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Abstract

The need to evaluate expression trees involving large tshgses in scientific computing ap-
plications such as electronic structure calculationse@fthe tree node objects are so large that
only a subset of them can fit into memory at a time. This papéreases the problem of finding
an evaluation order of the nodes in a given expression tigeudes the least amount of mem-
ory. We present an algorithm that finds an optimal evaluatiater in®(nlog? n) time for an
n-node expression tree and prove its correctness. We deratmgte utility of our algorithm
using representative equations from quantum chemistry.

Keywords: expression tree, evaluation order, memory minimizatiegister allocation

1. Introduction

This paper addresses the problem of finding an evaluatioer afithe nodes in a given
expression tree that minimizes memory usage. The expreigie must be evaluated in some
bottom-up order, i.e., the evaluation of a node cannot pletee evaluation of any of its children.
The nodes of the expression tree are large data objects whreseare given. If the total size of
the data objects is so large that they cannot all fit into mgnabthe same time, space for the
data objects has to be allocated and deallocated dynayniBaié to the parent-child dependence
relation, a data object cannot be deallocated until itsrgarede data object has been evaluated.
The objective is to minimize the maximum memory usage dutirggevaluation of the entire
expression tree.

This problem arises, for example, in the accurate modelinth® electronic structure of
atoms and molecules in quantum chemistry [1, 2] as well a®inescomputational physics
codes modeling the electronic properties of semicondatnd metals [3, 4, 5]. Computational
approaches to modeling the structure and interactions décules, the electronic and optical
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properties of molecules, the heat and rate of chemicalioregtetc., are crucial to the under-
standing of chemical processes in real-world systems. [plesrof applications include com-
bustion and atmospheric chemistry, chemical vapor depasiprotein structure and enzymatic
chemistry, and industrial chemical processing. The coatprtal domain that we consider is
also extremely compute-intensive and consumes signifmamputer resources at national su-
percomputer centers. Many of these codes are limited inileec§ the problem that they can
currently solve because of memory and performance liroitati

In this class of computations, the final result to be compwgtad be expressed in terms of
tensor contractions, essentially a collection of multréihsional summations of the product of
several input arrays. Due to commutativity, associatiatyd distributivity, there are many dif-
ferent ways to compute the final result, and they couttediwidely in the number of floating
point operations required. Consider the following expig@ss

Sapij = Z Aacik X Bpefl X Cytjk X Degel
cdefkl

where typical index ranges are on the order of tens to a fewstnads. If this expression is
directly translated into code (with ten nested loops, faidasa — ), the total number of arith-

metic operations required will bex4NC if the range of each index— | is N. Instead, the same
expression can be rewritten by use of associative andhlisitré laws [6, 7, 8]:

Sabij = Z [Z (Z Bpefi X DcdeIJ X Cdfjk] X Aacik

ck \ df el

This corresponds to the formula sequence shown in Fig. b@hjan be directly translated into
code as shown in Fig. 1(b). This form only requires 8I° operations. However, additional
space is required to store temporary arr@ilsandT2. Often, the space requirements for the
temporary arrays poses a serious problem. For this exaaipdéracted from a quantum chem-
istry model, the array extents along indi@es d are the largest, while the extents along indices
i —I are the smallest. Therefore, the size of temporary ardaywould dominate the total memory
requirement.

Thus, although the latter form is far more economical in ohthe number of operations,
its implementation will require the use of temporary intediate arrays to hold the partial results
of the parenthesized array subexpressions.

One approach to reducing the memory requirements for theuatation is through loop
fusion. By merging the common outer loops of the producer @rsumer loop nests for an
intermediate array, the dimensions corresponding to thedloops can be eliminated from the
intermediate array. In our example, loop fusion allolisto be reduced to a scalar af@ to a
2-dimensional array without changing the number of operatias illustrated in Fig. 1(c). Since
different fusion choices are often not mutually compatibles, itdcessary to enumerate all fusion
choices to find the loop structure that minimizes the memeguirements [9, 10, 11].

If even after loop fusion, some intermediates do not fit in memit is necessary to tile these
intermediates and move tiles in and out of disk [12, 13].

While loop fusion usually results in large memory reductianghe context of tensor con-
tractions it has a detrimentaifect: it reduces temporal and spatial locality. As a reshk, t
computation can become significantly more expensive. Bulile the tensor contractions in
Fig. 1(b) can be implemented using index permutations andi®inatrix multiplications, which
use the cachefiectively, this is not possible anymore with the fused codgign 1(c).
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T1=0; T2=0; S=0;

Tlpcdt = ZBbefIXDcdel for b, c, d, e, £, 1
el | Tibear += Boefl Dedel
T2k = ZlecdeCdfjk for b, ¢, d, £, j, k
df [ T2pcjk += Tlpcar Cafjk
£ b, ¢, i, j, k
Sabii = . T2bcjk X Aucik or & By € L )
o [ Sabij *= T2pbcjk Aacik
(a) Formula sequence (b) Direct implementation (unfused code)
S =0;
for b, c
Tif = 0; T2f = 0;
for d, £
for e, 1
[ T1f += Bpefl Dcdel
for j, k

[ T2fj += T1f Cqtjk
for a, i, j, k
[ Sabij *= T2fjk Aacik

(c) Memory-reduced implementation (fused)

Figure 1: Example illustrating use of loop fusion for memoryuetibn
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Figure 2: An example expression tree

Since space allocated for an intermediate array can beodasdld as soon as the operation
using the array has been performed, the evaluation oftista the maximum memory require-
ments as well [14, 11]. Our strategy is, therefore, to atteimpeduce the memory requirements
by improving the evaluation order first in the hope of avoidioop fusion. Even if loop fusion
and disk JO become necessary, the improved evaluation order cane¢deenemory pressure
and lead to less diskQ.

In this paper, we focus on the problem of finding an evaluatiater of the nodes in a given
expression tree that minimizes the dynamic memory usageoluien to this problem would
result in the generation of mordhieient code for evaluating expression trees, e.g., for caimgu
tensor contraction expressions.

As an example of the memory usage optimization problem, idenghe expression tree
shown in Fig. 2. The size of each data object is shown alorghiel corresponding node label.
Before evaluating a data object, space for it must be akacafhis space can be deallocated
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only after the evaluation of its parent is complete. The ddjacts for leaf nodes are assumed
to be generated or read in as needed. Therefore, space floligtalocated and deallocated in
the same way. There are many allowable evaluation orderseofddes. One of them is the
post-order traversdiA, B,C, D, E, F, G, H, | of the expression tree. It has a maximum memory
usage of 45 units. This occurs during the evaluatioHofwhenF, G, andH are in mem-
ory. Other evaluation orders may use more memory or less merRnding the optimal order
(C,D,G,H, A B,E, F,I), which uses 39 units of memory, is not trivial.

A simpler problem related to the memory usage minimizatioblem is the register allo-
cation problem for binary expression trees in which thessifeall nodes are unity. It has been
addressed in [15, 16] and can be solved®ifm) time, wheren is the number of nodes in the
expression tree. But if the expression tree is replaced liyeatdd acyclic graph (in which all
nodes are still of unit size), the problem becomes NP-comply]. The algorithm in [16] for
expression trees of unit-sized nodes does not extend lgitecexpression trees having nodes
of different sizes. Appel and Supowit [18] generalized the regatecation problem to higher
degree expression trees of arbitrarily-sized nodes. Hewyévey restricted their attention to so-
lutions that evaluate subtrees contiguously, which coefiit in non-optimal solutions (as we
show through an example in Section 2). The generalizedtezgiiocation problem for expres-
sion trees was addressed in the context of vector machifj&9,i20].

Our approach is dierent from out-of-core solutions. There the problem is tnimize disk
I/O under a given memory constraint (not to minimize memory)asgructuring the computation
or with the help of data structures. We attempt to avoid arofuiore computation by minimiz-
ing memory. If this is unsuccessful, we need to resort torotlehniques, such as tiling, for
producing an out-of-core solution [12, 13].

The rest of this paper is organized as follows. In Section@farmally define the memory
usage optimization problem and make some observationg &bdbection 3 presents arffie
cient algorithm for finding the optimal evaluation order for expression tree. In Section 4, we
prove that the algorithm finds a solution@{nlog? n) time for ann-node expression tree. The
correctness of the algorithm is proved in Section 5. In $ad, we show experimental results.
Section 7 contains conclusions and discusses possible futork.

2. Problem statement

We address the problem of optimizing the memory usage inhkiation of a given ex-
pression tree whose nodes correspond to large data obfeessious sizes. Each data object
depends on all its children (if any), and thus can be evallatdy after all its children have been
evaluated. We assume that the evaluation of each node imphession tree is atomic. Space for
each data object is dynamically allocatehllocated in its entirety. Internal node objects must
be allocated before their evaluation begins, and each bhjast remain in memory until the
evaluation of its parent is completed. Similarly, a leaf @otbject is allocated before it is created
or read from disk and deallocated after the evaluation gfarent is completed. The goal is to
find an evaluation order of the nodes that uses the least armboremory. Since an evaluation
order is also a traversal of the nodes, we will use these tmasténterchangeably.

We define the problem formally as follows:

Given a tre€l and a sizev.sizefor each noder € T, find a computation of that
uses the least memory, i.e., an orderihg (vy, Vo, ..., V,,) of the nodes ifT, where
nis the number of nodes if, such that
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[ Node| himem | deallocate] lomem |

A 0+20=20 - 20-0=20
B 20+3=23 A 23-20=3
C 3+30=33 - 33-0=33
D 33+9=42 C 42-30=12
E 12+ 16=28 D 28-9=19
F 19+15=34 B, E 34-3-16=15
G 15+25=40 - 40-0=40
H 40+5=45 G 45-25=20
| 20+ 16=36 F,H 36-15-5=16
(max |45 | | |

Figure 3: Memory usage of a post-order traversal of the esmmdree in Fig. 2

1. for allv;,vj, if v; is the parent of;, theni > j; and
2. max,cp{himemg;, P)} is minimized, where

himem{;,P) = lomemg_1, P) + vi.size
lomem;, P) = { gimemﬁli, P) - Z[Childvj of v} Vj-Size :‘;: ig

Here, himem\;, P) is the memory usage during the evaluationvoin the traversaP, and
lomem¢§;, P) is the memory usage upon completion of the same evalualibrse definitions
reflect that we need to allocate space ¥pbefore its evaluation, and that after evaluation of
v;, the space allocated to all its children may be releasedinBtance, consider the post-order
traversalP = (A,B,C,D, E, F,G, H, ) of the expression tree shown in Fig. 2. During and after
the evaluation ofp, A is in memory. So, himend; P) = lomem@, P) = Asize= 20. For
evaluatingB, we need to allocate space By thus himemB, P) = lomem@@A, P) + B.size= 23.
After B is obtained A can be deallocated, giving lomeB)P) = himem@, P) — A.size= 3. The
memory usage for the rest of the nodes is determined simaad shown in Fig. 3.

The post-order traversal of the given expression tree, hekvés not optimal in memory
usage. In this example, none of the traversals that vigitcales in one subtree before visiting an-
other subtree is optimal. There are four such travergAl8,C,D,E,F,G, H, 1),(C,D,E,A,B,F,G, H, ),
(G,H,A B,C,D,E,F, 1) and(G,H,C,D,E,A B, F,I). If we follow the traditional wisdom of
visiting the subtree with the higher memory usage first, akénSethi-Ullman algorithm [16],
we obtain the best of these four traversals, whidleisH, C, D, E, A, B, F, ). Its overall memory
usage is 44 units, as shown in Fig. 4, and is not optimal. Thienaptraversal, which uses only
39 units of memory, i$C, D, G, H, A, B, E, F, I) (see Fig. 5). Notice that it ‘jumps’ back and forth
between the subtrees. Therefore, any algorithm that omigiders traversals that visit subtrees
contiguously may not produce an optimal solution.

The memory usage optimization problem has an interestiogguty: an expression tree or
a subtree may have more than one optimal traversal. For dzarfigp the subtree rooted at
F, the traversal¢C, D, E, A, B, F) and(C, D, A, B, E, F) both use the least memory space of 39
units. One might attempt to take two optimal subtree traler®ne from each child of a node
merge them together optimally, and then app&nad form a traversal foX. But, this resulting
traversal may not be optimal fof. Continuing with the above example, if we merge together
(C,D, E, A B,F)and(G, H) (which are optimal for the subtrees rooted-aindH, respectively)
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[ Node | himem | lomem |

G 25 25 K
H 30 5
C 35 35 8:15 2:5
D 44 14 AN |
E 30 21 7:3 5:16 1:25
A 41 41 ‘
B 44 24 6:20 4:9
F 39 20 ‘
[ 36 16 3-30

| max [ 44

(a) Memory usage

(b) Order of node visits

Figure 4: Best traversal with contiguous evaluation of seéxt of the expression tree in Fig. 2

[ Node | himem | lomem |

C 30 30 K
D 39 9
G 34 34 8:15 4:5
H 39 14 ‘
A 34 34 6:3 7:16 3:25
B 37 17 ‘
E 33 24 5:20 2:9
F 39 20 ‘
| 36 16 130

| max [ 39

(a) Memory usage (b) Order of node visits

Figure 5: Optimal traversal of the expression tree in Fig. 2

and then append the best we can get is a sub-optimal travet&H, C, D, E, A, B, F, |) that
uses 44 units of memory (see Fig. 4). However, the other @btiraversakC, D, A, B, E, F)
for the subtree rooted & can be merged witkG, H) to form (C,D,G,H, A, B,E, F, I) (with

| appended), which is an optimal traversal of the entire esgioa tree. Thus, locally optimal
traversals may not be globally optimal. In the next sectio&present anficient algorithm that
finds traversals that are not only locally optimal but alsubglly optimal.

3. An efficient algorithm

We now present anficient divide-and-conquer algorithm that, given an expozssree
whose nodes are large data objects, finds an evaluation ofdbe tree that minimizes the
memory usage. For each node in the expression tree, it cesyput optimal traversal for the
subtree rooted at that node. The optimal subtree travéraiiticomputes has a special property:
it is not only locally optimal for the subtree, but also gldpaptimal in the sense that it can be
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Nodev | Subtree traversals merged jnOptimal traversal.seq
decreasingni — lo order

A (A, 20, 20)) ((A, 20,20))

B | ((A.20,20),(B.233)) ((AB,23 3))

C {(C, 30,30)) {(C, 30,30))

D {(C, 30,30), (D, 39,9)) ((CD, 39,9))

E {((CD, 39,9), (E, 25,16)) ((CD, 39,9), (E, 25,16))

F {(CD,39,9),(AB,32,12), {((CD, 39,9), (ABEF, 34,15))
(E, 28,19), (F, 34,15))

G {(G, 25, 25)) ((G, 25, 25))

H ((G, 25,25), (H, 30, 5)) ((GH, 30,5))

I {((CD, 39,9),(GH, 39,14), ((CDGHABEFL 39, 16))
(ABEF, 39,20), (1, 36, 16))

Figure 6: Optimal traversals for the subtrees in the expoadsee in Fig. 2

merged together with globally optimal traversals for othaltrees to form an optimal traversal
for a larger tree that is also globally optimal. As we havensa&ection 2, not all locally optimal
traversals for a subtree can be used to form an optimal salvfar a larger tree.

The algorithm stores a traversal not as an ordered list oésiodut as an ordered list of
indivisible unitsor elements Each indivisible unit contains an ordered list of nodeshwtite
property that there necessarily exists some globally agtinaversal of the entire tree wherein
this sequence appears undivided and in the same order.ifEtgere is an optimal traversal of
the entire expression tree in whighis evaluated immediately following, the algorithm will
construct an indivisible unit containing the nod&B. (For clarity, we write node lists in an
indivisible unit as strings). Therefore, as we show lateseiting any node in between the nodes
of an indivisible unit does not lower the total memory usage.

An element initially contains a single node. But as the atbor goes up the tree merging
traversals together and appending new nodes to them, eiemeay be appended together to
form new elements containing a larger number of nodes. Merethe order of indivisible units
in a traversal stays invariant, i.e., the indivisible umitast appear in the same order in some
optimal traversal of the entire expression tree. This mdlaatsindivisible units can be treated
as a whole and we only need to consider the relative orderdiigible units from diferent
subtrees.

Each element (or indivisible unit) in a traversal issadelist hi, 10) triple, wherenodelistis
an ordered list of nodes is the maximum memory usage during the evaluation of the iode
in nodelist andlo is the memory usage after those nodes are evaluated. Usrigrthinology
from Section 2hi is the highest himem among the nodesiadelist andlo is the lomem of the
last node imodelist

For example, the traverséICD, 39, 9), (E, 25, 16)) indicates that the maximum memory us-
age during the evaluation € andD is 39 units of memory and that the result of the evaluation
occupies 9 units. Similarly, during the evaluationef25 units are needed and the result occu-
pies 16 units. Whil€ andD can be evaluated consecutively in an optimal traversaleétitire
expression tree, nodes from other subtrees might be eedlbatweerd andE.

The algorithm always maintains the elements of a traversdecreasindpi and increasing
lo order, which implies in order of decreasihg- lo. In Section 5, we prove that arranging the
indivisible units in this order minimizes memory usage.
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Before formally describing the algorithm, we illustrateahid works with an example. Con-
sider the expression tree shown in Fig. 2. We visit the nodl@skiottom-up order and compute
the optimal traversals for the subtrees rooted at each reoslecavn in Fig. 6. SincA has no chil-
dren, the optimal traversal for the subtree rooted,atenoted byA.seq is ((A, 20, 20)), meaning
that 20 units of memory are needed during the evaluatioh afid immediately afterwards. To
form B.seq we takeA.seq append a new elemerB,3 + 20, 3) (thehi of which is adjusted by
the lo of the preceding element), and géA, 20, 20), (B, 23,3)). Whenever two adjacent ele-
ments are not in decreasitng and increasingdo order, we combine them into one element by
concatenating thaodelistsand taking the highedti and the secontb. Thus, B.seqbecomes
((AB, 23, 3)). Similarly, we getE.seq= ((CD, 39,9), (E, 25, 16)). Note that these two adjacent
elements cannot be combined because they are already gadewhi and increasindp order.
For nodeF, which has two childre8 andE, we mergeB.segandE.seqin the order of decreas-
ing hi — lo. The merged elements are in the ordeb(39,9), (AB,23 + 9,3 + 9), and finally
(E, 25+ 3,16 + 3) with thehi andlo values adjusted by tHe value of the last merged element
from the other subtree. They are the three elemerfssieqafter the merge as no elements have
been combined so far. Then, we appené& geqthe new element, 15+ 19, 15) for the root of
the subtree. The new element is combined with the last twoeiés inF.seqto ensure that the
elements are in decreasihg- lo order. Hencel.segbecomesg(CD, 39,9), (ABEF, 34,15)), a
sequence of only two indivisible units. The optimal traaéssor the other nodes are computed
in the same way and are shown in Fig. 6. At the end, the algonitturns the optimal traversal
(C,D,G,H, A B, E, F, I) for the entire expression tree (see Fig. 5).

We can visualize the elements in a traversal as follows. Tisé dlement in a traversal
contains the nodes from the beginning of the traversal updaracluding the last node that has
the lowest lomem after the last node that has the highestrhintehe highest himem and the
lowest lomem become th@ and thelo of the first indivisible unit, respectively. The same rules
are recursively applied to the remainder of the traverséitim the second element, and so on.
This ensures that the indivisible units in the traversaimoecreasindpi and increasindp order.

Fig. 7 shows the algorithm. The input to the algorithm (M emTraver sal procedure)
is an expression trek, in which each node has a fields.sizedenoting the size of its data object.
The procedure performs a bottom-up traversal of the tree fandeach nodey, computes an
optimal traversaV.seqfor the subtree rooted &t For simplicity, we present the algorithm using
sequences ohpdelist hi, l0) triples as the data structure for traversals. We will pnesemore
efficient data structure in the next section.

The optimal traversal.segfor a nodev is obtained by optimally merging together the optimal
traversalau.seqfor all childrenu of v, and then appending At the end, the procedure returns a
concatenation of all thaodelistsin T.root.seqas the optimal traversal for the given expression
tree. The memory usage of the optimal traversal.isot.sed1].hi.

The MergeSeq procedure optimally merges two given traversalsandS2 and returns the
merged resulB. S1 andS2 are subtree traversals of two children nodes of the sansmparhe
optimal merge of sequences is performed in a fashion sindlarerge-sort. Elements froil
andS2 are scanned sequentially and appended $hio the order of decreasing — lo. This
order guarantees that the indivisible units are arrangedinémize memory usage. Sinc&l
andS2 are formed independently, theandlo values in the elements fro®l andS2 must be
adjusted before they can be appende&.tdhe amount of adjustment for an element fr&h
(S2) equals théo value of the last merged element fr@2 (S1), which is kept in variablbasel
(basel.

The AppendSeq procedure appends the new element specified by the triplie(ist hi, o)
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MinMemTraversal (T):
foreach nodev in some bottom-up traversal of
v.seq= )
foreach child u of v // merge traversals from all children
v.seq= MergeSeq(v.seq u.seq
if [v.seq > Othen // IX| is the length ofx
base= v.seq|v.seq].lo
else
base= 0
AppendSeq (v.seq(v), v.size+ basev.siz§  // append parent node
nodelist= ()
fori=1to|T.rootseq //flatten sequence of nodelists
nodelist= nodelist+ T.rootsedi].nodelist  // + is concatenation
return nodelist  // memory usage i$.root.seq1].hi

MergeSeq (S1, S2):
S=¢ // 'S will hold the merge result
i=j=1
basel= base2=0
whilei <|S1jor j <|S2|
if j >1S2or (i <|S1 andS1[i].hi — S1[i].lo > S2[j].hi — S2[]j].lo) then
// S2 is exhausted dB1[i] has a largehi — lo thanS2[j]
// append indivisible unit fron$1to S
AppendSeq (S, S1[i].nodelist S1][i].hi + base1S1[i].lo + base)}
base2= S1]i].lo
i++
else
// S1is exhausted d82[]] has a larger or equdli — lo thanS1[i]
// append indivisible unit fron$2to S
AppendSeq (S, S2[j].nodelist S2[j].hi + base2S2[j].lo + base2
basel= S2[j].lo
j++
end while
return S

AppendSeq (S, nodelist hi, lo):

E = (nodelisthi,lo)  // new element to append ®

i =S|

whilei > 1 and €.hi > SJi].hi or E.lo < S[i].lo)
// combineS[i] with E to keepS in decreasindni and increasindp order
E = (S[i].nodelist+ E.nodelist max(S[i].hi, E.hi), E.lo)
removeSJi] from S
j——

end while

S=S+E //1S] is nowi + 1

Figure 7: Procedure for finding an memory-optimal traversahoéxpression tree



to the given travers@. Before the new elemeitis appended t8, it is combined with elements
at the end ofs whosehi is not higher thark.hi or whosedo is not lower tharkE.lo. The combined
element has the concatenateatielistand the higheshi but the originalE.lo.

This algorithm has the property that the traversal it findsafeubtreél” is not only optimal
for T’ but must also appear as a subsequence in some optimal alaficgrany larger tree that
containsT’ as a subtree. For examplE,seqis a subsequence iR.seq which is in turn a
subsequence ihseq(see Fig. 6).

4. Complexity of thealgorithm

In the previous section, our algorithm has been presented as abstract sequence nota-
tion so that the properties of sequences of indivisiblesuare easy to see. If sequences were
implemented as doubly-linked lists and merged sequepntidle worst-case complexity for an
unbalancedh-node tree would b&(n?), since for every node a linear-time merge operation
would be performed.

With a more #icient data structure, the time complexity of our algorititie(M emMin-
Traversal procedure) i®(nlog? n) for ann-node expression tree. We represent a sequence of
indivisible units as a red-black tree with the indivisibleits at the leaves. The tree is sorted in
decreasindi — lo order. In addition, the leaves are linked in sorted orderdably-linked list,
and a count of the number of indivisible units in the sequésnoeaintained.

The cost of constructing the final evaluation order consi$tthe cost for traversing the
expression tree, the cost for building sequences of inbiasinits, and the cost for combining
indivisible units into larger indivisible units. The costrftraversing the expression tree is linear,
sinceMemM inTraver sal visits each node in the expression tree only once. For finglingpper
bound on the cost of the algorithm, the worst-case cost fidibg sequences can be analyzed
separately from the worst-case cost for combining indisunits.

The sequence for a leaf node of the expression tree can b&waded in constant time. For
a unary interior node, we call thi&ppendSeq procedure to append an element containing the
node to the sequence of its subtree, which c@tegn) time for inserting the element in the
red-black tree.

For anm-ary interior node, théergeSeq procedure must merge the sequences of the sub-
trees by inserting the nodes from the smaller sequenceghattargest sequence. Inserting a
node into a sequence represented as a red-black treeQfasgs) time. Since we always insert
the nodes of the smaller sequences into the largest ong,téwera given node of the expression
tree gets inserted into a sequence the size of the sequemntzéniag this node at least doubles.
Each node, therefore, can be inserted into a sequence aiaflogn) times, with each inser-
tion costingO(logn) time. The cost for building the traversal for the entire r@gsion tree is,
therefore O(nlog? n).

Two individual indivisible units can be combined in tA@pendSeq procedure in constant
time. When combining two adjacent indivisible units withiseguence, one of them must be
deleted from the sequence and the red-black tree must kareed, which costS(log n) time.
Since there can be at mast- 1 of these combine operations, the total cogb{alogn). The
cost of the whole algorithm is, therefore, dominated by & éor building sequences, which is
O(nlog?n).

Combining indivisible units into larger ones reduces thmbar of elements in the sequences
and, therefore, the time required for merging and combisgguences. In the best case, indivis-
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ible units are always combined such that each sequenceim®atgingle element. In this case,
the algorithm only takes linear time.

In the worst case, a degenerate expression tree consistatifrodes and large nodes such
that every small node has as its only child a large node. A glaguch nodes will form an
indivisible unit with thehi being the sum of the sizes of the two nodes andlthkeing the
size of the small node. Such a tree can be constructed sucthésa indivisible units will not
further combine into larger indivisible units. In this ca#®e algorithm will result in a sequence
of n/2 indivisible units containing two nodes each. If such a degate expression tree is also
unbalanced, the algorithm requir@énlog? n) time for computing the optimal traversal.

5. Correctness of the algorithm

We now show the correctness of the algorithm. The proof mdseas follows. Lemma 1
characterizes the indivisible units in a subtree travebgaproviding some invariants that are
maintained by the algorithm. Lemma 2 shows that, once forraadh indivisible unit can be
considered as a whole. Lemma 3 deals with the optimal orgerfrnndivisible units from dif-
ferent subtrees. Finally, using the three lemmas we proveEhasrem 4 the optimality of the
traversal found by the algorithm by arguing that any traakeo$ an expression tree can be trans-
formed in a series of steps into the optimal traversal founthe algorithm without increasing
memory usage.

The firstlemma establishes some important invariants gheundivisible units in an ordered
list v.seqthat represents a traversal. Thievalue of an indivisible unit is the highest himem of the
nodes in the indivisible unit. Thie value of an indivisible unit is the lomem of the last node in
the indivisible unit. Given a sequence of nodes, an indilésunit extends to the last node with
the lowest lomem following the last node with the highestdrim In addition, the indivisible
units in a sequence are in decreadingnd increasindp order.

Lemma l. Letv be any node in an expression trees $.seq and P be the traversal represented
by S of the subtree rooted at v, i.e.,&P S[1].nodelist+ - - - + S[|S|].nodelist The algorithm
maintains the following invariants:

Forall 1 <i < |S], let §[i].nodelist= (v1,Vy,...,V,) and v, be the last node in

SJ[i].nodelistthat has the maximum himem value, i.e., for aft kn, himen(v, P) <
himengvm, P) and for all k> m, himen(v, P) < himen{vi, P). Then, we have,

1. gJi].hi = himengvy, P),
2. S[i].lo = lomengv,, P),
3. for all m < k < n, lomenfv, P) > lomentv,, P),
4, foralll<j<i,
(a) forall 1 < k < n, §[j].hi > himengv,, P),
(b) forall 1 < k< n, §j].lo < lomengv, P),
(c) S[j].hi > SJi].hi, and
(d) S[j].lo < S[i].lo.

Proor. The above invariants are true by construction. The inmgsiél) and (2) are maintained
by adding the appropriateasevalue to thehi andlo arguments in the calls AppendSeq.
The invariant (3) is maintained bfppendSeq, and (4) is maintained by the merge order in

M ergeSeq and byAppendSeq. O
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The second lemma asserts the ‘indivisibility’ of an indilsle unit by showing that unrelated
nodes inserted in between the nodes of an indivisible uniabaays be moved to the beginning
or the end of the indivisible unit without increasing memaage. Thus, once an indivisible
unit has been formed as part of the traversal of a subtree owetneed to consider breaking
it up later for inserting nodes from another subtree. Thisna allows theMemMinTraver sal
algorithm to treat each traversal as a sequence of indigisifits (each containing one or more
nodes) instead of a list of the individual nodes.

Lemma2. Let v be a node in an expression tree T =Sv.seq and P be a traversal of T in
which the nodes from [§.nodelistappear in the same order as they are ifi]$1odelist but
not contiguously. Then, any nodes that are in between thesivdgi].nodelistcan always be
moved to the beginning or the end dfishodelistwithout increasing memory usage, provided
that none of the nodes that are in between the node§ilm8delistare ancestors or descendants
of any nodes in B].nodelist

Proor. LetS[i].nodelist= (vy,...,Vn), Vo be the node befong in S, v, be the node i15[i].nodelist
such that for allk < m, himemx, P) < himem{y, P) and for allk > m, himem¢y,, S) >
himem{x, S). Letv,, ...,V be the ‘foreign’ nodes, i.e., the nodes that are in betweemdues
in S[i].nodelistin P, with vy, ..., v, (not necessarily contiguously) befovg andv,,,,..., Vv,
(not necessarily contiguously) aftey in P. Let Q be the traversal obtained frofby removing
the nodes irS[i].nodelist We construct another traverddl of T from P by movingv;,...,V,
to the beginning ofS[i].nodelistand Vv, ,, ...,V to the end ofS[i].nodelist In other words,
we replace(Va, ...,V ..., Va, oo Vi oo s Vo gs e o5 Vs oo o5 Vi) IN P Wth (V] LoV Ve, L Vi,
sV V- - - V) to form P

Traversals® andP’ differ in memory usage only at the nodes, ..., Vs, V;, ...,V }. P’ does

not use more memory thdhbecause:

1. The memory usage fd?P’ at vy, is the same as the memory usage Poat vy, since
himem{m, P") = himem{m, S) + lomem{,, Q) = himem§/y,, P).

2. For all 1< k < n, the memory usage fd? atvy is no higher than the memory usage for
P at vy, since himemf, S) < himem{/,, S) implies that himem, P’) = himem{x, S) +
lomem¢;,, Q) < himem{m, S) + lomem{, Q) = himem{n, P).

3. Forall 1< j < a, the memory usage fd? atV, is no higher than the memory usage Por
atv;, since for all 1< k < m, lomemgp, S) < lomem{, S) (by invariant 4(b) in Lemma 1)
implies himemy;, P’) = himem{/, Q) + lomemf{x, S) < himem{/, P).

4. For alla < j < b, the memory usage fd¥ atV; is no higher than the memory usage Por
atVv;, since for allm < k < n, lomemfx, S) > lomemé,, S) (by invariant 3 in Lemma 1)
implies himemy}, P’) = himem¢{’, Q) + lomem{,, S) < himem¢, P).

Since the memory usage of any nodevin.. ., v, after moving the foreign nodes cannot
exceed that of,, which remains unchanged, and the memory usage of the foneides does
not increase as a result of moving them, the overall maxim@mary usage cannot increase.

The next lemma deals with the ordering of indivisible unitshows that arranging indivisi-
ble units from dfferent subtrees in the order of decreagiinglo, as maintained by thi er geSeq
and AppendSeq procedures, minimizes memory usage, since two indivisibiés that are not
in that order can be interchanged in the merged travershbwftincreasing memory usage.
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[ element] himem | lomem | [ element] himem [ lomem |

S'Tj] Hi+La | Lj+Lia SJi] Hi+Li, | Li+L,
S[i] Hi + L’j Li + L] SHE H]f + L L’j + L
(a) Sequenci (b) Sequenc/’

Figure 8: Memory usage comparison of two traversals in Lemma 3

Lemma 3. Let v and ¥ be two nodes in an expression tree that are siblings of edwér,od =
v.seq and S = v.seq Then, among all possible merges of S aridt®e merge that arranges
the elements from S and B the order of decreasinhji — lo uses the least memory.

Proor. Let M be a merge 0§ andS’ that is not in the order of decreasihg— lo. Then there
exists an adjacent pair of elements, one from eachafdS’, that are not in that order. Without
loss of generality, we assume the first elemer®8’[g§] from S’ and the second one &i] from
S. Consider the merg®1’ obtained fromM by interchangings’[j] and S[i]. To simplify the
notation, letH, = S[r].hi, L, = S[r].lo, H; = S’[r].hi, andL; = S’[r].lo. The memory usage of
M andM’ differs only atS’[ j] and S[i] and is compared in Fig. 8.

The memory usage d#l at the two elements is mabig + Lj_g, Hi + L/j) while the memory
usage oM’ at the same two elements is mbaX@ L;, H; + L’j_l). Since the two elements are out
of order, thehi — lo of S’[j] must be less than that &fi], i.e., HJf - L’j < Hj — L. This implies
H; + L’j > H’ + L. Invariant 4 in Lemma 1 gives us, > L]_l, which impliesH; + L] > H;+ '—]_1-
Thus, max%ljf + Li—, Hij + L]) >Hi+L > max(HJf + L, Hi + '—}71)- Therefore M’ cannot use
more memory thatM. By switching ali adjacent pairs iM that are out of order until no such
pair exists, we get an optimal order without increasing mgmsage. O

Theorem 4. Given an expression tree, the algorithm presented in Se8tmmputes a traversal
that uses the least memory.

Proor. We prove the correctness of the algorithm indirectly bycdegng a procedure that trans-
forms any given traversal to the traversal found by the algor without increase in memory
usage in any transformation step. Given a travePdal an expression treg, we visit the nodes
in T in a bottom-up manner and, for each non-leaf nedeT, we perform the following steps:

1. LetT’ be the subtree rooted mandP’ be the minimal substring d? that contains all the
nodes fromT’ — {v}. In the following steps, we will rearrange the node®irsuch that the
nodes that form an indivisible unit mseqare contiguous and the indivisible units are in
the same order as they areviseq

2. First, we sort the components of the indivisible units.Beqgso that they are in the same
order as inv.seq The sorting process involves rearranging two kinds ofaunithe first
kind of units are the indivisible units imsegfor each childu of v. The second kind of units
are the contiguous sequences of node®’iwhich are fromT — T’. For this sorting step,
we temporarily treat each such maximal contiguous sequefnoaedes as a unit. For each
unit E of the second kind, we také.hi = max,.ghimemgv, P) andE.lo = lomemf,, P)
wherew, is the last node iie. The sorting process is as follows.

13



While there exist two adjacent units andE in P’ such tha€’ is beforeE and

E’.hi — E’.lo < E.hi — E.lo,

(&) SwapE’ andE. By Lemma 3, this does not increase the memory usage.

(b) If two units of the second kind become adjacent to eacbradb a result
of the swapping, combine the two units into one and recomiggiteewhi
andlo.

When the above sorting process finishes, all units of the finst, kvhich are components
of the indivisible units inv.seq are in the order of decreasihg— lo. Since, for each child
u of v, indivisible units inu.seghave been in the correct order before the sorting process,
their relative order is not changed. The order of the nodear— T is preserved because
the sorting process never swaps two units of the second Rilsd, v and its ancestors do
not appear ir?’, and nodes in units of the first kind are not ancestors or aelseces of
any nodes in units of the second kind. Therefore, the soginogess does not violate
parent-child dependencies.

3. Now that the components of the indivisible unitviseqgare in the correct order, we make
the indivisible units contiguous using the following comibig process.

For each indivisible uniE in v.seq

(&) In the traversaP, if there are nodes frori — T’ in between the nodes
from E, move them either to the beginning or the endeads specified by
Lemma 2.

(b) Make the contiguous sequence of nodes fiéban indivisible unit.

Upon completion, each indivisible unit inseqis contiguous irP and the order ifP of the
indivisible units is the same as they areviseq According to Lemma 2, moving ‘foreign’
nodes out of an indivisible unit does not increase the memsage. Also, the order of the
nodes fronil —T" is preserved. Hence, the combining process does not vimdagat-child
dependencies.

We use induction to show that the above procedure corraethstorms any given traversal
P into an optimal traversal found by the algorithm. The induthypothesidd(u) for each node
uis that:

¢ the nodes in each indivisible unit insegappear contiguously i and are in the same
order as they are in.seq and

¢ the order inP of the indivisible units iru.seqis the same as they areurseq

Initially, H(u) is true for every leaf node because there is only one traversal order for a leaf
node. As the induction step, assutdéu) is true for each childi of a nodev. The procedure
rearranges the nodes® such that the nodes that form an indivisible unitisegare contiguous

in P, the sets of nodes corresponding to the indivisible unésrathe same order iR as they are

in v.seq and the order among the nodes that are not in the subtresdrattis preserved. Thus,
when the procedure finishes processing a nod&(v) becomes true. By inductioi](T.root) is
true and a traversal found by the algorithm is obtained. &amy traversdP can be transformed
into a traversal found by the algorithm without increasingmory usage in any transformation
step, no traversal can use less memory and the algorithmrisoto O
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Equation | terms | left-to-right [ right-to-left | optimal [ opt. time |

Example from Figure 1(b) 1 1.6GB 2.0GB 1.6GB | 0.023ms
CCSD Energy, small 3 1,624B 1,608B 1,608B | 0.025ms
CCSD Singles, small 14 6,888B 6,080B 6,000B | 0.063ms
CCSD Doubles, small 31 17,968B 32,800B | 15,800B| 0.161ms
CCSD Energy, large 3 400MB 400MB 400MB | 0.026ms
CCSD Singles, large 14 600MB 600MB 600MB | 0.065ms
CCSD Doubles, large 31 1.8GB 2.2GB 1.4GB | 0.159ms
CCSDTQ Lambda 1 264 8.0EB 8.0EB 8.0EB | 2.761ms

Table 1: Memory usage for filerent traversals and the running time of our optimization rétigm

plp2 _ 1p2 pl 7p2 p2 7h8 7h8 7h8 p4
REFE = vowvodyts — tvofy = (v-ovodiFs — 0.5t Vo + (v-0004TE + (v.000\ — 0.5+ v_00VITE «t vafy)

1h2 1p3
p3 5p6 7h8 p3 7p2 p4 7p2 7 p4
tvaf; + 0.5+ Loy + V.0OWE) + tvofs + (V.ovoy s — 0.5+ tvafy + V.ovwWiPa) — (FLovi — tvafy «
2p3 2p7 3 3 7p2
V_00VAT) st wodfy —t WOGaE, * (V000 +t vl v 00VWAT) + 0.5t wwoghy +V oWV +t vof «
6

(VWO P2~ 0.5t VOl v vWWWEEP) + (FoOf + (F_ovig +vafy +v_00WA0) «t_vafy —t Vo, +v_000\4E - 0.5+
WO RS +V_00WES) wt wodyh + (-vvPs — t vl +V OV — 0.5t wodr +V.00W4S) st wodfs +
0.5t Wodgly * (v-000458 +t vafy * (V-000E" + 0.5t vl + v.0OVWEE) — 0.5t wodsh) + v.0ovWSE) +

1p6 p3p4-
twvodRs + (V-OVoVshg — LVl + V.OVWVERE — 0.5+ twodfe + V.0OW®) + 0.5  twwodhy + vuwwehe

p5:

Figure 9: The spin-orbital CCSD Doubles equation

6. Experiments

We have implemented our algorithm in the Tensor Contradfiogine [21] and tested it on a
variety of equations. Table 1 shows the results of sevepaésentative equations.

For the example from Figure 1(b), we used the following adiayensionsV = 100,0 = 50.

The Coupled Cluster Singles and Doubles (CCSD) equatiatharequations for an impor-
tant quantum chemistry model. We used the shorter spinabsariant of these equations. Each
term in these equations is the contraction of up to five twal fmur-dimensional tensors. To
illustrate the complexity of these equations, Figure 9 shtive factored (parenthesized) CCSD
Doubles equation in Einstein notation, where indices tltatiotwice in a term (once as upper
and once as lower index) are implicitly summed over. Tliedices represent occupied orbitals
of rangeO; the p indices represent virtual orbitals of range For our measurements, we used
two different dimension size® = 5 andV = 2 for modeling a water molecule ai@/= 50 and
V = 100 for modeling a larger molecule.

The Coupled Cluster Singles, Doubles, Triples, and Quadsui€CSDTQ) equation is the
largest equation in the TCE testsuite with 264 terms of upxdvgo-, four-, six-, and eight-
dimensional tensors. We us€d= 10 andV = 100.

For many equations, either a left-to-right or a right-téi-jgost-order traversal will find a
solution that is close to optimal. Which of these traversatsk& best depends on how the
equation was written or which tool generated the equatiohadd-factorized equation, such as
the CCSD Doubles equation, typically has less structune dineequation that was generated and,
therefore, provides more opportunity for reducing the mgmsage. Some equations, such as
CCSDTQ, are dominated by a few terms involving very big tesisoch that any improvements
in the evaluation order are minimal. The optimal traversalGCSDTQ uses 80GB less memory

15



than the right-to-left traversal and slightly less memdrart the left-to-right traversal, but these
differences are insignificant compared to the 8EB term. Simpjldre CCSD Doubles equation
would be dominated by the terms involvirgyvvvif V were orders of magnitude larger th@n
However, for many interesting tensor sizes the improverigesignificant and can result in the
computation to fit in memory without resorting to loop fusion

We measured the performance of our algorithm by averagmguihning time over 100 runs.
The measurements were performed on a Lenovo Thinkpad T4®0ax2.8GHz Core 2 Duo
processor. The results are shown in the right-most coluniablie 1.

The implementation of our algorithm simply representsdrasls as doubly-linked lists in-
stead of using a balanced tree. Even so, the algorithm casplie optimal traversal for most
examples in less than 0.5ms and takes only 2.76ms for CCSOD®.implementation of the
O(n) post-order traversal is actually slightly slower in moases, since we use the same data
structure for representing traversals. It takes 2.80m€£OEDTQ. A simple list of nodes, in-
stead of a list of indivisible units containing one-elemeatie lists, would have beenfigient
as the data structure for a post-order traversal. Hieiency of our algorithm compared to the
post-order traversal does show, though, that a data steuafith a balanced tree will likely only
pay df for much larger equations.

7. Conclusion

In this paper, we have considered the memory usage optiarizatoblem in the evaluation
of expression trees involving large objects dfelient sizes. This problem arose in the context of
optimizing electronic structure calculations. The depeld solution would apply in any context
involving the evaluation of an expression tree, in whicleintediate results are so large that it is
impossible to keep all of them in memory at the same time. th Situations, it is necessary to
dynamically allocate and deallocate space for the intefaedesults and to find an evaluation
order that uses the least memory. We have developefiaiert algorithm that finds an optimal
evaluation order ir@(nlog?n) time for an expression tree containinghodes and proved its
correctness.

The problem that has been presented is very similar to theggister allocation for expres-
sion trees, except that the definition of the cost functidngeim and lomem would be fierent,
since in machine instructions one of the argument registegically reused for the result of
the instruction. For binary expression trees with uniedinodes, our algorithm would find the
same evaluation order as the Sethi-Ullman algorithm [18)r Srategy of evaluating indivisi-
ble units inhi — lo order is similar to that of the Appel-Supowit algorithm [18kcept that the
latter evaluates entire subtree contiguously and thes smetsubtrees ihi — lo order, which is
suboptimal, as we have shown in Section 2.

Modern compilers employ register allocators based on geafdring [22]. While a graph-
coloring register allocator is an approximation algorithimallows register allocation across
multiple expression trees or for directed acyclic graphsing the Sethi-Ullman algorithm for
determining the evaluation order of individual expressiwiill minimize the number of simulta-
neously live temporaries and improve the result of a graglbring register allocator [23].

Our algorithm has some limitations. It assumes that the fatkeaf nodes is produced or
read in, and it minimizes the memory usage for evaluatingglsiexpression tree. If the result-
ing evaluation order does not fit in memory, we need to resoledp fusion [9, 14] and tiling
[12] for producing an out-of-core solution. For future wovke are planning to explore the use
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of MinMemTraver sal together with a generalized graph-coloring register aflocfor produc-
ing out-of-core solutions for sequences of expressiorstr&eich an approach could also allow
leaf nodes that are already memory-resident as well astd@excyclic graphs. Similar as with
the combination of the Sethi-Ullman algorithm and a graplong register allocator in a tra-
ditional compiler, our algorithm could produce an evaloatrder for the individual expression
trees. Then, following liveness analysis, a graph-cotpriegister allocator with heuristics for
large data objects could decide which nodes need to bedspike, temporarily stored on disk.
Since loop fusion can result in poor temporal locality afiddiresults in temporaries being read
in repeatedly, a combination of our algorithm with a grapfedng register allocator has the
potential of producing competitive out-of-core solutions

Another possible generalization of our algorithm is to uder parallelizing the evaluation
of an expression tree by schedulingfdient indivisible units for evaluation onftirent (sets of)
processors. Since the last node in an indivisible unit hasedl bomem, it is a good candidate for
sending to another processor, since it will help keep thensonication cost small. For achiev-
ing load balancing, the algorithm could be turned into a dyicgprogramming algorithm that
computes all solutions with minimal memory usage as wellsisnates of the communication
and computation cost for each solution. The communicatich@mputation costs would then
be used for selecting among multiple solutions with minimaimory usage and for limiting the
size of indivisible units to aid in load balancing.
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