
Optimization of Memory Usage Requirement for a Class
of Loops Implementing Multi-Dimensional Integrals ?

Chi-Chung Lam1, Daniel Cociorva2, Gerald Baumgartner1, and P. Sadayappan1

1 Department of Computer and Information Science
The Ohio State University, Columbus, OH 43210
fclam,gb,saday g@cis.ohio-state.edu

2 Department of Physics
The Ohio State University, Columbus, OH 43210

cociorva@pacific.mps.ohio-state.edu

Abstract. Multi-dimensional integrals of products of several arrays arise in cer-
tain scientific computations. In the context of these integral calculations, this pa-
per addresses a memory usage minimization problem. Based on a framework that
models the relationship between loop fusion and memory usage, we propose an
algorithm for finding a loop fusion configuration that minimizes memory usage.
A practical example shows the performance improvement obtained by our algo-
rithm on an electronic structure computation.

1 Introduction

This paper addresses the optimization of a class of loop computations that implement
multi-dimensional integrals of the product of several arrays. Such integral calculations
arise, for example, in the computation of electronic properties of semiconductors and
metals [1, 7, 15]. The objective is to minimize the execution time of such computations
on a parallel computer while staying within the available memory. In addition to the
performance optimization issues pertaining to inter-processor communication and data
locality enhancement, there is an opportunity to apply algebraic transformations us-
ing the properties of commutativity, associativity and distributivity to reduce the total
number of arithmetic operations.

Given a specification of the required computation as a multi-dimensional sum of the
product of input arrays, we first determine an equivalent sequence of multiplication and
summation formulae that computes the result using a minimum number of arithmetic
operations. Each formula computes and stores some intermediate results in an inter-
mediate array. By computing the intermediate results once and reusing them multiple
times, the number of arithmetic operations can be reduced. In previous work, this op-
eration minimization problem was proved to be NP-complete and an efficient pruning
search strategy was proposed [10].

The simplest way to implement an optimal sequence of multiplication and summa-
tion formulae is to compute the formulae one by one, each coded as a set of perfectly

? Supported in part by the National Science Foundation under grant DMR-9520319.

nested loops, and to store the intermediate results produced by each formula in an inter-
mediate array. However, in practice, the input and intermediate arrays could be so large
that they cannot fit into the available memory. Hence, there is a need to fuse the loops
as a means of reducing memory usage. By fusing loops between the producer loop and
the consumer loop of an intermediate array, intermediate results are formed and used in
a pipelined fashion and they reuse the same reduced array space. The problem of find-
ing a loop fusion configuration that minimizes memory usage without increasing the
operation count is not trivial. In this paper, we develop an optimization framework that
appropriately models the relation between loop fusion and memory usage. We present
an algorithm that finds an optimal loop fusion configuration that minimizes memory
usage.

Reduction of arithmetic operations has been traditionally done by compilers using
the technique of common subexpression elimination [4]. Chatterjee et al. consider the
optimal alignment of arrays in evaluating array expression on massively parallel ma-
chines [2, 3]. Much work has been done on improving locality and parallelism by loop
fusion [8, 14, 16]. However, this paper considers a different use of loop fusion, which is
to reduce array sizes and memory usage of automatically synthesized code containing
nested loop structures. Traditional compiler research does not address this use of loop
fusion because this problem does not arise with manually-produced programs. The con-
traction of arrays into scalars through loop fusion is studied in [6] but is motivated by
data locality enhancement and not memory reduction. Loop fusion in the context of
delayed evaluation of array expressions in APL programs is discussed in [5] but is also
not aimed at minimizing array sizes. We are unaware of any work on fusion of multi-
dimensional loop nests into imperfectly-nested loops as a means to reduce memory
usage.

The rest of this paper is organized as follows. Section 2 describes the operation
minimization problem. Section 3 studies the use of loop fusion to reduce array sizes
and presents algorithms for finding an optimal loop fusion configuration that minimizes
memory usage under the static memory allocation model. Due to space limitations, the
extensions of the framework to the dynamic memory allocation model and to parallel
machines are omitted in this paper but can be found in [13]. Section 4 provides conclu-
sions.

2 Operation Minimization

In the class of computations considered, the final result to be computed can be expressed
as multi-dimensional integrals of the product of many input arrays. Due to commuta-
tivity, associativity and distributivity, there are many different ways to obtain the same
final result and they could differ widely in the number of floating point operations re-
quired. The problem of finding an equivalent form that computes the result with the least
number of operations is not trivial and so a software tool for doing this is desirable.

Consider, for example, the multi-dimensional integral shown in Figure 1(a). If im-
plemented directly as expressed (i.e. as a single set of perfectly-nested loops), the com-
putation would require2 � Ni � Nj � Nk � Nl arithmetic operations to compute.
However, assuming associative reordering of the operations and use of the distributive

W [k] =
P

(i;j;l)
A[i; j]�B[j; k; l]� C[k; l]

(a) A multi-dimensional integral

f1[j] =
P

i
A[i; j]

f2[j; k; l] = B[j; k; l]� C[k; l]
f3[j; k] =

P
l
f2[j; k; l]

f4[j; k] = f1[j]� f3[j; k]
W [k] = f5[k] =

P
j
f4[j; k]

(b) A formula sequence for computing (a) B[j; k; l] C[k; l]

�
�

@
@

A[i; j] �f2

P
i

P
k

f1 f3

�
�

@
@

�f4

P
jf5

(c) An expression tree representation of (b)

Fig. 1.An example multi-dimensional integral and two representations of a computation.

law of multiplication over addition is satisfactory for the floating-point computations,
the above computation can be rewritten in various ways. One equivalent form that only
requires2�Nj�Nk�Nl+2�Nj�Nk+Ni�Nj operations is given in Figure 1(b).
It expresses the sequence of steps in computing the multi-dimensional integral as a se-
quence of formulae. Each formula computes some intermediate result and the last for-
mula gives the final result. A formula is either a product of two input/intermediate arrays
or a integral/summation over one index, of an input/intermediate array. A sequence of
formulae can also be represented as an expression tree. For instance, Figure 1(c) shows
the expression tree corresponding to the example formula sequence.

The problem of finding a formula sequence that minimizes the number of operations
has been proved to be NP-complete [10]. A pruning search algorithm for finding such
a formula sequence is given below.

1. Form a list of the product terms of the multi-dimensional integral. LetXa denote
thea-th product term andXa:dimensthe set of index variables inXa[:::]. Setr and
c to zero. Setd to the number of product terms.

2. While there exists an summation index (sayi) that appears in exactly one term (say
Xa[:::]) in the list anda > c, incrementr andd and create a formulafr[:::] =P

iXa[:::] wherefr:dimens= Xa:dimens� fig. RemoveXa[:::] from the list.
Append to the listXd[:::] = fr[:::]. Setc to a.

3. Incrementr andd and form a formulafr[:::] = Xa[:::]�Xb[:::] whereXa[:::] and
Xb[:::] are two terms in the list such thata < b andb > c, and give priority to the
terms that have exactly the same set of indices. The indices forfr arefr:dimens=
Xa:dimens[Xb:dimens. RemoveXa[:::] andXb[:::] from the list. Append to the
list Xd[:::] = fr[:::]. Setc to b. Go to step 2.

4. When steps 2 and 3 cannot be performed any more, a valid formula sequence is ob-
tained. To obtain all valid sequences, exhaust all alternatives in step 3 using depth-
first search.

3 Memory Usage Minimization

In implementing the computation represented by an operation-count-optimal formula
sequence (or expression tree), there is a need to perform loop fusion to reduce the
sizes of the arrays. Without fusing the loops, the arrays would be too large to fit into
the available memory. There are many different ways to fuse the loops and they could
result in different memory usage. This section addresses the problem of finding a loop
fusion configuration for a given formula sequence that uses the least amount of memory.
Section 3.1 introduces the memory usage minimization problem. Section 3.2 describes
some preliminary concepts that we use to formulate our solutions to the problem. Sec-
tions 3.3 presents an algorithm for finding a memory-optimal loop fusion configuration
under static memory allocation model. Section 3.4 illustrates how the application of the
algorithm on an example physics computation improves its performance.

3.1 Problem Description

Consider again the expression tree shown in Figure 1(c). A naive way to implement the
computation is to have a set of perfectly-nested loops for each node in the tree, as shown
in Figure 2(a). The brackets indicate the scopes of the loops. Figure 2(b) shows how the
sizes of the arrays may be reduced by the use of loop fusions. It shows the resulting
loop structure after fusing all the loops betweenA andf1, all the loops amongB, C,
f2, andf3, and all the loops betweenf4 andf5. Here,A, B, C, f2, andf4 are reduced
to scalars. After fusing all the loops between a node and its parent, all dimensions of
the child array are no longer needed and can be eliminated. The elements in the reduced
arrays are now reused to hold different values at different iterations of the fused loops.
Each of those values was held by a different array element before the loops were fused
(as in Figure 2(a)). Note that some loop nests (such as those forB andC) are reordered
and some loops within loop nests (such as thej-, k-, andl-loops forB, f2, andf3) are
permuted in order to facilitate loop fusions.

For now, we assume the leaf node arrays (i.e., input arrays) can be generated one
element at a time (by the genv function for arrayv) so that loop fusions with their
parents are allowed. This assumption holds for arrays in which the value of each element
is a function of the array subscripts, as in many arrays in the physics computations that
we work on. As will be clear later on, the case where an input array has to be read in or
produced in slices or in its entirety can be handled by disabling the fusion of some or
all the loops between the leaf node and its parent.

Figure 2(c) shows another possible loop fusion configuration obtained by fusing all
the j-loops and then all thek-loops andl-loops inside them. The sizes of all arrays
exceptC andf5 are smaller. By fusing thej-, k-, andl-loops between those nodes, the
j-, k-, andl-dimensions of the corresponding arrays can be eliminated. Hence,B, f1,
f2, f3, andf4 are reduced to scalars whileA becomes a one-dimensional array.

In general, fusing at-loop between a nodev and its parent eliminates thet-dimension
of the arrayv and reduces the array size by a factor ofNt. In other words, the size of an
array after loop fusions equals the product of the ranges of the loops that are not fused
with its parent. We only consider fusions of loops among nodes that are all transitively

for i�
for j�

A[i,j]=genA(i,j)

for j"
for k�

for l�
B[j,k,l]=genB(j,k,l)

for k�
for l�

C[k,l]=genC(k,l)

initialize f1
for i�

for j�
f1[j]+=A[i,j]

for j"
for k�

for l�
f2[j,k,l]=B[j,k,l] �C[k,l]

initialize f3
for j"

for k�
for l�

f3[j,k]+=f2[j,k,l]

for j�
for k�

f4[j,k]=f1[j] �f3[j,k]

initialize f5
for j�

for k�
f5[k]+=f4[j,k]

initialize f1
for i�

for jh
A=genA(i,j)
f1[j]+=A

initialize f3
for k2
664

for l2
64

C=genC(k,l)
for j�

B=genB(j,k,l)
f2=B �C
f3[j,k]+=f2

initialize f5
for j�

for kh
f4=f1[j] �f3[j,k]
f5[k]+=f4

for k�
for l�

C[k,l]=genC(k,l)

initialize f5
for j2
6666666666664

for i�
A[i]=genA(i,j)

initialize f1
for i�

f1+=A[i]

for k2
6664

initialize f3
for l�

B=genB(j,k,l)
f2=B �C[k,l]
f3+=f2

f4=f1 �f3
f5[k]+=f4

(a) (b) (c)

q qA

q q qB q q C

q qf1

q q qf2

q q qf3

q qf4

q qf5

i

j k

l

i j

j k l k l

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

q qA

q q qB q q C

q qf1

q q qf2

q q qf3

q qf4

q qf5

i

j k

l

i j

j k l k l

�
�
�
�
�
�
@
@
@
@

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

q qA

q q qB q q C

q qf1

q q qf2

q q qf3

q qf4

q qf5

i

j k

l

i j

j k l k l

p

p

p

p

p

p

�
�
�
�
�
�

p

p

p

p

p

p

p

p

p

p

p

p

�
�
@
@
@
@

(d) (e) (f)

Fig. 2. Three loop fusion configurations for the expression tree in Figure 1.

related by (i.e., form a transitive closure over) parent-child relations. Fusing loops be-
tween unrelated nodes (such as fusing siblings without fusing their parent) has no effect
on array sizes. We also restrict our attention for now to loop fusion configurations that
do not increase the operation count.

In the class of loops considered in this paper, the only dependence relations are those
between children and parents, and array subscripts are simply loop index variables1. So,
loop permutations, loop nests reordering, and loop fusions are always legal as long as
child nodes are evaluated before their parents. This freedom allows the loops to be
permuted, reordered, and fused in a large number of ways that differ in memory usage.
Finding a loop fusion configuration that uses the least memory is not trivial. We believe
this problem is NP-complete but have not found a proof yet.

Fusion graphs.LetT be an expression tree. For any given nodev 2 T , letsubtree(v)
be the set of nodes in the subtree rooted atv, v:parentbe the parent ofv, andv:indices
be the set of loop indices forv (including the summation indexv:sumindexif v is a
summation node). A loop fusion configuration can be represented by a graph called a
fusion graph, which is constructed fromT as follows.

1. Replace each nodev in T by a set of vertices, one for each indexi 2 v:indices.
2. Remove all tree edges inT for clarity.
3. For each loop fused (say, of indexi) between a node and its parent, connect the

i-vertices in the two nodes with afusion edge.
4. For each pair of vertices with matching index between a node and its parent, if they

are not already connected with a fusion edge, connect them with apotential fusion
edge.

Figure 2 shows the fusion graphs alongside the loop fusion configurations. In the figure,
solid lines are fusion edges and dotted lines are potential fusion edges, which are fusion
opportunities not exploited. As an example, consider the loop fusion configuration in
Figure 2(b) and the corresponding fusion graph in Figure 2(e). Since thej-, k-, andl-
loops are fused betweenf2 andf3, there are three fusion edges, one for each of the three
loops, betweenf2 andf3 in the fusion graph. Also, since no loops are fused betweenf3
andf4, the edges betweenf3 andf4 in the fusion graph remain potential fusion edges.

In a fusion graph, we call each connected component of fusion edges (i.e., a max-
imal set of connected fusion edges) afusion chain, which corresponds to a fused loop
in the loop structure. Thescope of a fusion chainc, denotedscope(c), is defined as the
set of nodes it spans. In Figure 2(f), there are three fusion chains, one for each of the
j-, k-, andl-loops; the scope of the shortest fusion chain isfB; f2; f3g. The scope of
any two fusion chains in a fusion graph must either be disjoint or a subset/superset of
each other. Scopes of fusion chains do not partially overlap because loops do not (i.e.,
loops must be either separate or nested). Therefore, any fusion graph with fusion chains
whose scopes are partially overlapping is illegal and does not correspond to any loop
fusion configuration.

1 When array subscripts are not simple loop variables, as many researchers have studied, more
dependence relations exist, which prevent some loop rearrangement and/or loop fusions. In that
case, a restricted set of loop fusion configurations would need to be searched in minimizing
memory usage.

Fusion graphs help us visualize the structure of the fused loops and find further
fusion opportunities. If we can find a set of potential fusion edges that, when converted
to fusion edges, does not lead to partially overlapping scopes of fusion chains, then we
can perform the corresponding loop fusions and reduce the size of some arrays. For
example, thei-loops betweenA andf1 in Figure 2(f) can be further fused and arrayA
would be reduced to a scalar. If converting all potential fusion edges in a fusion graph to
fusion edges does not make the fusion graph illegal, then we can completely fuse all the
loops and achieve optimal memory usage. But for many fusion graphs in real-life loop
configurations (including the ones in Figure 2), this does not hold. Instead, potential
fusion edges may be mutually prohibitive; fusing one loop could prevent the fusion of
another. In Figure 2(e), fusing thej-loops betweenf1 andf4 would disallow the fusion
of the k-loops betweenf3 andf4. Although a fusion graph specifies what loops are
fused, it does not fully determine the permutations of the loops and the ordering of the
loop nests.

3.2 Preliminaries

So far, we have been describing the fusion between a node and its parent by the set of
fused loops (or the loop indices such asfi; jg). But in order to compare loop fusion
configurations for a subtree, it is desirable to include information about the relative
scopes of the fused loops in the subtree.

Scope and fusion scope of a loop.The scope of a loopof index i in a subtree
rooted atv, denotedscope(i; v), is defined in the usual sense as the set of nodes in the
subtree that the fused loop spans. That is, if thei-loop is fused,scope(i; v) = scope(c)\
subtree(v), wherec is a fusion chain for thei-loop with v 2 scope(c). If the i-loop of
v is not fused, thenscope(i; v) = ;. We also define thefusion scope of ani-loop in a
subtree rooted atv asfscope(i; v) = scope(i; v) if the i-loop is fused betweenv and its
parent; otherwisefscope(i; v) = ;. As an example, for the fusion graph in Figure 2(e),
scope(j; f3) = fB; f2; f3g, but fscope(j; f3) = ;.

Indexset sequence.To describe the relative scopes of a set of fused loops, we in-
troduce the notion of anindexset sequence, which is defined as an ordered list of dis-
joint, non-empty sets of loop indices. For example,f = hfi; kg; fjgi is an indexset
sequence. For simplicity, we write each indexset in an indexset sequence as a string.
Thus,f is written ashik; ji. Let g andg0 be indexset sequences. We denote byjgj
the number of indexsets ing, g[r] the r-th indexset ing, andSet(g) the union of all
indexsets ing, i.e. Set(g) =

S
1�r�jgj g[r]. For instance,jf j = 2, f [1] = fi; kg,

andSet(f) = Set(hj; i; ki) = fi; j; kg. We say thatg0 is a prefix of g if jg0j � jgj,
g0[jg0j] � g[jg0j], and for all1 � r < jg0j, g0[r] = g[r]. We write this relation as
prefix(g0; g). So,hi, hii, hki, hiki, hik; ji are prefixes off , but hi; ji is not. Thecon-
catenationof g and an indexsetx, denotedg + x, is defined as the indexset sequence
g00 such that ifx 6= ;, thenjg00j = jgj + 1, g00[jg00j] = x, and for all1 � r < jg00j,
g00[r] = g[r]; otherwise,g00 = g.

Fusion. We use the notion of an indexset sequence to define afusion. Intuitively,
the loops fused between a node and its parent are ranked by their fusion scopes in the
subtree from largest to smallest; two loops with the same fusion scope have the same
rank (i.e. are in the same indexset). For example, in Figure 2(f), the fusion betweenf2

andf3 is hjkli and the fusion betweenf4 andf5 is hj; ki (because the fusedj-loop
covers two more nodes,A andf1). Formally, a fusion between a nodev andv:parentis
an indexset sequencef such that

1. Set(f) � v:indices\ v:parent.indices,
2. for all i 2 Set(f), thei-loop is fused betweenv andv:parent, and
3. for all i 2 f [r] andi0 2 f [r0],

(a) r = r0 iff fscope(i; v) = fscope(i0; v), and
(b) r < r0 iff fscope(i; v) � fscope(i0; v).

Nesting.Similarly, anestingof the loops at a nodev can be defined as an indexset
sequence. Intuitively, the loops at a node are ranked by their scopes in the subtree; two
loops have the same rank (i.e. are in the same indexset) if they have the same scope. For
example, in Figure 2(e), the loop nesting atf3 is hkl; ji, atf4 is hjki, and atB is hjkli.
Formally, a nesting of the loops at a nodev is an indexset sequenceh such that

1. Set(h) = v:indicesand
2. for all i 2 h[r] andi0 2 h[r0],

(a) r = r0 iff scope(i; v) = scope(i0; v), and
(b) r < r0 iff scope(i; v) � scope(i0; v).

By definition, the loop nesting at a leaf nodev must behv:indicesi because all loops at
v have empty scope.

Legal fusion. A legal fusion graph (corresponding to a loop fusion configuration)
for an expression treeT can be built up in a bottom-up manner by extending and merg-
ing legal fusion graphs for the subtrees ofT . For a given nodev, the nestingh at v
summarizes the fusion graph for the subtree rooted atv and determines what fusions are
allowed betweenv and its parent. A fusionf is legal for a nestingh at v if prefix(f; h)
and set(f) � v:parent.indices. This is because, to keep the fusion graph legal, loops
with larger scopes must be fused before fusing those with smaller scopes, and only
loops common to bothv and its parent may be fused. For example, consider the fusion
graph for the subtree rooted atf2 in Figure 2(e). Since the nesting atf2 is hkl; ji and
f3:indices= fj; k; lg, the legal fusions betweenf2 andf3 arehi, hki, hli, hkli, and
hkl; ji. Notice that all legal fusions for a nodev are prefixes of amaximal legal fu-
sion, which can be expressed asMaxFusion(h; v) = maxff j prefix(f; h) and set(f) �
v:parent.indicesg, whereh is the nesting atv. In Figure 2(e), the maximal legal fusion
for C is hkli, and forf2 is hkl; ji.

Resulting nesting.Let u be the parent of a nodev. If v is the only child ofu, then
the loop nesting atu as a result of a fusionf betweenu andv can be obtained by the
functionExtNesting(f; u) = f + (u:indices� Set(f)). For example, in Figure 2(e), if
the fusion betweenf2 andf3 is hkli, then the nesting atf3 would behkl; ji.

Compatible nestings.Supposev has a siblingv0, f is the fusion betweenu andv,
andf 0 is the fusion betweenu andv0. For the fusion graph for the subtree rooted atu

(which is merged from those ofv andv0) to be legal,h = ExtNesting(f; u) andh0 =
ExtNesting(f 0; u) must becompatibleaccording to the condition: for alli 2 h[r] and
j 2 h[s], if r < s andi 2 h0[r0] andj 2 h0[s0], thenr0 � s0. This requirement ensures
an i-loop that has a larger scope than aj-loop in one subtree will not have a smaller

scope than thej-loop in the other subtree. Ifh andh0 are compatible, the resulting loop
nesting atu (as merged fromh andh0) ish00 such that for alli 2 h00[r00] andj 2 h00[s00],
if i 2 h[r], i 2 h0[r0], j 2 h[s], andj 2 h0[s0], then[r00 = s00) r = s andr0 = s0]
and[r00 � s00) r � s andr0 � s0]. Effectively, the loops atu are re-ranked by their
combined scopes in the two subtrees to formh00. As an example, in Figure 2(e), if the
fusion betweenf1 andf4 is f = hji and the fusion betweenf3 andf4 is f 0 = hki,
thenh = ExtNesting(f; f4) = hj; ki andh0 = ExtNesting(f 0; f4) = hk; ji would be
incompatible. But iff is changed tohi, thenh = ExtNesting(f; f4) = hjki would
be compatible withh0, and the resulting nesting atf4 would behk; ji. A procedure
for checking ifh andh0 are compatible and formingh00 from h andh0 is provided in
Section 3.3.

The “more-constraining” relation on nestings. A nestingh at a nodev is said
to bemore or equally constraining thananother nestingh0 at the same node, denoted
h v h0, if for all legal fusion graphG for T in which the nesting atv is h, there exists a
legal fusion graphG0 for T in which the nesting atv is h0 such that the subgraphs ofG
andG0 induced byT � subtree(v) are identical. In other words,h v h0 means that any
loop fusion configuration for the rest of the expression tree that works withh also works
with h0. This relation allows us to do effective pruning among the large number of loop
fusion configurations for a subtree in Section 3.3. It can be proved that the necessary
and sufficient condition forh v h0 is that for alli 2 m[r] andj 2 m[s], there exist
r0; s0 such thati 2 m0[r0] andj 2 m0[s0] and[r = s) r0 = s0] and[r < s) r0 � s0],
wherem = MaxFusion(h; v) andm0 = MaxFusion(h0; v). Comparing the nesting at
f3 between Figure 2(e) and (f), the nestinghkl; ji in (e) is more constraining than the
nestinghjkli in (f). A procedure for determining ifh v h0 is given in Section 3.3.

3.3 Static Memory Allocation

Under the static memory allocation model, since all the arrays in a program exist during
the entire computation, the memory usage of a loop fusion configuration is simply the
sum of the sizes of all the arrays (including those reduced to scalars). Figures 3 shows a
bottom-up, dynamic programming algorithm for finding a memory-optimal loop fusion
configuration for a given expression treeT . For each nodev in t, it computes a set of
solutionsv:solnsfor the subtree rooted atv. Each solutions in v:solnsrepresents a loop
fusion configuration for the subtree rooted atv and contains the following information
for s: the loop nestings:nestingat v, the fusions:fusionbetweenv and its parent, the
memory usages:memso far, and the pointerss:src1 ands:src2 to the corresponding
solutions for the children ofv.

The set of solutionsv:solnsis obtained by the following steps. First, ifv is a leaf
node, initialize the solution set to contain a single solution usingInitSolns. Otherwise,
take the solution set from a childv:child1 of v, and, if v has two children, merge it
(usingMergeSolns) with the compatible solutions from the other childv:child2. Then,
prune the solution set to remove the inferior solutions usingPruneSolns. A solutions
is inferior to another unpruned solutions0 if s:nestingis more or equally constraining
thans0:nestingands does not use less memory thans0. Next, extend the solution set by
considering all possible legal fusions betweenv and its parent (seeExtSolns). The size

MinMemFusion (T):
InitFusible (T)
foreach nodev in some bottom-up traversal ofT

if v:nchildren= 0 then
S1 = InitSolns (v)

else
S1 = v:child1.solns
if v:nchildren= 2 then
S1 = MergeSolns(S1; v:child2.solns)

S1 = PruneSolns(S1; v)
v:solns= ExtendSolns(S1; v)

T:root:optsoln= the single element inT:root:solns
foreach nodev in some top-down traversal ofT
s = v:optsoln
v:optfusion= s:fusion
s1 = s:src1
if v:nchildren= 1 then
v:child1.optsoln= s1

else
v:child1.optsoln= s1:src1
v:child2.optsoln= s1:src2

InitFusible (T):
foreachv 2 T

if v = T:root then
v:fusible= ;

else
v:fusible= v:indices\ v:parent.indices

InitSolns (v):
s:nesting= hv:fusiblei
InitMemUsage (s)
return fsg

MergeSolns(S1; S2):
S = ;
foreachs1 2 S1

foreachs2 2 S2
s:nesting= MergeNesting(s1:nesting; s2:nesting)
if s:nesting6= hi then // if s1 ands2 are compatible
s:src1= s1
s:src2= s2
MergeMemUsage(s1; s2; s)
AddSoln (s; S)

return S

PruneSolns(S1; v):
S = ;
foreachs1 2 S1
s:nesting= MaxFusion (s1:nesting; v)
AddSoln (s; S)

return S

ExtendSolns(S1; v):
S = ;
foreachs1 2 S1

foreachprefixf of s1:nesting
s:fusion= f
s:nesting= ExtNesting (f; v:parent)
s:src1= s1
size= FusedSize(v; f)
AddMemUsage(v; f; size; s1; s)
AddSoln (s; S)

return S

AddSoln (s; S):
foreachs0 2 S

if Inferior (s; s0) then
return

else if Inferior (s0; s) then
S = S � fs0g

S = S [fsg

MergeNesting(h; h0):
g = hi
r = r0 = 1
x = x0 = ;
while r � jhj or r0 � jh0j

if x = ; then
x = h[r ++]

if x0 = ; then
x0 = h0[r0 + +]

y = x \ x’
if y = ; then

return hi // h andh0 are incompatible
g = g + y

y = x� x0

x0 = x0 � x
x = y

end while
return g // h andh0 are compatible

h v h0: // test ifh is more/equally constraining thanh0

r0 = 1
x0 = ;
for r = 1 to jhj

if x0 = ; then
if r0 > jh0j then

return false
x0 = h0[r0 + +]

if h[r] 6� x0 then
return false

x0 = x0 � h[r]
return true

InitMemUsage(s):
s:mem= 0

AddMemUsage(v; f; size; s1; s):
s:mem= s1:mem+ size

MergeMemUsage(s1; s2; s):
s:mem= s1:mem+ s2:mem

Inferior (s; s0) �
s:nestingv s0:nestingands:mem� s0:mem

FusedSize(v; f) �Q
(i 2 v:indices� fv:sumindexg � f) Ni

ExtNesting(f; u) � f + (u:indices� Set(f))

MaxFusion (h; v) �
maxff j prefix(f; h) andSet(f) � v:parent.indicesg

Set(f) �
S

1�r�jfj
f [r]

Fig. 3.Algorithm for static memory allocation.

of arrayv is added to memory usage byAddMemUsage. Inferior solutions are also
removed.

Although the complexity of the algorithm is exponential in the number of index
variables and the number of solutions could in theory grow exponentially with the size
of the expression tree, the number of index variables in practical applications is usually
small and there is indication that the pruning is effective in keeping the size of the
solution set in each node small.

The algorithm assumes the leaf nodes may be freely fused with their parents and the
root node array must be available in its entirety at the end of the computation. If these
assumptions do not hold, theInitFusible procedure can be easily modified to restrict or
expand the allowable fusions for those nodes.

v line src nestingfusion ext-nest memory usage opt

A 1 hiji hiji hiji 1
p

B 2 hjkli hjkli hjkli 1
p

C 3 hkli hkli hkl; ji 1
4 hkli hki hk; jli 15

p
5 hkli hli hl; jki 40
6 hkli hi hjkli 600

f1 7 1 hiji hji hj; ki 1+1=2
8 1 hiji hi hjki 1+100=101

p

f2 9 2,3 hkl; ji hkl; ji hkl; ji (1+1)+1=3
10 2,4 hk; jli hk; jli hk; jli (1+15)+1=17

p
11 2,5 hl; jki hl; jki hl; jki (1+40)+1=42
12 2,6 hjkli hjkli hjkli (1+600)+1=602

f3 13 10 hk; jli hk; ji hk; ji 17+1=18
p

14 12 hjkli hjki hjki 602+1=603

f4 15 7,14 hj; ki hj; ki hj; ki (2+603)+1=606
16 8,13 hk; ji hk; ji hk; ji (101+18)+1=120

p
17 8,14 hjki hjki hjki (101+603)+1=705

f5 18 16 hk; ji hi hi 120+40=160
p

Fig. 4.Solution sets for the subtrees in the example.

To illustrate how the algorithm works, consider again the empty fusion graph in
Figure 2(d) for the expression tree in Figure 1(c). LetNi = 500, Nj = 100, Nk = 40,
andNl = 15. There are23 = 8 different fusions betweenB andf2. Among them, only
the full fusionhjkli is in B:solnsbecause all other fusions result in more constraining
nestings and use more memory than the full fusion and are pruned. However, this does
not happen to the fusions betweenC andf2 since the resulting nestinghkl; ji of the
full fusion hkli is not less constraining than those of the other 3 possible fusions. Then,
solutions fromB andC are merged together to form solutions forf2. For example,
when the two full-fusion solutions fromB andC are merged, the merged nesting for
f2 is hkl; ji, which can then be extended by full fusion (betweenf2 andf3) to form a

full-fusion solution forf2 that has a memory usage of only 3 scalars. Again, since this
solution is not the least constraining one, other solutions cannot be pruned. Although
this solution is optimal for the subtree rooted atf2, it turns out to be non-optimal for the
entire expression tree. Figure 4 shows the solution sets for all of the nodes. The “src”
column contains the line numbers of the corresponding solutions for the children. The
“ext-nest” column shows the resulting nesting for the parent. A

p
mark indicates the

solution forms a part of an optimal solution for the entire expression tree. The fusion
graph for the optimal solution is shown in Figure 5(a).

q qA

q q qB q q C

q qf1

q q qf2

q q qf3

q qf4

q qf5

i

j k

l

i j

j k l k l

�
�
�
�
�
�
@

@
p

p

p

p

p

p

p

p

p

p

p

p

@
@
@

@

initialize f1
for i�

for jh
A=genA(i,j)
f1[j]+=A

initialize f5
for k2
666666664

for l�
C[l]=genC(k,l)

for j2
6664

initialize f3
for l�

B=genB(j,k,l)
f2=B �C[l]
f3+=f2

f4=f1[j] �f3
f5[k]+=f4

(a) (b)

Fig. 5. An optimal solution for the example.

Once an optimal solution is obtained, we can generate the corresponding fused loop
structure from it. The following procedure determines an evaluation order of the nodes:

1. Initialize setP to contain a single nodeT:root and listL to an empty list.
2. While P is not empty, remove fromP a nodev wherev:optfusionis maximal

among all nodes inP , insertv at the beginning ofL, and add the children ofv (if
any) toP .

3. WhenP is empty,L contains the evaluation order.

Putting the loops around the array evaluation statements is trivial. The initialization of
an array can be placed inside the innermost loop that contains both the evaluation and
use of the array. The optimal loop fusion configuration for the example expression tree
is shown in Figure 5(b).

3.4 An Example

We illustrate the practical application of the memory usage minimization algorithm on
the following example formula sequence which can be used to determine self-energy in
electronic structure of solids. It is optimal in operation count and has a cost of1:89�

1015 operations. The ranges of the indices areNk = 10, Nt = 100, NRL = NRL1 =
NRL2 = NG = NG1 = 1000, andNr = Nr1 = 100000.

f1[r,RL,RL1,t] = Y[r,RL] * G[RL1,RL,t]
f2[r,RL1,t] = sum RL f1[r,RL,RL1,t]
f5[r,RL2,r1,t] = Y[r,RL2] * f2[r1,RL2,t]
f6[r,r1,t] = sum RL2 f5[r,RL2,r1,t]
f7[k,r,r1] = exp[k,r] * exp[k,r1]
f10[r,r1,t] = f6[r,r1,t] * f6[r1,r,t]
f11[k,r,r1,t] = f7[k,r,r1] * f10[r,r1,t]
f13[k,r1,t,G] = fft r f11[k,r,r1,t] * exp[G,r]
f15[k,t,G,G1] = fft r1 f13[k,r1,t,G] * exp[G1,r1]

In this example, arrayY is sparse and has only 10% non-zero elements. Notice that
the common sub-expressionsY , exp, andf6 appear at the right hand side of more than
one formula. Also,f13 andf15 are fast Fourier transform formulae. Discussions on how
to handle sparse arrays, common sub-expressions, and fast Fourier transforms can be
found in [12, 13].

Without any loop fusion, the total size of the arrays is1:13� 1014 elements. If each
array is to be computed only once, the presence of the common sub-expressions and
FFTs would prevent the fusion of some loops, such as ther andr1 loops betweenf6
andf10. Under the operation-count restriction, the optimal loop fusion configuration
obtained by the memory usage minimization algorithm for static memory allocation
requires memory storage for1:10�1011 array elements, which is 1000 times better than
without any loop fusion. But this translates to about 1,000 gigabytes and probably still
exceeds the amount of memory available in any computer today. Thus, relaxation of the
operation-count restriction is necessary to further reduce to memory usage to reasonable
values. Discussions on heuristics for trading arithmetic operations for memory can be
found in [13].

We perform the following simple transformations to the DAG and the corresponding
fusion graph.

– Two additional vertices are added: one for ak-loop aroundf10 and the other for at-
loop aroundf7. These additional vertices are then connected to the corresponding
vertices inf11 with additional potential fusion edges to allow more loop fusion
opportunities betweenf11 and its two children.

– The common sub-expressionsY , exp, andf6 are split into multiple nodes. Also,
two copies of the sub-DAG rooted atf6 are made. This will overcome some con-
straints on legal fusion graphs for DAGs.

The memory usage minimization algorithm for static memory allocation is then
applied on the transformed fusion graph. The fusion graph and the loop fusion configu-
ration for the optimal solution found are shown in Figure 6. For clarity, the input arrays
are not included in the fusion graph. The memory usage of the optimal solution after
relaxing the operation-count restriction is significantly reduced by a factor of about 100
to 1:12� 109 array elements. The operation count is increased by only around 10% to
2:10 � 1015. The best hand-optimized loop fusion configuration produced by domain
experts also has some manually-applied transformations to reduce memory usage to

q q q qf1

q q q qf2

q q q qf5 q q q q f 0

5

q q q qf6 q q q q f 0

6

q q qf10 q q q q f7

q q q qf11

q q q qf13

q q q qf15

r1

RL1
RL2

t

k r r1 t

r

r1

k

G

G1

t

p

p

p

p

p

p

p
p

p
p

p
p

p
p

p
p

p
p

@
@
p

p

p

p

p

p

p

p

p

p

p

p

�
�

�
��
�
�
�
�
B
B
Z

ZZ
@

@
p

p

p

p

p

p

�
�
�
�
@

@
@

@
@

@
@

@

p

p

p

p

p

p

p

p

p

p

p

p

for r�
for RL�

Y[r,RL]=genY[r,RL]

for t2
666666666666666666666666664

init f2
for RL2
64

for RL22
4G=genG(RL2,RL,t)

for r1h
f1=Y[r1,RL]*G
f2[r1,RL2]+=f1

for r12
6666666666664

for r2
6664

init f6,f6’
for RL2"

f5=Y[r,RL2]*f2[r1,RL2]
f6+=f5
f5’=Y[r1,RL2]*f2[r,RL2]
f6’+=f5’

f10[r]=f6*f6’
for k2
4 for rh

f7=exp[k,r]*exp[k,r1]
f11[r]=f7*f10[r]

f13[k,r1,1:NG]=fft(f11[1:Nr])
f15[1:Nk,1:NG,1:NG1]=fft(f13[1:Nk,1:Nr1,1:NG])
write f15[1:Nk,1:NG,1:NG1]

(a) Fusion graph (b) Loop fusion configuration

Fig. 6.Optimal loop fusions for the example formula sequence.

1:12� 109 array elements and has5:08� 1015 operations. In comparison, the optimal
loop fusion configuration obtained by the algorithm shows a factor of 2.5 improvement
in operation count while using the same amount of memory.

4 Conclusion

In this paper, we have considered an optimization problem motivated by some compu-
tational physics applications. The computations are essentially multi-dimensional in-
tegrals of the product of several arrays. In practice, the input arrays and intermediate
arrays could be too large to fit into the available amount of memory. It becomes neces-
sary to fuse the loops to eliminate some dimensions of the arrays and reduce memory
usage. The problem of finding a loop fusion configuration that minimizes memory us-
age was addressed in this paper. Based on a framework that models loop fusions and
memory usage, we have presented an algorithm that solves the memory optimization
problem.

Work is in progress on the optimization and the implementation of the algorithms
in this paper. We also plan on developing an automatic code generator that takes array
partitioning and loop fusion information as input and produces the source code of a
parallel program that computes the desired multi-dimensional integral.

References

1. W. Aulbur,Parallel implementation of quasiparticle calculations of semiconductors and in-
sulators, Ph.D. Dissertation, Ohio State University, Columbus, October 1996.

2. S. Chatterjee, J. R. Gilbert, R. Schreiber, and S.-H. Teng,Automatic array alignment in
data-parallel programs, 20th Annual ACM SIGACTS/SIGPLAN Symposium on Principles
of Programming Languages, New York, pp. 16–28, 1993.

3. S. Chatterjee, J. R. Gilbert, R. Schreiber, and S.-H. Teng,Optimal evaluation of array ex-
pressions on massively parallel machines, ACM TOPLAS, 17 (1), pp. 123–156, Jan. 1995.

4. C. N. Fischer and R. J. LeBlanc Jr,Crafting a compiler, Menlo Park,
CA:Benjamin/Cummings, 1991.

5. L. J. Guibas and D. K. Wyatt,Compilation and Delayed Evaluation in APL, Fifth Annual
ACM Symposium on Principles of Programming Languages, Tucson, Arizona, pp. 1–8, Jan.
1978.

6. G. Gao, R. Olsen, V. Sarkar, and R. Thekkath,Collective loop fusion for array contraction,
Languages and Compilers for Parallel Processing, New Haven, CT, August 1992.

7. M. S. Hybertsen and S. G. Louie,Electronic correlation in semiconductors and insulators:
band gaps and quasiparticle energies, Phys. Rev. B, 34 (1986), pp. 5390.

8. K. Kennedy and K. S. McKinley,Maximizing loop parallelism and improving data locality
via loop fusion and distribution, Languages and Compilers for Parallel Computing, Portland,
OR, pp. 301–320, August 1993.

9. C. Lam, D. Cociorva, G. Baumgartner, and P. Sadayappan,Memory-optimal evaluation of
expression trees involving large objects, Technical report no. OSU-CISRC-5/99-TR13, Dept.
of Computer and Information Science, The Ohio State University, May 1999.

10. C. Lam, P. Sadayappan, and R. Wenger,On optimizing a class of multi-dimensional loops
with reductions for parallel execution, Parallel Processing Letters, Vol. 7 No. 2, pp. 157–168,
1997.

11. C. Lam, P. Sadayappan, and R. Wenger,Optimization of a class of multi-dimensional inte-
grals on parallel machines, Eighth SIAM Conference on Parallel Processing for Scientific
Computing, Minneapolis, MN, March 1997.

12. C. Lam, P. Sadayappan, D. Cociorva, M. Alouani, and J. Wilkins,Performance optimization
of a class of loops involving sums of products of sparse arrays, Ninth SIAM Conference on
Parallel Processing for Scientific Computing, San Antonio, TX, March 1999.

13. C. Lam,Performance optimization of a class of loops implementing multi-dimensional in-
tegrals, Technical report no. OSU-CISRC-8/99-TR22, Dept. of Computer and Information
Science, The Ohio State University, Columbus, August 1999.

14. N. Manjikian and T. S. Abdelrahman,Fusion of Loops for Parallelism and Locality, Interna-
tional Conference on Parallel Processing, pp. II:19–28, Oconomowoc, WI, August 1995.

15. H. N. Rojas, R. W. Godby, and R. J. Needs,Space-time method for Ab-initio calculations
of self-energies and dielectric response functions of solids, Phys. Rev. Lett., 74 (1995),
pp. 1827.

16. S. Singhai and K. MacKinley,Loop Fusion for Data Locality and Parallelism, Mid-Atlantic
Student Workshop on Programming Languages and Systems, SUNY at New Paltz, April
1996.

