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Abstract. Empirical optimizers like ATLAS have been very effective in optimiz-
ing computational kernels in libraries. The best choice of parameters such as tile
size and degree of loop unrolling is determined by executing different versions of
the computation. In contrast, optimizing compilers use a model-driven approach
to program transformation. While the model-driven approach of optimizing com-
pilers is generally orders of magnitude faster than ATLAS-like library generators,
its effectiveness can be limited by the accuracy of the performance models used.
In this paper, we describe an approach where a class of computations is modeled
in terms of constituent operations that are empirically measured, thereby allowing
modeling of the overall execution time. The performance model with empirically
determined cost components is used to perform data layout optimization in the
context of the Tensor Contraction Engine, a compiler for a high-level domain-
specific language for expressing computational models in quantum chemistry.
The effectiveness of the approach is demonstrated through experimental mea-
surements on some representative computations from quantum chemistry.

1 Introduction

Optimizing compilers use high-level program transformations to generate efficient code.
The computation is modeled in some form and its cost is derived in terms of metrics
such as reuse distance. Program transformations are then applied to the computational
model to minimize its cost. The large number of parameters and the variety of programs
to be handled limits optimizing compilers to model-driven optimization with relatively
simple cost models. Approaches to empirically optimize a computation, such as ATLAS
[22], generate solutions for different structures of the optimized code and determine the
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parameters that optimize the execution time by running different versions of the code
and choosing the optimal one. But empirical optimization of large complex applications
can be prohibitively expensive. In this paper, we decompose a class of computations into
its constituent operations and model the execution time of the computation in terms of
empirical characterization of its constituent operations. The empirical measurements
allow modeling of the overall execution time of the computation while decomposition
enables offline determination of the cost model and efficient global optimization across
multiple constituent operations.

Our domain of interest is the calculation of electronic structure properties using ab
initio quantum chemistry models such as the coupled cluster models [17]. We are de-
veloping an automatic synthesis system called the Tensor Contraction Engine (TCE),
to generate efficient parallel programs from high-level expressions, for a class of com-
putations expressible as tensor contractions [3, 7, 6]. These calculations employ multi-
dimensional tensors in contractions, which are essentially generalized matrix multipli-
cations. The computation is represented by an operator tree, in which each node repre-
sents the contraction of two tensors to produce a result tensor. The order of indices of
the intermediate tensors (multidimensional arrays) is not constrained.

Computational kernels such as Basic Linear Algebra Subroutines (BLAS) [8] have
been tuned to achieve very high performance. These hand-tuned or empirically opti-
mized kernels generally achieve better performance than conventional general-purpose
compilers [23]. If General Matrix Multiplication (GEMM) routines available in BLAS
libraries are used to perform tensor contractions, the multi-dimensional intermediate
arrays that arise in tensor contractions must be transformed to group the indices to al-
low a two-dimensional view of the arrays, as required by GEMM. We observe that the
performance of the GEMM routines is significantly influenced by the choice of param-
eters used in their invocation. We determine the layouts of the intermediate arrays and
the choice of parameters to the GEMM invocations that minimize the overall execution
time. The overall execution time is estimated from the GEMM and index permutation
times. Empirically-derived costs for these constituent operations are used to determine
the GEMM parameters and array layouts.

The approach presented in this paper may be viewed as an instance of the telescop-
ing languages approach described in [15]. The telescoping languages approach aims
at facilitating a high-level scripting interface for a domain-specific computation to the
user, while achieving high performance that is portable across machine architectures,
and compilation time that only grows linearly with the size of the user script. In this
paper, we evaluate the performance of the relevant libraries empirically. Parallel code
is generated using the Global Arrays (GA) library [20]. Parallel matrix multiplication
is performed using the Cannon matrix multiplication algorithm [4], extended to handle
non-square distribution of matrices amongst the processors. The matrix multiplication
within each node is performed using GEMM. The parallel matrix multiplication and
parallel index transformation costs are estimated from the local GEMM and transforma-
tion costs and the communication cost. We then use the empirical results to construct a
performance model that enables the code generator to determine the appropriate choice
of array layouts and distributions and usage modalities for library calls.

The paper is organized as follows. In Section 2, we elaborate on the computational
context, demonstrate potential optimization opportunities and then define our problem.



Section 3 discusses the constituent operations in the computation and the parameters to
be determined to generate optimal parallel code. Section 4 describes the determination
of the constituent operation costs. Section 5 discusses the determination of the parame-
ters of the generated code from the constituent operation costs. Results are presented in
Section 6. Section 7 discusses related work. Section 8 concludes the paper.

2 The Computational Context

The Tensor Contraction Engine (TCE) [3, 7, 6] is a domain-specific compiler for devel-
oping accurate ab initio models in quantum chemistry. The TCE takes as input a high-
level specification of a computation expressed as a set of tensor contraction expressions
and transforms it into efficient parallel code. In the class of computations considered,
the final result to be computed can be expressed as multi-dimensional summations of
the product of several input arrays.

Consider the following tensor contraction expression.

E[i, j, k] = Sum{a, b, c}A[a, b, c]B[a, i]C[b, j]D[c, k]

where all indices range over N. a, b, c are the summation indices. The direct way to com-
pute this would require O(N 6) arithmetic operations. Instead, by computing the follow-
ing intermediate partial results, the number of operations can be reduced to O(N 4).

T1[a, b, k] = Sum{c}A[a, b, c]D[c, k]

T2[a, j, k] = Sum{b}T1[a, b, k]C[b, j]

E[i, j, k] = Sum{a}T2[a, j, k]B[a, i]

This form of the computation is represented as an operator tree. For example, Fig. 1(a)
shows the operator tree for a sub-expression from the CCSD (Coupled Cluster Singles
and Doubles) model [17]. The curly braces around the indices indicate the fact that
there is no implied ordering between the indices. The computation represented by such
an operator tree could be implemented as a collection of nested loops, one per node
of the operator tree. However, optimizing the resulting collection of a large number of
nested loops to minimize execution time is a difficult challenge. But each contraction is
essentially a generalized matrix multiplication, for which efficient tuned library Gener-
alized Matrix Multiplication (GEMM) routines exist. Hence it is attractive to translate
the computation for each tensor contraction node into a call to GEMM. For the above
3-contraction example, the first contraction can be implemented directly as a call to
GEMM with A viewed as an N 2 × N rectangular matrix and D as an N × N ma-
trix. The second contraction, however, cannot be directly implemented as a GEMM call
because the summation index b is the middle index of T1. GEMM requires the sum-
mation indices and non-summation indices in the contraction to be collected into two
separate contiguous groups. In order to use GEMM, T1 needs to be “reshaped”, e.g.
T1[a, b, k] → T1r[a, k, b]. Then GEMM can be invoked with the first operand T1r
viewed as an N2 × N array and the second input operand C as an N × N array. The
result, which has the index order [a, k, j], would have to be reshaped to give T2[a, j, k].



Sum{k,l} S{a,b,i,j}

A{a,b,k,l} Sum{d} T2{i,j,k,l}

Sum{c} T1{d,i,k,l} D{d,j}

B{c,d,k,l} C{c,i}

(a) Operator Tree
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S{a,b,i,j}

(b) Expanded Operator Tree
Fig. 1. Operator tree for a sub-expression in the CCSD equation. (a) Original operator tree
(b) The expanded operator tree used for optimal code generation

Since T2 is only a temporary intermediate array, the order of its dimensions could be
chosen to be [a, k, j] instead of [a, j, k], which avoids the need to reshape the output
array produced by GEMM. Considering the last contraction, it might seem that some
reshaping would be necessary in order to use GEMM. However, GEMM allows one or
both of its input operands to be transposed. Thus, the contraction can be achieved by
invoking GEMM with B as the first operand in transposed form, and T2[a, j, k] as the
second operand, with shape N × N 2. But, as will be shown later, the performance of
GEMM for transposed and non-transposed input operands could differ significantly.

In general, a sequence of multi-dimensional tensor contractions can be implemented
using a sequence of GEMM calls, possibly with some additional array reordering op-
erations interspersed. We represent this computation as an expanded operator tree. For
example, Fig. 1(b) shows the expanded operator tree derived from the operator tree
in Fig. 1(a). Each node in the operator tree is replicated to represent a possible array
reordering. The problem addressed in this paper is: given a sequence of tensor contrac-
tions (expressed as an expanded operator tree), determine the layout (i.e., dimension
order) and distribution (among multiple processors) of the tensors, and the modes of
invocation of GEMM so that the specified computation is executed in minimal time.

3 Constituent Operations

In this section we discuss the various operations within the computation and their in-
fluence on the execution time. The parameters that influence these costs, and hence the
overall execution time, are detailed.



3.1 Generalized Matrix Multiplication (GEMM)

General Matrix Multiplication (GEMM) is a set of matrix multiplication subroutines in
the BLAS library. It is used to compute

C := alpha*op(A)*op(B) + beta*C.

In this paper, we use the double precision version of the GEMM routine of the form

dgemm(transa, transb,m, n, k, alpha,A, lda,B, ldb, beta, C, ldc),

where transa (transb) specifies whether A (B) is in the transposed form. When transa
is ′n′ or ′N ′, op(A) = A; when transa equals to ′t′ or ′T ′, op(A) = AT ; alpha and
beta are scalars; C is an M × N matrix; op(A) and op(B) are matrices of dimensions
M × K and K × N , respectively.

We measured the variation in the performance of GEMM with variation in its in-
put parameters on the Itanium 2 Cluster at the Ohio Supercomputer Center (Dual 900
MHz processors with 4 GB memory, interconnected by Myrinet 2000 network). The
cluster’s configuration is shown in Table 1. The latency and bandwidth measurements
of the interconnect were obtained from [1]. Matrix multiplications of the form A ∗ B
were performed, where B was a 4000 × 4000 matrix and A was an M × 4000 matrix,
with M varied from 1 to 300. Matrix multiplications involving such oblong matrices
is quite typical in quantum chemistry computations. Two BLAS libraries available in
the Itanium 2 Cluster, ATLAS [22] and the Intel Math Kernel Library (MKL) [10] were
evaluated. The transb argument was specified as ′t′ for the results shown in Fig. 3(a)
and Fig. 4(a). Fig. 3(b) and Fig. 4(b) show the results for transb being ′n′. The x-axis
shows the value of M and the y-axis represents the performance of matrix multipli-
cation in GFLOPS. We observe that the performance of the GEMM operation for the
transposed and untransposed versions cannot be interpreted as the cost of transposi-
tion at the beginning of the computation for the experiments with transposed B. For
example, in some of the experiments with the ATLAS library, the transposed version
performs better. Thus the parameters of the DGEMM invocations need to be determined
so as to optimize the overall execution time.

Cannon’s Matrix Multiplication Algorithm Several approaches have been proposed
for implementing parallel matrix multiplication [9, 8]. In this paper, we consider an
extension to Cannon’s algorithm [4], which removes the restriction of using a square
grid of processors for array distribution.

The extended Cannon algorithm for a 4×2 processors grid is illustrated for the ma-
trix multiplication C(M,N) += A(M,K) ∗ B(K,N) in Fig. 2. The processors form

Table 1. Configuration of the Itanium 2 cluster at OSC

Node Memory OS Compilers TLB Network Interconnect Commn.
Latency library

Dual 900MHz 4GB Linux g77, ifc 128 entry 17.8 µ s Myrinet 2000 ARMCI
Itanium 2 2.4.21smp



K

0,0 0,1 0,2 0,3
1,1 1,2 1,3 1,0

M 2,2 2,3 2,0 2,1
3,3 3,0 3,1 3,2

Step 1

⇒

K

0,0 0,1 0,2 0,3
1,1 1,2 1,3 1,0
2,2 2,3 2,0 2,1
3,3 3,0 3,1 3,3

Step 2

⇒

K

0,2 0,3 0,0 0,1
1,3 1,0 1,1 1,2
2,0 2,1 2,2 2,3
3,1 3,2 3,3 3,0

Step 3

⇒

K

0,2 0,3 0,0 0,1
1,3 1,0 1,1 1,2
2,0 2,1 2,2 2,3
3,1 3,2 3,3 3,0

Step 4

(a) Array A

N

0,0 2,1
1,0 3,1

K 2,0 0,1
3,0 1,1
Step 1

⇒

N

1,0 3,1
2,0 0,1
3,0 1,1
0,0 2,1
Step 2

⇒

N

2,0 0,1
3,0 1,1
0,0 2,1
1,0 3,1
Step 3

⇒

N

3,0 1,1
0,0 2,1
1,0 3,1
2,0 0,1
Step 4

(b) Array B
Fig. 2. The processing steps in the extended Cannon Algorithm. Initially processor Pij holds
blocks labeled Bij and Ai(j:j+1). The portion of data accessed in each step is shown in bold

a logical rectangular grid. All the arrays are distributed amongst the processors in the
gird in an identical fashion. Each processor holds a block of arrays A, B and C. The
algorithm divides the common dimension (K in this illustration) to have the same num-
ber of sub-blocks. Each step operates on a sub-block and not on the entire data local to
each processor. In each step, if the sub-block required is local to the processor, no com-
munication is required. Fig. 2 shows in bold the sub-blocks of arrays A and B accessed
in each step. It shows that the entire B array is accessed in each step.

Given a processor grid, the number of steps is given by the number of sub-blocks
along the common dimension (K). The number of blocks of A that are needed by one
processor corresponds to the number of processors along the common dimension, and
that of B correspond to the other dimension. The number of steps and the number of
remote blocks required per processor depend on the distribution of the arrays amongst
the processors. The block size for communication is independent of the dimensions. It
can be seen that different distributions have different costs for each of the components.

The relative sizes of the arrays A and B determine the optimal distribution. When
one array is much larger than the other, the cost can be reduced by skewing the dis-
tribution to reduce the number of remote blocks accessed for that array. The shape of
the array that is local to each processor affects the local DGEMM cost. Thus, the array
distribution influences the communication and computation costs and is an important
parameter to be determined.

3.2 Index Permutation

DGEMM requires a two-dimensional view of the input matrices. This means that the
summation and non-summation indices of a tensor contraction must be grouped into two
contiguous sets of indices. Thus the layout of a multi-dimensional array might have to
be transformed to be used as input to DGEMM. Further, additional index permutation
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(b) MKL (N,N)
Fig. 3. The matrix multiplication times using the MKL library for C(M, N) += A(M, K) ∗
B(K, N) where K = N = 4000. M is varied along the x-axis. The performance obtained in
shown on the y-axis in GFLOPS. (a) transb=’t’ (b) transb=’n’ in input argument to dgemm
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(a) ATLAS (N,T)
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(b) ATLAS (N,N)
Fig. 4. The matrix multiplication times using the ATLAS library for C(M, N) += A(M, K) ∗
B(K, N) where K = N = 4000. M is varied along the x-axis. The performance obtained in
shown on the y-axis in GFLOPS. (a) transb=’t’ (b) transb=’n’ in input argument to dgemm

cost might be worth paying if it can reduce the DGEMM cost through the use of a
transposed (or non-transposed) argument form.

We implemented a collection of index permutation routines, one each for a different
number of dimensions. The routines were tiled in the fastest varying indices in the
source and target arrays. We observed that performing the computation such that the
target arrays are traversed in the order of their storage resulted in better performance
than biasing the access to the source array. The execution times for different tile sizes
was determined and the best tile size was chosen. The performance of the routines was
evaluated on a number of permutations to determine the tile sizes.

We measured the execution times of these routines for some index permutations on
four-dimensional arrays of size N × N × N × N , with N varying from 15 to 85. The
results are shown in Fig. 5. Different permutations are observed to incur different costs.
We also notice that the use of different compilers leads to different performances.

The layout of the arrays influences the index permutation costs and is the parameter
to be determined to evaluate the index permutation cost. Parallel index permutation can
be viewed as a combination of local index permutation and array redistribution. The



extended Cannon’s algorithm requires that the summation and non-summation index
groups be distributed along the slowest varying index in that group. The number of
processors along the dimension in the processor grid corresponding to a group can also
be varied to determine the shape/size of arrays used in the local DGEMM calls. Thus,
in addition to the layout of the arrays, their distribution needs to be determined as well.

Note that the layout of input and output arrays for a DGEMM invocation uniquely
determines its parameters. Thus the problem of determination of the DGEMM param-
eters can be reduced to the layout optimization problem. The variation in the cost of
DGEMM with its parameters has the effect of increasing the search space to be ex-
plored.
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(a) Intel Fortran compiler
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(b) g77 compiler
Fig. 5. Index permutation times for three different permutations for an N × N × N × N matrix
using (a) Intel Fortran compiler (b) g77 compiler. N is varied along the x-axis. The y-axis shows
the execution time per double word in clock cycles

4 Empirical measurement of constituent operations

GEMM cost

The DGEMM cost can be determined by executing the DGEMM routine with the spec-
ified parameters on the target machine. Alternatively, the cost of DGEMM routines in a
library on a particular system can be modeled by sampling it offline. The DGEMM cost
for the relevant parameters can then be estimated from the sampled data set. Executing
the DGEMM at runtime increases the code generation time, while estimating it leads to
potential inaccuracies in the cost model.

In this paper, we determine the cost of DGEMM by executing it with the specified
parameters. In the operator tree model considered, in which each non-leaf node requires
exactly one invocation of the DGEMM, this could result in compilation times that are as
long as the execution times. But in real quantum chemistry computations, which require
out-of-core treatment [16], tiles of multi-dimensional arrays are brought into memory
and operated upon. These loops are in turn enclosed in an outermost loop in iterative
chemical methods. Thus each node in the operator tree requires multiple invocations of
DGEMM. Thus the compilation time is much less than the execution time.



Cannon’s Matrix Multiplication

The cost of parallel matrix multiplication using Cannon’s algorithm is the sum of the
computation and the communication costs. Since the local computation is performed
using DGEMM, the computation cost can be derived from the DGEMM cost. The com-
munication cost is the sum of the communication costs at the beginning of each step.
A latency-bandwidth model is used to determine the communication cost. Consider the
matrix multiplication C(M,N) += A(M,K)∗B(K,N). Let PM , PK , PN be the num-
ber of processors into which the array is distributed along the M , N and K dimensions,
respectively. The total communication cost is given by

CommnCost = CommnCostA + CommnCostB

CommnCostA = (Ts +
M ∗ K

BW ∗ PM ∗ PK

) ∗ (PK − PK/PM )

CommnCostB = (Ts +
K ∗ N

BW ∗ PK ∗ PN

) ∗ (PK − PK/PN )

where Ts is the latency of the interconnect shown in Table 1. BW , the bandwidth is
estimated from a table constructed from the bandwidth curve in [1].

Index Permutation

Fig. 5 shows the performance of our index permutation routines for some permutations.
The performance of the implementation appears to be relatively independent of the
array dimensions, but is influenced by the permutation being performed.

An analysis of the implementation revealed that the variation in the per-element per-
mutation cost was primarily influenced by the variation in the TLB misses for different
permutations and the capability of compilers to perform efficient register tiling.

We estimated the index permutation cost to consist of two components. The first
component is the basic copy cost, the minimum cost required to copy a multi-dimen-
sional array, together with the index calculation. We determined two types of basic copy
costs. The first, referred to as c0, is the one in which both the source and target arrays are
traversed to have sufficient locality. The other basic copy cost, referred to as c1, is one in
which only the target array is traversed to have locality. Depending on the permutation
and the size of the arrays, one of these basic copy costs is chosen. Note that with multi-
level tiling of the routines there would be only one basic copy cost. The basic costs c0

and c1 were found to be compiler dependent. They were determined to be 9.5 and 11.3
cycles, respectively, per double word with the Intel Fortran Compiler and 12.9 and 15.9
cycles, respectively, per double word with g77. The second component is the TLB miss
cost. Each processor on the Itanium-2 cluster had an 128 entry fully-associative TLB
with a miss penalty of 25 cycles. Different permutations can lead to different blocks
of data being contiguously accessed and at different strides. The permutation to be
performed and the array size are used to determine the TLB cost.

In the parallel version of the algorithm, index permutation is coupled with array
redistribution. Transformation from one layout and distribution configuration to another
is accomplished in two steps, a local index permutation followed by array redistribution.



A combination of index permutation and redistribution can result in each proces-
sor communicating its data to more than one processor. The communication cost is
estimated differently for different cases. When the target patch written to is local to a
processor no communication is required. When the layout transformation is such that
each processor needs to communicate its data to exactly one other processor, the cost
is uniform across all the processors and is estimated as the cost of communicating that
block. In all other cases, we estimate the communication cost to be the cost incurred by
the processor whose data is scattered among the most number of processors.

5 Composite Performance Model

In this section, we discuss how the empirical measurements of the constituent opera-
tions are used to determine the parameters that optimize the overall execution time.

Constraints and Array Layouts and Distributions

The input and output arrays are constrained to have one layout each. The feasible lay-
outs for the other nodes is given by the following equation.

S(n) =















⋃

(∀l ∈ P(NSI(n′)))(∀r ∈ P(NSI(n′′))){(l, r) ∪ (r, l)}
if n is contraction node

⋃

(∀l ∈ P(SI(n)))(∀r ∈ P(NSI(n))){(l, r) ∪ (r, l)}
if n is an index permutation node

where S(n) is the set of possible layouts, SI(n) the set of summation indices and
NSI(n) the set of non-summation indices in node n. P is the set of all permutations of
its argument. n′ and n′′ are the left and right child of node n, respectively. (l, r) denotes
the concatenation of the sequences l and r.

A tree node C corresponding to a DGEMM computation of the form C(M,N) +=
A(M,K) ∗ B(K,N) can have layouts corresponding to the cross-product of the per-
mutations of the non-summation indices of its children. The remaining nodes are index
permutation nodes and are constrained by the layouts acceptable by their parent (i.e.,
the contraction node to which they act as input). They have layouts corresponding to
the cross-product of the permutations of their summation and non-summation indices.

For example, if A and B contain 3 non-summation and 2 summation indices (as
determined by the C array) each, A and B have 3! ∗ 2! ∗ 2 = 24 possible layouts each
and C has 3! ∗ 3! ∗ 2 = 72 possible layouts.

The extended Cannon algorithm requires all distributions to be rectangular in nature.
In addition, the children of each contraction node in the operator tree are required to
have the same distribution as that node. Thus, for each distribution of a contraction
node, there is a corresponding distribution for its children. There is no restriction on the
distribution of the contraction nodes themselves.

Determination of Optimal Parameters

For the specified layout and distribution of the root and leaves of the operator tree, we
determine the layouts and distributions of the intermediate arrays. For each layout of an



array produced by DGEMM, the arrays corresponding to its children nodes are required
to have a compatible layout, i.e. the order in which the summation and non-summation
indices are grouped is required to be identical in the produced and consumed arrays.
This is because the DGEMM does not perform any index permutation within a group.
This restriction is used to prune candidate layouts.

The configuration of an array is represented by a layout-distribution pair. Dynamic
programming is used to determine the optimal configuration for the intermediate ar-
rays. The cost of a node is determined as the least cost to compute its children and
subsequently compute it from its children. It is as follows.

Ct(n, d, l) =























min∀d′∈D,∀l′∈L Ct(n
′, d′, l′) + Cip((n

′, d′, l′) → (n, d, l))
if n is a index permute node

min∀l′,l′′∈L Ct(n
′, d, l′) + Ct(n

′′, d, l′′)+
Cdg((n

′, d, l′) × (n′′, d, l′′) → (n, d, l))
if n is a contraction node

where
Ct ≡ Total cost of computing a node with relevant (d, l)

Cip ≡ Cost of the required index permutation

Cdg ≡ Cost of the required DGEMM invocation

D(L) ≡ All feasible distributions (layouts) of relevant node

n′(n′) ≡ Left(Right) child of n

The expanded operator tree for the example in Fig. 1(a) is shown in Fig. 1(b). The
replicated nodes correspond to the index permutations. The original nodes correspond
to the contractions. Thus, in the expanded operator tree, each non-leaf node is computed
from its children by either index permutation or contraction. Therefore, the total cost of
computation of each non-leaf, for different configurations, can be determined from the
cost of computing its children from the leaf nodes and the cost of the basic operation,
index permutation or GEMM, to compute the node from its children. The algorithm
first determines the feasible layouts for each of the nodes in the expanded operator
tree. The optimal cost of the root node is subsequently computed using the dynamic
programming formulation described above.

6 Experimental Results

We evaluated our approach on the OSC Itanium-2 cluster whose configuration is shown
in Table 1. All the experiment programs were compiled with the Intel Itanium Fortran
Compiler for Linux. We considered two computations in our domain.

1. CCSD: We used a typical sub-expression from the CCSD theory used to deter-
mine electronic structures.

S(j, i, b, a) = Sum{l, k} (A{l, k, b, a}
× (Sum{d} (Sum{c}(B{d, c, l, k} × C{i, c}) × D{j, d}))

All the array dimensions were 64 for the sequential experiments and 96 for the
parallel experiments.



Table 2. Layouts and distributions for the CCSD computation for the unoptimized and optimized
versions of the code

Unoptimized Optimized
Array Distribution Dist. Layout GEMM. Distribution Dist. Layout GEMM.

Index Parameters Index Parameters
A (2,2) (k,a) (l,k,b,a) – (1,4) (k,a) (l,k,b,a) –
A’ (2,2) (a,k) (b,a,l,k) – – – – –
B (2,2) (c,k) (d,c,l,k) – (1,4) (c,k) (d,c,l,k) –
B’ (2,2) (k,c) (d,l,k,c) – (1,4) (c,k) (c,d,l,k) –
C (2,2) (i,c) (i,c) – (1,4) (i,c) (i,c) –
C’ (2,2) (c,i) (c,i) – – – – –
D (2,2) (j,d) (j,d) – (1,4) (j,d) (j,d) –
D’ (2,2) (d,j) (d,j) – – – – –
T1 (2,2) (k,i) (d,l,k,i) B’,C’,(‘n’,‘n’) (1,4) (i,k) (i,d,l,k) C,B’,(‘n’,‘n’)
T1’ (2,2) (i,d) (l,k,i,d) – (1,4) (d,k) (d,i,l,k) –
T2 (2,2) (i,j) (l,k,i,j) T1’,D’,(‘n’,‘n’) (1,4) (j,k) (j,i,l,k) D,T1’,(‘n’,‘n’)
T2’ (2,2) (k,j) (l,k,i,j) – – – – –
S’ (2,2) (a,j) (b,a,i,j) A’,T2,(‘n’,‘n’) (4,1) (a,i) (b,a,j,i) A,T2, (‘t’,‘t’)
S (2,2) (i,a) (j,i,b,a) – (1,4) (i,a) (j,i,b,a) –

2. AO-to-MO transform: This expression, henceforth referred to as the 4-index
transform, is commonly used to transform two-electron integrals from atomic orbital
(AO) basis to molecular orbital (MO) basis.

B(a, b, c, d) = Sum{s} (C1{s, d} × Sum{r} (C2{r, c}×
Sum{q} (C3{q, b} × Sum{p} (C4{p, a} × A{p, q, r, s}))))

The array dimensions were 80 and 96 for the sequential and parallel experiments.
We compared our approach with the baseline implementation in which an initial lay-

out for the arrays is provided. A fixed
√

P ×
√

P array distribution is required through-
out the computation. This approach was, in fact, used in our early implementations. The
optimized version is allowed flexibility in the distribution of the input and output arrays.

Table 2 shows the configurations chosen for each array in the parallel experiment
for the unoptimized and optimized cases. A first look reveals that the number of inter-
mediate arrays is reduced by effective choice of layouts and distributions. The GEMM
parameters for all three GEMM invocations is different, either in the order chosen for
the input arrays or in the transposition of the input parameters. The distribution chosen
for all the arrays is different from those for the unoptimized version of the computation.

Table 3 and Table 4 show the sequential and parallel results respectively. In the
parallel experiments, the GEMM and index permutation times reported subsume the
communication costs. The optimized version has close to 20% improvement over the
unoptimized version in almost all cases. The parallel 4-index transform has an improve-
ment of more than 75% over the unoptimized version. The effective choice of GEMM
parameters results in a noticeable improvement in the GEMM cost for most cases. The
index permutation cost is either improved or totally eliminated. The trade-off between
the GEMM and the index permutation costs can be observed in the sequential 4-index



Table 3. Sequential performance results for ccsd and 4index-transform

Unoptimized (secs) Optimized(secs)
GEMM Index Exec. GFLOPS GEMM Index Exec. GFLOPS

Permutation Time Permutation Time
ccsd 55.28 1.41 56.69 2.50 45.58 0.78 46.36 3.06

4index 10.06 2.58 12.64 2.07 10.58 0.0 10.58 2.48

Table 4. Parallel performance results on 4 processors for ccsd and 4index-transform

Unoptimized(secs) Optimized(secs)
GEMM Index Exec. GFLOPS GEMM Index Exec. GFLOPS

Permutation Time Permutation Time
ccsd 157.93 7.21 165.14 9.68 136.41 2.86 139.27 11.71

4index 12.23 7.74 19.97 3.27 7.57 3.64 11.21 5.83

transform experiment. In this experiment, the optimization process chooses an inferior
configuration for the GEMM computation, so as to eliminate the index permutation cost
completely, and hence reduce the overall execution time.

7 Related Work

There has been prior work that has attempted to use data layout optimizations to im-
prove spatial locality in programs, either in addition to or instead of loop transforma-
tions. Leung and Zahorjan [18] were the first to demonstrate cases where loop trans-
formations fail (for a variety of reasons) for which data transformations are useful. The
data transformations they consider correspond to non-singular linear transformations
of the data space. O’Boyle and Knijnenburg [21] present techniques for generating ef-
ficient code for several layout optimizations such as linear transformations memory
layouts, alignment of arrays to page boundaries, and page replication. Several authors
[2, 11] discuss the use of data transformations to improve locality on shared memory
machines. Kandemir et al. [14] present a hyperplane representation of memory layouts
of multi-dimensional arrays and show how to use this representation to derive very gen-
eral data transformations for a single perfectly-nested loop. In the absence of dynamic
data layouts, the layout of an array has an impact on the spatial locality characteristic
of all the loop nests in the program which access the array. As a result, Kandemir et
al. [12–14] and Leung and Zahorjan [18] present a global approach to this problem; of
these, [12] considers dynamic layouts.

Some authors have addressed unifying loop and data transformations into a single
framework. These works [5, 13] use loop permutations and array dimension permuta-
tions in an exhaustive search to determine the appropriate loop and data transformations
for a single nest and then extend it to handle multiple nests.

FFTW [19] and ATLAS [22] produce high performance libraries for specific com-
putation kernels, by executing different versions of the computation and choosing the
parameters that optimize the overall execution time. Our approach is similar to these in
that we perform empirical evaluation of the constituent operations for various possible



parameters. But our work focuses on a more general class of computations than a single
kernel. This forbids an exhaustive search strategy.

8 Conclusions

We have described an approach to the synthesis of efficient parallel code that minimizes
the overall execution time. The approach was developed for a program synthesis system
targeted at the quantum chemistry domain. The code was generated as a sequence of
DGEMM calls interspersed with index permutation and redistribution to enable to use
of the BLAS libraries and to improve overall performance. The costs of the constituent
operations in the computation were empirically measured and were used to model the
cost of the computation. This computational model was used to determine layouts and
distributions that minimize the overall execution time. Experimental results were pro-
vided that showed the effectiveness of our approach.

In future, we intend to further explore the trade-offs between empirical measure-
ment and estimation of the cost of constituent operations, so that it can be tuned by the
user to achieve the level of accuracy desired. We also plan to evaluate our approach with
other parallel matrix multiplication algorithms.
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