opteron
8218 workstation. The configuration details of these twaesys are listed in Tables 3 and 4, respectively. We believe
these two workstation systems represent the typical emviemts where small- to mid-scale tensor contraction com-
putations are carried out while large computations arenqgfzformed on clusters. All the experiment programs were
compiled with the Intel Fortran Compiler for its better pgrhance. Our extension of Cannon'’s algorithm was only
used on the Itanium 2 cluster. We used the natively optimiiedS library for each system. With Intel processors
it was the Intel Math Kernel Library (MKL) [28] and with AMD pcessors it was the AMD Core Math Library
(ACML) [4]. We did not use ATLAS to report our results as rec@PU vendor-provided libraries often perform bet-
ter than ATLAS and most large-scale computational enviremis have CPU vendor-provided libraries pre-installed
and maintained. We measured the constituent operation thmege platforms and performed benchmarks using the
following two computations in our domain:

CCSD. We used a typical sub-expression from the CCSD theory fardehing electronic structures. It is the same
example as in Fig. 1, except that the layouts of the input asdlIt tensors have been reversed to allow interfacing
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Table 5: Layouts and distributions for the CCSD computatartlie unoptimized and optimized versions of the code

Unoptimized Optimized
Array Distributionf  Dist/ Layout GEMM Distributiort  Dist/ Layout GEMM
Proc. Grid Indices Parameters Proc. Grid Indices Parameters
A 2,2) k. a) (I,k,b,a) - 1 4) k. a) (I,k,b,a) -
A (2,2) @k (balk - - - - -
B 2,2) (c. k) (d,c,1,k) - 1 4) (c. k) (d,c, I, k) -
B’ 2,2) k) (d,1,k,c) - 1 4) (c, k) (c,d,l, k) -
c (22 @i,c) (i,0) - (14 @i.c) (i,0) -
(o4 2,2) (c,i) (c,i) - - - - -
D (22 (4. d) (j.d) - 14 (j.d) (j,d) -
D’ (2.2) (d, ) (d. ) - - - - -
T1 22) (k. i) (d,1,k,i) B.,C’.(‘'n’, ‘n’) 1.4) (i, k) @,d,1,ky  C,B,(n,‘n)
TY 2,2) @i,d) (I, k,i,d) - 1 4) d,k) (d,i,1,k) -
T2 22) (1)) (ILki,j) TI,D,(n",N) 1,4 (J, k) (ji,Lky  D,T2,(n, 'n)
T2 (22 ki) (ki j) - - - - -
s (2.2) @i (baij AT2,(n N (4.1) @ maji) AT2(tT)
S (2’ 2) (iva) (j9i’b7 a) - (:L4) (i’a) (j’i’b’ a) -

with Fortran code.

Slj.i.b.al = All.kbalx > > B[d,c,I,K xCli,c] | x D[j, ]
1,k d c
On the Itanium 2 cluster, all the array dimensions were 64tHiersequential experiments and 96 for the parallel
experiments. On the two workstation systems, due to thelsrmémory sizes, we used 64 and 80 for the sequential
and parallel experiments, respectively.

AO-to-MO transform.This expression, henceforth referred to as the 4-indexstoam, is commonly used to trans-
form two-electron integrals from atomic orbital (AO) bagismolecular orbital (MO) basis.

Bla, b,c,d] = Z C1[s d] x Z c2[r, ] x Z C3[q, b] x Z C4[p,a] x A[p,q.r, 5]
5 r q p

On the Itanium 2 cluster, the array dimensions were 80 andid6¢ sequential and parallel experiments, respectively.
On the two workstation systems, we used 64 and 80 for the aiglend parallel experiments, respectively.

The chosen dimension sizes are fairly large. A four-dimamedi tensor with dimension size 96 and double-
precision floating point numbers as elements requires 648K &orage. With dimension size 64, such a tensor
requires 128MB of storage. Since the computations involuétiple tensors, any significant increase would require
more processors or out-of-core computation.

We compared our approach with the baseline implementatigvhich an initial layout for the arrays is provided
and, in case of a cluster wiiprocessors, a fixeP x VP array distribution is required throughout the computation
The order of parameters in the GEMM call is the same as the ofdeibtrees in the expression tree, with an (‘'n’, ‘n’)
invocation mode. This approach was, in fact, used in ouyaanplementations. The optimized version is allowed
flexibility in the distribution (but not the layout) of thepit and output arrays.

Table 5 shows the configurations chosen for each array inatedlel experiment on the Itanium 2 system for the
unoptimized and optimized cases. A first look reveals thaintiimber of intermediate arrays is reduced figctive
choice of layouts and distributions. The GEMM parametersafbthree GEMM invocations are fierent, either in
the order chosen for the input arrays or in the transposifdhe input parameters. The distribution chosen for all the
arrays is diferent from those for the unoptimized version of the companat

As explained in Section 2, bo® andT1’ are viewed a® x N° rectangular matrices for the purpose of GEMM,
while T2 is viewed as amN?> x N? matrix. Because of the rectangular shape®oandT1’, the algorithm chose
rectangular processor grids for all matrices. While a sqar2) processor grid would have been mof&agent
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Table 6: Sequential performance results for CCSD and 4in@esform on Itanium 2

Unoptimized (secs) Optimized (secs)
GEMM Index Exec. GEMM Index Exec.
Permutation Time Permutation Time
CCSD 55.28 1.41 56.69 45.58 0.78 46.36
4index  10.06 2.58 12.64 10.58 0.0 10.58

Table 7: Parallel performance results on 4 processors folBC&® 4index-transform on Itanium 2

Unoptimized (secs) Optimized (secs)
GEMM Index Exec. GEMM Index Exec.
Permutation Time Permutation Time
CCSD 157.93 7.21 165.14 136.41 2.86 139.27
4index 12.23 7.74 19.97 7.57 3.64 11.21

Table 8: Sequential performance results for CCSD and 4itidgsform on Intel Xeon

Unoptimized (secs) Optimized (secs)
GEMM Index Exec. GEMM Index Exec.
Permutation Time Permutation Time
CCsD 15.71 0.30 16.01 15.66 0.07 15.73
4index 1.19 0.22 1.41 1.30 0.0 1.30

for the GEMM call involving the square matrix view df2, the elimination of the redistribution operation fb2
outweighed the benefit of a moréieient GEMM call.

The final array reshape operation fr@hto S involves only a layout transformation and no redistribatisince
the processor dimensions for indideand j, respectively, contain only one processor. (Alternayiviie resulting
distribution indices could have been chosen to jpa)()

Table 6 and Table 7 show the sequential and parallel resultaoium 2, respectively. In the parallel CCSD exper-
iments, the GEMM and index permutation times reported sulesiine communication costs. The optimized version
has close to 20% improvement over the unoptimized versi@inmost all cases. The parallel 4-index transform has
an improvement of more than 75% over the unoptimized versitie dfective choice of GEMM parameters results
in a noticeable improvement in the GEMM cost for most casdse idex permutation cost is either improved or
completely eliminated. The traddgfdetween the GEMM and the index permutation costs can bewdisar the se-
guential 4-index transform experiment. In this experimérg optimization process chooses an inferior configunatio
for the GEMM computation, so as to eliminate the index peatioh cost completely, and hence reduce the overall
execution time.

Table 8 and Table 9 show the sequential and parallel resnlthe Intel Xeon workstation, respectively. The
parallel version has four threads each running on its owogssor core. As index permutation is highly optimized on
this processor, the sequential and parallel improvemeitts@CSD are 1.8% and 2.1%, respectively. However, the
parallel 4-index transform still has an improvement of 32.aver the unoptimized version. Table 10 and Table 11
show the sequential and parallel results on the AMD Opterorkstation, respectively. The parallel version has eight
threads each running on its own processor core. Compardtetintel Xeon workstation, on the AMD platform
index permutation is not as highly optimized due to its mpttcessor structure and other micro-architectural facto
Hence, we achieved a 147.7% improvement with the paralietléx code.

Fig. 6 and Fig. 7 show the relative improvements of the og@diover the unoptimized versions of CCSD and
the 4-index transform, respectively, for all configuratioi\s these figures show, our algorithm in all cases reduces
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Table 9: Parallel performance results on 4 processors folDC&® 4index-transform on Intel Xeon

Unoptimized (secs) Optimized (secs)
GEMM Index Exec. GEMM Index Exec.
Permutation Time Permutation Time
CCsSD 15k.01 0.67 15.68 15.18 0.18 15.36
4index 0.99 0.42 1.43 1.07 0.0 1.07

Table 10: Sequential performance results for CCSD and 4itd&sform on AMD Opteron

Unoptimized (secs) Optimized (secs)
GEMM Index Exec. GEMM Index Exec.
Permutation Time Permutation Time
CCsSD 30.21 2.14 32.35 30.08 0.25 30.34
4index 2.14 0.56 2.70 2.52 0.0 2.52

Table 11: Parallel performance results on 4 processors f&@OC&hd 4index-transform on AMD Opteron

Unoptimized (secs) Optimized (secs)
GEMM Index Exec. GEMM Index Exec.
Permutation Time Permutation Time
CCSD 14.53 2.66 17.19 14.69 0.54 15.23
4index 2.70 1.24 3.94 1.59 0.0 1.59

or eliminates the index permutation cost. In some case$oibses lessficient DGEMM modes in exchange for
eliminating the index permutation cost, while in severatamces it is also able to improve the DGEMM performance.

Our measurements show that our layout optimization is beiaéfor any architecture, multi-core, SMP, or cluster.
Since DGEMM performs best on large arrays, and since everofoputations that are near the memory limit we see
significant improvements, we can conclude that we would sgdvements on larger clusters as well. With larger
dimension sizes and a larger cluster, @@ ) cost of DGEMM would dominate more over tki¥N?) cost of index
permutation. On the other hand, the cost of array redigtabs would increase wherever all-to-all communication
is needed. Since in many cases our optimization was abledtaeethe DGEMM cost, we would expect similar
reductions to the local DGEMM computation on a larger clus&milarly, the ability of our algorithm to eliminate
some redistributions would be of benefit on a larger clusted, the improvement obtained by adapting the geometry
of the processor grid to the geometry of the input tensorgpeeted to carry over to any cluster size.

7. Related work

There has been prior work that has attempted to use datatlaptimizations to improve spatial locality in pro-
grams, either in addition to or instead of loop transforovai Leung and Zahorjan [49] were the first to demonstrate
cases where loop transformations fail (for a variety of oea} for which data transformations are useful. The data
transformations they consider correspond to non-sindinaar transformations of the data space. O’Boyle and
Knijnenburg [56] present techniques for generatifigcent code for several layout optimizations such as linearst
formations of memory layouts, alignment of arrays to pageno@aries, and page replication. Several authors [5, 29]
discuss the use of data transformations to improve locatitghared memory machines. Kandemir et al. [32] present
a hyperplane representation of memory layouts of multiesisional arrays and show how to use this representation
to derive very general data transformations for a singléeptly-nested loop. In the absence of dynamic data layouts,
the layout of an array has an impact on the spatial localiyatteristic of all the loop nests in the program that access
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Figure 7: 4-index performance relative to unoptimized code.

the array. As a result, Kandemir et al. [30, 31, 32] and Leumdj Z2ahorjan [49] present a global approach to this

problem; of these, [30] considers dynamic layouts. Somieaxsthave addressed unifying loop and data transforma-
tions into a single framework. These works [14, 31] use loeprutations and array dimension permutations in an
exhaustive search to determine the appropriate loop ardtdatsformations for a single nest and then extend it to
handle multiple nests.

Researchers have explored the use of a performance-madg dpproach in combination with empirical search
[52, 12]; of these, Mitchell et al. [52] have explored the o$effline exploration. Iterative compilation [37, 36, 20]
has received a lot of attention but it is time consuming. Maigd by this, Knijnenburg et al. [38, 39] have explored
the use of static models in the context of caches along withirgral search to reduce the time needed for iterative
compilation by as much as 50%. More recently, Yuki et al. [6&}e explored the automatic creation of performance
models for tile selection for use in machine learning thiotite use of simple program features, running synthesized
kernels.

We are not aware of any work that addresses the kind of datatayptimization problem considered in this
paper. Moreover, our approach is driven by empirically \d&ticost models and is constrained by the data layout
requirements of the library calls used.

FFTW [19], PHIPAC [8] and ATLAS [59] produce high performanlibraries for specific computation kernels,
by executing diterent versions of the computation and choosing the parasnttat optimize the overall execution
time. Our approach is similar to these in that we perform eicgdievaluation of the constituent operations for various
possible parameters. However, our work focuses on a momergleciass of computations than a single kernel. This
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forbids an exhaustive search strategy. The Sparsity sy@&€éhalso uses filine benchmarking to get parameters for
a run-time tuning model, specifically for run-time data stae tuning in sparse linear algebra kernels.

As mentioned earlier, the approach presented in this papgrb® viewed as an instance of the telescoping lan-
guages approach [33, 34, 11, 10]. The telescoping langugesach provides a high-level scripting interface for a
computation to the user, while achieving high performamee is portable across machine architectures. It focuses
on mechanisms to pre-optimize libraries and expose thefiopeance trade-ts to allow the code generator to make
effective use of the libraries.

Templates for algorithm recognition were presented bysAéitial. [2]. Building on this, Alias and Barthou [3]
proposed a method that helps a user locate all fragmentgeftbat can be replaced by library calls. Their approach
does not include data layout transformations, which weesdrDjoudi et al. [17] have explored the use of code (i.e.,
loop) specialization for dierent inputs through run-time switching among pre-gereraersions. Khan et al. [35]
have developed an approach for improving the performan@®wiputational kernels through fast instantiations of
templates done mostly at compile-time and occasionallyy megligible overhead, at run time. None of these works
address layout transformations.

8. Conclusions

We have described an approach to the synthesifficfent parallel code for tensor contractions that reduces th
overall execution time. The approach has been developed fwmogram synthesis system targeted at the quantum
chemistry domain. The code is generated as a sequence of Mk interspersed with index permutation and
redistribution to enable the use of the BLAS libraries andrprove overall performance. The costs of the constituent
operations in the computation were empirically measurebivegre used to model the cost of the computation. This
computational model has been used to determine layoutsiatibdtions that minimize the overall execution time.
Experimental results on threeffdirent architectures have been provided that showffeetezeness of our optimization
approach.

This approach combines the best features of empirical amtions, namely, the incorporation of complex behav-
ior of modern architectures, and a model-driven approaahehables fécient exploration of the search space. The
regularity of the constituent operations encounteredértdinget application has been used to empirically measare th
constituent operations. We have presented a dynamic pnogirsg solution to choose the data layouts and calls to
optimized GEMM kernels that is linear in the number of teresquressions to be optimized.

Since layout optimization applies to any GEMM or index petation library, we plan to generalize the approach
to select between fierent GEMM implementations. E.g., it would be straightfard/to let our algorithm decide
whether to use the vendor library or ATLAS for GEMM calls ifrfoertain dimension sizes ATLAS is found to
outperform the vendor library. Similarly, on a cluster, tdgorithm might choose among our extended version of
Cannon’s algorithm, Global Arrays DGEMM [54, 24, 53], anchBAPACK [13]. We are currently working on a new
software infrastructure for the Tensor Contraction Engdlivae would facilitate such experiments as well as additiona
measurements using larger equations on a wider varietychftactures.

We are planning to conduct experiments on larger clustad<hsters of multi-core processors that would let us
better understand the trad&sobetween GEMM computation time and redistribution costrdeoto further optimize
tensor computations on large machines. For our extensi@aohon’s algorithm, we are planning to explore the
relative impacts on the performance due to the shape of theepsor grid, the choice of distribution indices, and
redistribution. Finally, we intend to further explore thade-dfs between empirical measurements and estimation of
the cost of constituent operations, so that it can be tuneatidyser to achieve the level of accuracy desired.

The empirical data-layout optimization described in thagp@r can be viewed as an instance of telescoping lan-
guages, which understands and optimizes the library coemeraes if they were primitive operations in the base
language. We believe that this approach can be generalimkdplied to other computational problems that consist
of a sequence of basic operations with data layouts as @atiioh parameters.
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