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Abstract

The need to evaluate expression trees involving large objects arises in scientific computing ap-
plications such as electronic structure calculations. Often, the tree node objects are so large that
only a subset of them can fit into memory at a time. This paper addresses the problem of finding
an evaluation order of the nodes in a given expression tree that uses the least amount of mem-
ory. We present an algorithm that finds an optimal evaluationorder inΘ(n log2 n) time for an
n-node expression tree and prove its correctness. We demonstrate the utility of our algorithm
using representative equations from quantum chemistry.
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1. Introduction

This paper addresses the problem of finding an evaluation order of the nodes in a given
expression tree that minimizes memory usage. The expression tree must be evaluated in some
bottom-up order, i.e., the evaluation of a node cannot precede the evaluation of any of its children.
The nodes of the expression tree are large data objects whosesizes are given. If the total size of
the data objects is so large that they cannot all fit into memory at the same time, space for the
data objects has to be allocated and deallocated dynamically. Due to the parent-child dependence
relation, a data object cannot be deallocated until its parent node data object has been evaluated.
The objective is to minimize the maximum memory usage duringthe evaluation of the entire
expression tree.

This problem arises, for example, in the accurate modeling of the electronic structure of
atoms and molecules in quantum chemistry [1, 2] as well as in some computational physics
codes modeling the electronic properties of semiconductors and metals [3, 4, 5]. Computational
approaches to modeling the structure and interactions of molecules, the electronic and optical
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properties of molecules, the heat and rate of chemical reactions, etc., are crucial to the under-
standing of chemical processes in real-world systems. Examples of applications include com-
bustion and atmospheric chemistry, chemical vapor deposition, protein structure and enzymatic
chemistry, and industrial chemical processing. The computational domain that we consider is
also extremely compute-intensive and consumes significantcomputer resources at national su-
percomputer centers. Many of these codes are limited in the size of the problem that they can
currently solve because of memory and performance limitations.

In this class of computations, the final result to be computedcan be expressed in terms of
tensor contractions, essentially a collection of multi-dimensional summations of the product of
several input arrays. Due to commutativity, associativity, and distributivity, there are many dif-
ferent ways to compute the final result, and they could differ widely in the number of floating
point operations required. Consider the following expression:

Sabi j =
∑

cde f kl

Aacik × Bbe f l ×Cd f jk × Dcdel

where typical index ranges are on the order of tens to a few thousands. If this expression is
directly translated into code (with ten nested loops, for indicesa− l), the total number of arith-
metic operations required will be 4× N10 if the range of each indexa− l is N. Instead, the same
expression can be rewritten by use of associative and distributive laws [6, 7, 8]:
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This corresponds to the formula sequence shown in Fig. 1(a) and can be directly translated into
code as shown in Fig. 1(b). This form only requires 6× N6 operations. However, additional
space is required to store temporary arraysT1 andT2. Often, the space requirements for the
temporary arrays poses a serious problem. For this example,abstracted from a quantum chem-
istry model, the array extents along indicesa− d are the largest, while the extents along indices
i− l are the smallest. Therefore, the size of temporary arrayT1 would dominate the total memory
requirement.

Thus, although the latter form is far more economical in terms of the number of operations,
its implementation will require the use of temporary intermediate arrays to hold the partial results
of the parenthesized array subexpressions.

One approach to reducing the memory requirements for the computation is through loop
fusion. By merging the common outer loops of the producer andconsumer loop nests for an
intermediate array, the dimensions corresponding to the fused loops can be eliminated from the
intermediate array. In our example, loop fusion allowsT1 to be reduced to a scalar andT2 to a
2-dimensional array without changing the number of operations, as illustrated in Fig. 1(c). Since
different fusion choices are often not mutually compatible, it is necessary to enumerate all fusion
choices to find the loop structure that minimizes the memory requirements [9, 10, 11].

If even after loop fusion, some intermediates do not fit in memory, it is necessary to tile these
intermediates and move tiles in and out of disk [12, 13].

While loop fusion usually results in large memory reductions, in the context of tensor con-
tractions it has a detrimental effect: it reduces temporal and spatial locality. As a result, the
computation can become significantly more expensive. E.g.,while the tensor contractions in
Fig. 1(b) can be implemented using index permutations and BLAS matrix multiplications, which
use the cache effectively, this is not possible anymore with the fused code inFig. 1(c).
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T1bcd f =
∑

el

Bbe f l × Dcdel

T2bc jk =
∑

d f

T1bcd f ×Cd f jk

Sabi j =
∑

ck

T2bc jk × Aacik

(a) Formula sequence

T1=0; T2=0; S=0;

for b, c, d, e, f, l
[

T1bcdf += Bbefl Dcdel

for b, c, d, f, j, k
[

T2bcjk += T1bcdf Cdfjk

for a, b, c, i, j, k
[

Sabij += T2bcjk Aacik

(b) Direct implementation (unfused code)

S = 0;

for b, c












































































T1f = 0; T2f = 0;

for d, f
































for e, l
[

T1f += Bbefl Dcdel

for j, k
[

T2fjk += T1f Cdfjk

for a, i, j, k
[

Sabij += T2fjk Aacik

(c) Memory-reduced implementation (fused)

Figure 1: Example illustrating use of loop fusion for memory reduction
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Figure 2: An example expression tree

Since space allocated for an intermediate array can be deallocated as soon as the operation
using the array has been performed, the evaluation order affects the maximum memory require-
ments as well [14, 11]. Our strategy is, therefore, to attempt to reduce the memory requirements
by improving the evaluation order first in the hope of avoiding loop fusion. Even if loop fusion
and disk I/O become necessary, the improved evaluation order can reduce the memory pressure
and lead to less disk I/O.

In this paper, we focus on the problem of finding an evaluationorder of the nodes in a given
expression tree that minimizes the dynamic memory usage. A solution to this problem would
result in the generation of more efficient code for evaluating expression trees, e.g., for computing
tensor contraction expressions.

As an example of the memory usage optimization problem, consider the expression tree
shown in Fig. 2. The size of each data object is shown alongside the corresponding node label.
Before evaluating a data object, space for it must be allocated. This space can be deallocated
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only after the evaluation of its parent is complete. The dataobjects for leaf nodes are assumed
to be generated or read in as needed. Therefore, space for them is allocated and deallocated in
the same way. There are many allowable evaluation orders of the nodes. One of them is the
post-order traversal〈A, B,C,D,E, F,G,H, I〉 of the expression tree. It has a maximum memory
usage of 45 units. This occurs during the evaluation ofH, when F, G, and H are in mem-
ory. Other evaluation orders may use more memory or less memory. Finding the optimal order
〈C,D,G,H,A, B,E, F, I〉, which uses 39 units of memory, is not trivial.

A simpler problem related to the memory usage minimization problem is the register allo-
cation problem for binary expression trees in which the sizes of all nodes are unity. It has been
addressed in [15, 16] and can be solved inΘ(n) time, wheren is the number of nodes in the
expression tree. But if the expression tree is replaced by a directed acyclic graph (in which all
nodes are still of unit size), the problem becomes NP-complete [17]. The algorithm in [16] for
expression trees of unit-sized nodes does not extend directly to expression trees having nodes
of different sizes. Appel and Supowit [18] generalized the register allocation problem to higher
degree expression trees of arbitrarily-sized nodes. However, they restricted their attention to so-
lutions that evaluate subtrees contiguously, which could result in non-optimal solutions (as we
show through an example in Section 2). The generalized register allocation problem for expres-
sion trees was addressed in the context of vector machines in[19, 20].

Our approach is different from out-of-core solutions. There the problem is to minimize disk
I/O under a given memory constraint (not to minimize memory) byrestructuring the computation
or with the help of data structures. We attempt to avoid an out-of-core computation by minimiz-
ing memory. If this is unsuccessful, we need to resort to other techniques, such as tiling, for
producing an out-of-core solution [12, 13].

The rest of this paper is organized as follows. In Section 2, we formally define the memory
usage optimization problem and make some observations about it. Section 3 presents an effi-
cient algorithm for finding the optimal evaluation order foran expression tree. In Section 4, we
prove that the algorithm finds a solution inΘ(n log2 n) time for ann-node expression tree. The
correctness of the algorithm is proved in Section 5. In Section 6, we show experimental results.
Section 7 contains conclusions and discusses possible future work.

2. Problem statement

We address the problem of optimizing the memory usage in the evaluation of a given ex-
pression tree whose nodes correspond to large data objects of various sizes. Each data object
depends on all its children (if any), and thus can be evaluated only after all its children have been
evaluated. We assume that the evaluation of each node in the expression tree is atomic. Space for
each data object is dynamically allocated/deallocated in its entirety. Internal node objects must
be allocated before their evaluation begins, and each object must remain in memory until the
evaluation of its parent is completed. Similarly, a leaf node object is allocated before it is created
or read from disk and deallocated after the evaluation of itsparent is completed. The goal is to
find an evaluation order of the nodes that uses the least amount of memory. Since an evaluation
order is also a traversal of the nodes, we will use these two terms interchangeably.

We define the problem formally as follows:

Given a treeT and a sizev.sizefor each nodev ∈ T, find a computation ofT that
uses the least memory, i.e., an orderingP = 〈v1, v2, . . . , vn〉 of the nodes inT, where
n is the number of nodes inT, such that
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Node himem deallocate lomem

A 0+ 20= 20 - 20− 0 = 20
B 20+ 3 = 23 A 23− 20= 3
C 3+ 30= 33 - 33− 0 = 33
D 33+ 9 = 42 C 42− 30= 12
E 12+ 16= 28 D 28− 9 = 19
F 19+ 15= 34 B,E 34− 3− 16= 15
G 15+ 25= 40 - 40− 0 = 40
H 40+ 5 = 45 G 45− 25= 20
I 20+ 16= 36 F,H 36− 15− 5 = 16

max 45

Figure 3: Memory usage of a post-order traversal of the expression tree in Fig. 2

1. for all vi , v j , if vi is the parent ofv j , theni > j; and
2. maxvi∈P{himem(vi ,P)} is minimized, where

himem(vi ,P) = lomem(vi−1,P) + vi .size

lomem(vi ,P) =

{

himem(vi ,P) −
∑

{child v j of vi }
v j .size if i > 0

0 if i = 0

Here, himem(vi ,P) is the memory usage during the evaluation ofvi in the traversalP, and
lomem(vi ,P) is the memory usage upon completion of the same evaluation.These definitions
reflect that we need to allocate space forvi before its evaluation, and that after evaluation of
vi , the space allocated to all its children may be released. Forinstance, consider the post-order
traversalP = 〈A, B,C,D,E, F,G,H, I〉 of the expression tree shown in Fig. 2. During and after
the evaluation ofA, A is in memory. So, himem(A,P) = lomem(A,P) = A.size = 20. For
evaluatingB, we need to allocate space forB, thus himem(B,P) = lomem(A,P) + B.size= 23.
After B is obtained,A can be deallocated, giving lomem(B,P) = himem(B,P) − A.size= 3. The
memory usage for the rest of the nodes is determined similarly and shown in Fig. 3.

The post-order traversal of the given expression tree, however, is not optimal in memory
usage. In this example, none of the traversals that visit allnodes in one subtree before visiting an-
other subtree is optimal. There are four such traversals:〈A, B,C,D,E, F,G,H, I〉, 〈C,D,E,A, B, F,G,H, I〉,
〈G,H,A, B,C,D,E, F, I〉 and 〈G,H,C,D,E,A, B, F, I〉. If we follow the traditional wisdom of
visiting the subtree with the higher memory usage first, as inthe Sethi-Ullman algorithm [16],
we obtain the best of these four traversals, which is〈G,H,C,D,E,A, B, F, I〉. Its overall memory
usage is 44 units, as shown in Fig. 4, and is not optimal. The optimal traversal, which uses only
39 units of memory, is〈C,D,G,H,A, B,E, F, I〉 (see Fig. 5). Notice that it ‘jumps’ back and forth
between the subtrees. Therefore, any algorithm that only considers traversals that visit subtrees
contiguously may not produce an optimal solution.

The memory usage optimization problem has an interesting property: an expression tree or
a subtree may have more than one optimal traversal. For example, for the subtree rooted at
F, the traversals〈C,D,E,A, B, F〉 and〈C,D,A, B,E, F〉 both use the least memory space of 39
units. One might attempt to take two optimal subtree traversals, one from each child of a nodeX,
merge them together optimally, and then appendX to form a traversal forX. But, this resulting
traversal may not be optimal forX. Continuing with the above example, if we merge together
〈C,D,E,A, B, F〉 and〈G,H〉 (which are optimal for the subtrees rooted atF andH, respectively)
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Node himem lomem

G 25 25
H 30 5
C 35 35
D 44 14
E 30 21
A 41 41
B 44 24
F 39 20
I 36 16

max 44
3 : 30

6 : 20 4 : 9

7 : 3 5 : 16 1 : 25
�� @@

8 : 15 2 : 5

�
��

Q
QQ

9 : 16

(a) Memory usage (b) Order of node visits

Figure 4: Best traversal with contiguous evaluation of subtrees of the expression tree in Fig. 2

Node himem lomem

C 30 30
D 39 9
G 34 34
H 39 14
A 34 34
B 37 17
E 33 24
F 39 20
I 36 16

max 39
1 : 30

5 : 20 2 : 9

6 : 3 7 : 16 3 : 25
�� @@

8 : 15 4 : 5

�
��

Q
QQ

9 : 16

(a) Memory usage (b) Order of node visits

Figure 5: Optimal traversal of the expression tree in Fig. 2

and then appendI , the best we can get is a sub-optimal traversal〈G,H,C,D,E,A, B, F, I〉 that
uses 44 units of memory (see Fig. 4). However, the other optimal traversal〈C,D,A, B,E, F〉
for the subtree rooted atF can be merged with〈G,H〉 to form 〈C,D,G,H,A, B,E, F, I〉 (with
I appended), which is an optimal traversal of the entire expression tree. Thus, locally optimal
traversals may not be globally optimal. In the next section,we present an efficient algorithm that
finds traversals that are not only locally optimal but also globally optimal.

3. An efficient algorithm

We now present an efficient divide-and-conquer algorithm that, given an expression tree
whose nodes are large data objects, finds an evaluation orderof the tree that minimizes the
memory usage. For each node in the expression tree, it computes an optimal traversal for the
subtree rooted at that node. The optimal subtree traversal that it computes has a special property:
it is not only locally optimal for the subtree, but also globally optimal in the sense that it can be
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Nodev Subtree traversals merged inOptimal traversalv.seq
decreasinghi − lo order

A 〈(A,20, 20)〉 〈(A,20, 20)〉
B 〈(A,20, 20), (B,23, 3)〉 〈(AB,23,3)〉
C 〈(C,30, 30)〉 〈(C,30, 30)〉
D 〈(C,30, 30), (D,39,9)〉 〈(CD,39, 9)〉
E 〈(CD,39, 9), (E,25,16)〉 〈(CD,39, 9), (E,25,16)〉
F 〈(CD,39, 9), (AB,32,12), 〈(CD,39, 9), (ABEF,34,15)〉

(E,28, 19), (F,34, 15)〉
G 〈(G,25,25)〉 〈(G,25,25)〉
H 〈(G,25,25), (H,30,5)〉 〈(GH,30, 5)〉
I 〈(CD,39, 9), (GH,39, 14), 〈(CDGHABEFI,39, 16)〉

(ABEF,39, 20), (I ,36, 16)〉

Figure 6: Optimal traversals for the subtrees in the expression tree in Fig. 2

merged together with globally optimal traversals for othersubtrees to form an optimal traversal
for a larger tree that is also globally optimal. As we have seen in Section 2, not all locally optimal
traversals for a subtree can be used to form an optimal traversal for a larger tree.

The algorithm stores a traversal not as an ordered list of nodes, but as an ordered list of
indivisible unitsor elements. Each indivisible unit contains an ordered list of nodes with the
property that there necessarily exists some globally optimal traversal of the entire tree wherein
this sequence appears undivided and in the same order. E.g.,if there is an optimal traversal of
the entire expression tree in whichB is evaluated immediately followingA, the algorithm will
construct an indivisible unit containing the nodesAB. (For clarity, we write node lists in an
indivisible unit as strings). Therefore, as we show later, inserting any node in between the nodes
of an indivisible unit does not lower the total memory usage.

An element initially contains a single node. But as the algorithm goes up the tree merging
traversals together and appending new nodes to them, elements may be appended together to
form new elements containing a larger number of nodes. Moreover, the order of indivisible units
in a traversal stays invariant, i.e., the indivisible unitsmust appear in the same order in some
optimal traversal of the entire expression tree. This meansthat indivisible units can be treated
as a whole and we only need to consider the relative order of indivisible units from different
subtrees.

Each element (or indivisible unit) in a traversal is a (nodelist, hi, lo) triple, wherenodelistis
an ordered list of nodes,hi is the maximum memory usage during the evaluation of the nodes
in nodelist, andlo is the memory usage after those nodes are evaluated. Using the terminology
from Section 2,hi is the highest himem among the nodes innodelist, andlo is the lomem of the
last node innodelist.

For example, the traversal〈(CD,39,9), (E,25,16)〉 indicates that the maximum memory us-
age during the evaluation ofC andD is 39 units of memory and that the result of the evaluation
occupies 9 units. Similarly, during the evaluation ofE, 25 units are needed and the result occu-
pies 16 units. WhileC andD can be evaluated consecutively in an optimal traversal of the entire
expression tree, nodes from other subtrees might be evaluated betweenD andE.

The algorithm always maintains the elements of a traversal in decreasinghi and increasing
lo order, which implies in order of decreasinghi − lo. In Section 5, we prove that arranging the
indivisible units in this order minimizes memory usage.
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Before formally describing the algorithm, we illustrate how it works with an example. Con-
sider the expression tree shown in Fig. 2. We visit the nodes in a bottom-up order and compute
the optimal traversals for the subtrees rooted at each node as shown in Fig. 6. SinceA has no chil-
dren, the optimal traversal for the subtree rooted atA, denoted byA.seq, is 〈(A,20,20)〉, meaning
that 20 units of memory are needed during the evaluation ofA and immediately afterwards. To
form B.seq, we takeA.seq, append a new element (B,3 + 20,3) (thehi of which is adjusted by
the lo of the preceding element), and get〈(A,20,20), (B,23,3)〉. Whenever two adjacent ele-
ments are not in decreasinghi and increasinglo order, we combine them into one element by
concatenating thenodelistsand taking the highesthi and the secondlo. Thus,B.seqbecomes
〈(AB,23,3)〉. Similarly, we getE.seq= 〈(CD,39,9), (E,25,16)〉. Note that these two adjacent
elements cannot be combined because they are already in decreasinghi and increasinglo order.
For nodeF, which has two childrenB andE, we mergeB.seqandE.seqin the order of decreas-
ing hi − lo. The merged elements are in the order (CD,39,9), (AB,23+ 9,3 + 9), and finally
(E,25+ 3,16+ 3) with thehi andlo values adjusted by thelo value of the last merged element
from the other subtree. They are the three elements inF.seqafter the merge as no elements have
been combined so far. Then, we append toF.seqthe new element (F,15+ 19,15) for the root of
the subtree. The new element is combined with the last two elements inF.seqto ensure that the
elements are in decreasinghi − lo order. Hence,F.seqbecomes〈(CD,39,9), (ABEF,34,15)〉, a
sequence of only two indivisible units. The optimal traversals for the other nodes are computed
in the same way and are shown in Fig. 6. At the end, the algorithm returns the optimal traversal
〈C,D,G,H,A, B,E, F, I〉 for the entire expression tree (see Fig. 5).

We can visualize the elements in a traversal as follows. The first element in a traversal
contains the nodes from the beginning of the traversal up to and including the last node that has
the lowest lomem after the last node that has the highest himem. The highest himem and the
lowest lomem become thehi and thelo of the first indivisible unit, respectively. The same rules
are recursively applied to the remainder of the traversal toform the second element, and so on.
This ensures that the indivisible units in the traversal arein decreasinghi and increasinglo order.

Fig. 7 shows the algorithm. The input to the algorithm (theMinMemTraversal procedure)
is an expression treeT, in which each nodev has a fieldv.sizedenoting the size of its data object.
The procedure performs a bottom-up traversal of the tree and, for each nodev, computes an
optimal traversalv.seqfor the subtree rooted atv. For simplicity, we present the algorithm using
sequences of (nodelist, hi, lo) triples as the data structure for traversals. We will present a more
efficient data structure in the next section.

The optimal traversalv.seqfor a nodev is obtained by optimally merging together the optimal
traversalsu.seqfor all childrenu of v, and then appendingv. At the end, the procedure returns a
concatenation of all thenodelistsin T.root.seqas the optimal traversal for the given expression
tree. The memory usage of the optimal traversal isT.root.seq[1].hi.

TheMergeSeq procedure optimally merges two given traversalsS1 andS2 and returns the
merged resultS. S1 andS2 are subtree traversals of two children nodes of the same parent. The
optimal merge of sequences is performed in a fashion similarto merge-sort. Elements fromS1
andS2 are scanned sequentially and appended intoS in the order of decreasinghi − lo. This
order guarantees that the indivisible units are arranged tominimize memory usage. SinceS1
andS2 are formed independently, thehi andlo values in the elements fromS1 andS2 must be
adjusted before they can be appended toS. The amount of adjustment for an element fromS1
(S2) equals thelo value of the last merged element fromS2 (S1), which is kept in variablebase1
(base2).

TheAppendSeq procedure appends the new element specified by the triple (nodelist, hi, lo)
8



MinMemTraversal (T):
foreach nodev in some bottom-up traversal ofT

v.seq= 〈〉
foreach child u of v // merge traversals from all children

v.seq=MergeSeq(v.seq, u.seq)
if |v.seq| > 0 then // |x| is the length ofx

base= v.seq[|v.seq|].lo
else

base= 0
AppendSeq (v.seq, 〈v〉, v.size+ base, v.size) // append parent nodev

nodelist= 〈〉
for i = 1 to |T.root.seq| // flatten sequence of nodelists

nodelist= nodelist+ T.root.seq[i].nodelist // + is concatenation
return nodelist // memory usage isT.root.seq[1].hi

MergeSeq (S1,S2):
S = 〈〉 // S will hold the merge result
i = j = 1
base1= base2= 0
while i ≤ |S1| or j ≤ |S2|

if j > |S2| or (i ≤ |S1| andS1[i].hi − S1[i].lo > S2[ j].hi − S2[ j].lo) then
// S2 is exhausted orS1[i] has a largerhi − lo thanS2[ j]
// append indivisible unit fromS1 toS
AppendSeq (S,S1[i].nodelist,S1[i].hi + base1,S1[i].lo + base1)
base2= S1[i].lo
i++

else
// S1 is exhausted orS2[ j] has a larger or equalhi − lo thanS1[i]
// append indivisible unit fromS2 toS
AppendSeq (S,S2[ j].nodelist,S2[ j].hi + base2,S2[ j].lo + base2)
base1= S2[ j].lo
j++

end while
return S

AppendSeq (S, nodelist, hi, lo):
E = (nodelist,hi, lo) // new element to append toS
i = |S|
while i ≥ 1 and (E.hi ≥ S[i].hi or E.lo ≤ S[i].lo)
// combineS[i] with E to keepS in decreasinghi and increasinglo order
E = (S[i].nodelist+ E.nodelist,max(S[i].hi,E.hi),E.lo)
removeS[i] from S
i – –

end while
S = S + E // |S| is now i + 1

Figure 7: Procedure for finding an memory-optimal traversal of an expression tree
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to the given traversalS. Before the new elementE is appended toS, it is combined with elements
at the end ofS whosehi is not higher thanE.hi or whoselo is not lower thanE.lo. The combined
element has the concatenatednodelistand the highesthi but the originalE.lo.

This algorithm has the property that the traversal it finds for a subtreeT′ is not only optimal
for T′ but must also appear as a subsequence in some optimal traversal for any larger tree that
containsT′ as a subtree. For example,E.seq is a subsequence inF.seq, which is in turn a
subsequence inI .seq(see Fig. 6).

4. Complexity of the algorithm

In the previous section, our algorithm has been presented using an abstract sequence nota-
tion so that the properties of sequences of indivisible units are easy to see. If sequences were
implemented as doubly-linked lists and merged sequentially, the worst-case complexity for an
unbalancedn-node tree would beO(n2), since for every node a linear-time merge operation
would be performed.

With a more efficient data structure, the time complexity of our algorithm (the MemMin-
Traversal procedure) isΘ(n log2 n) for ann-node expression tree. We represent a sequence of
indivisible units as a red-black tree with the indivisible units at the leaves. The tree is sorted in
decreasinghi − lo order. In addition, the leaves are linked in sorted order in adoubly-linked list,
and a count of the number of indivisible units in the sequenceis maintained.

The cost of constructing the final evaluation order consistsof the cost for traversing the
expression tree, the cost for building sequences of indivisible units, and the cost for combining
indivisible units into larger indivisible units. The cost for traversing the expression tree is linear,
sinceMemMinTraversal visits each node in the expression tree only once. For findingan upper
bound on the cost of the algorithm, the worst-case cost for building sequences can be analyzed
separately from the worst-case cost for combining indivisible units.

The sequence for a leaf node of the expression tree can be constructed in constant time. For
a unary interior node, we call theAppendSeq procedure to append an element containing the
node to the sequence of its subtree, which costsO(logn) time for inserting the element in the
red-black tree.

For anm-ary interior node, theMergeSeq procedure must merge the sequences of the sub-
trees by inserting the nodes from the smaller sequences intothe largest sequence. Inserting a
node into a sequence represented as a red-black tree costsO(logn) time. Since we always insert
the nodes of the smaller sequences into the largest one, every time a given node of the expression
tree gets inserted into a sequence the size of the sequence containing this node at least doubles.
Each node, therefore, can be inserted into a sequence at mostO(logn) times, with each inser-
tion costingO(logn) time. The cost for building the traversal for the entire expression tree is,
therefore,O(n log2 n).

Two individual indivisible units can be combined in theAppendSeq procedure in constant
time. When combining two adjacent indivisible units within asequence, one of them must be
deleted from the sequence and the red-black tree must be re-balanced, which costsO(logn) time.
Since there can be at mostn − 1 of these combine operations, the total cost isO(n logn). The
cost of the whole algorithm is, therefore, dominated by the cost for building sequences, which is
O(n log2 n).

Combining indivisible units into larger ones reduces the number of elements in the sequences
and, therefore, the time required for merging and combiningsequences. In the best case, indivis-
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ible units are always combined such that each sequence contains a single element. In this case,
the algorithm only takes linear time.

In the worst case, a degenerate expression tree consists of small nodes and large nodes such
that every small node has as its only child a large node. A pairof such nodes will form an
indivisible unit with thehi being the sum of the sizes of the two nodes and thelo being the
size of the small node. Such a tree can be constructed such that these indivisible units will not
further combine into larger indivisible units. In this case, the algorithm will result in a sequence
of n/2 indivisible units containing two nodes each. If such a degenerate expression tree is also
unbalanced, the algorithm requiresΩ(n log2 n) time for computing the optimal traversal.

5. Correctness of the algorithm

We now show the correctness of the algorithm. The proof proceeds as follows. Lemma 1
characterizes the indivisible units in a subtree traversalby providing some invariants that are
maintained by the algorithm. Lemma 2 shows that, once formed, each indivisible unit can be
considered as a whole. Lemma 3 deals with the optimal ordering of indivisible units from dif-
ferent subtrees. Finally, using the three lemmas we prove asTheorem 4 the optimality of the
traversal found by the algorithm by arguing that any traversal of an expression tree can be trans-
formed in a series of steps into the optimal traversal found by the algorithm without increasing
memory usage.

The first lemma establishes some important invariants aboutthe indivisible units in an ordered
list v.seqthat represents a traversal. Thehi value of an indivisible unit is the highest himem of the
nodes in the indivisible unit. Thelo value of an indivisible unit is the lomem of the last node in
the indivisible unit. Given a sequence of nodes, an indivisible unit extends to the last node with
the lowest lomem following the last node with the highest himem. In addition, the indivisible
units in a sequence are in decreasinghi and increasinglo order.

Lemma 1. Let v be any node in an expression tree, S= v.seq, and P be the traversal represented
by S of the subtree rooted at v, i.e., P= S[1].nodelist+ · · · + S[|S|].nodelist. The algorithm
maintains the following invariants:

For all 1 ≤ i ≤ |S|, let S[i].nodelist= 〈v1, v2, . . . , vn〉 and vm be the last node in
S[i].nodelistthat has the maximum himem value, i.e., for all k< m, himem(vk,P) ≤
himem(vm,P) and for all k> m, himem(vk,P) < himem(vm,P). Then, we have,

1. S[i].hi = himem(vm,P),
2. S[i].lo = lomem(vn,P),
3. for all m ≤ k ≤ n, lomem(vk,P) ≥ lomem(vn,P),
4. for all 1 ≤ j < i,

(a) for all 1 ≤ k ≤ n, S[ j].hi > himem(vk,P),
(b) for all 1 ≤ k ≤ n, S[ j].lo < lomem(vk,P),
(c) S[ j].hi > S[i].hi, and
(d) S[ j].lo < S[i].lo.

P. The above invariants are true by construction. The invariants (1) and (2) are maintained
by adding the appropriatebasevalue to thehi and lo arguments in the calls ofAppendSeq.
The invariant (3) is maintained byAppendSeq, and (4) is maintained by the merge order in
MergeSeq and byAppendSeq. �
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The second lemma asserts the ‘indivisibility’ of an indivisible unit by showing that unrelated
nodes inserted in between the nodes of an indivisible unit can always be moved to the beginning
or the end of the indivisible unit without increasing memoryusage. Thus, once an indivisible
unit has been formed as part of the traversal of a subtree, we do not need to consider breaking
it up later for inserting nodes from another subtree. This lemma allows theMemMinTraversal
algorithm to treat each traversal as a sequence of indivisible units (each containing one or more
nodes) instead of a list of the individual nodes.

Lemma 2. Let v be a node in an expression tree T, S= v.seq, and P be a traversal of T in
which the nodes from S[i].nodelistappear in the same order as they are in S[i].nodelist, but
not contiguously. Then, any nodes that are in between the nodes in S[i].nodelistcan always be
moved to the beginning or the end of S[i].nodelistwithout increasing memory usage, provided
that none of the nodes that are in between the nodes in S[i].nodelistare ancestors or descendants
of any nodes in S[i].nodelist.

P. LetS[i].nodelist= 〈v1, . . . , vn〉, v0 be the node beforev1 in S, vm be the node inS[i].nodelist
such that for allk < m, himem(vk,P) ≤ himem(vm,P) and for all k > m, himem(vm,S) >
himem(vk,S). Let v′1, . . . , v

′
b be the ‘foreign’ nodes, i.e., the nodes that are in between the nodes

in S[i].nodelist in P, with v′1, . . . , v
′
a (not necessarily contiguously) beforevm andv′a+1, . . . , v

′
b

(not necessarily contiguously) aftervm in P. Let Q be the traversal obtained fromP by removing
the nodes inS[i].nodelist. We construct another traversalP′ of T from P by movingv′1, . . . , v

′
a

to the beginning ofS[i].nodelistand v′a+1, . . . , v
′
b to the end ofS[i].nodelist. In other words,

we replace〈v1, . . . , v′1, . . . , v
′
a, . . . , vm, . . . , v′a+1, . . . , v

′
b, . . . , vn〉 in P with 〈v′1, . . . , v

′
a, v1, . . . , vm,

. . . , vn, v′a+1, . . . , v
′
b, 〉 to form P′.

TraversalsP andP′ differ in memory usage only at the nodes{v1, . . . , vn, v′1, . . . , v
′
b}. P′ does

not use more memory thanP because:

1. The memory usage forP′ at vm is the same as the memory usage forP at vm since
himem(vm,P′) = himem(vm,S) + lomem(v′a,Q) = himem(vm,P).

2. For all 1≤ k ≤ n, the memory usage forP′ at vk is no higher than the memory usage for
P at vk, since himem(vk,S) ≤ himem(vm,S) implies that himem(vk,P′) = himem(vk,S) +
lomem(v′a,Q) ≤ himem(vm,S) + lomem(v′a,Q) = himem(vm,P).

3. For all 1≤ j ≤ a, the memory usage forP′ atv′j is no higher than the memory usage forP
atv′j , since for all 1≤ k ≤ m, lomem(v0,S) < lomem(vk,S) (by invariant 4(b) in Lemma 1)
implies himem(v′j ,P

′) = himem(v′j ,Q) + lomem(v0,S) ≤ himem(v′j ,P).
4. For alla < j ≤ b, the memory usage forP′ atv′j is no higher than the memory usage forP

at v′j , since for allm ≤ k ≤ n, lomem(vk,S) ≥ lomem(vn,S) (by invariant 3 in Lemma 1)
implies himem(v′j ,P

′) = himem(v′j ,Q) + lomem(vn,S) ≤ himem(v′j ,P).

Since the memory usage of any node inv1, . . . , vn after moving the foreign nodes cannot
exceed that ofvm, which remains unchanged, and the memory usage of the foreign nodes does
not increase as a result of moving them, the overall maximum memory usage cannot increase.�

The next lemma deals with the ordering of indivisible units.It shows that arranging indivisi-
ble units from different subtrees in the order of decreasinghi−lo, as maintained by theMergeSeq
andAppendSeq procedures, minimizes memory usage, since two indivisibleunits that are not
in that order can be interchanged in the merged traversal without increasing memory usage.
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(a) SequenceM (b) SequenceM′

Figure 8: Memory usage comparison of two traversals in Lemma 3

Lemma 3. Let v and v′ be two nodes in an expression tree that are siblings of each other, S =
v.seq, and S′ = v′.seq. Then, among all possible merges of S and S′, the merge that arranges
the elements from S and S′ in the order of decreasinghi − lo uses the least memory.

P. Let M be a merge ofS andS′ that is not in the order of decreasinghi − lo. Then there
exists an adjacent pair of elements, one from each ofS andS′, that are not in that order. Without
loss of generality, we assume the first element isS′[ j] from S′ and the second one isS[i] from
S. Consider the mergeM′ obtained fromM by interchangingS′[ j] and S[i]. To simplify the
notation, letHr = S[r].hi, Lr = S[r].lo, H′r = S′[r].hi, andL′r = S′[r].lo. The memory usage of
M andM′ differs only atS′[ j] andS[i] and is compared in Fig. 8.

The memory usage ofM at the two elements is max(H′j + Li−1,Hi + L′j) while the memory
usage ofM′ at the same two elements is max(H′j + Li ,Hi + L′j−1). Since the two elements are out
of order, thehi − lo of S′[ j] must be less than that ofS[i], i.e., H′j − L′j < Hi − Li . This implies
Hi +L′j > H′j +Li . Invariant 4 in Lemma 1 gives usL′j > L′j−1, which impliesHi +L′j > Hi +L′j−1.
Thus, max(H′j + Li−1,Hi + L′j) ≥ Hi + L′j > max(H′j + Li ,Hi + L′j−1). Therefore,M′ cannot use
more memory thanM. By switching all adjacent pairs inM that are out of order until no such
pair exists, we get an optimal order without increasing memory usage. �

Theorem 4. Given an expression tree, the algorithm presented in Section 3 computes a traversal
that uses the least memory.

P. We prove the correctness of the algorithm indirectly by describing a procedure that trans-
forms any given traversal to the traversal found by the algorithm without increase in memory
usage in any transformation step. Given a traversalP for an expression treeT, we visit the nodes
in T in a bottom-up manner and, for each non-leaf nodev in T, we perform the following steps:

1. LetT′ be the subtree rooted atv andP′ be the minimal substring ofP that contains all the
nodes fromT′ − {v}. In the following steps, we will rearrange the nodes inP′ such that the
nodes that form an indivisible unit inv.seqare contiguous and the indivisible units are in
the same order as they are inv.seq.

2. First, we sort the components of the indivisible units inv.seqso that they are in the same
order as inv.seq. The sorting process involves rearranging two kinds of units. The first
kind of units are the indivisible units inu.seqfor each childu of v. The second kind of units
are the contiguous sequences of nodes inP′ which are fromT − T′. For this sorting step,
we temporarily treat each such maximal contiguous sequenceof nodes as a unit. For each
unit E of the second kind, we takeE.hi = maxw∈Ehimem(w,P) andE.lo = lomem(wn,P)
wherewn is the last node inE. The sorting process is as follows.
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While there exist two adjacent unitsE′ andE in P′ such thatE′ is beforeE and
E′.hi − E′.lo < E.hi − E.lo,
(a) SwapE′ andE. By Lemma 3, this does not increase the memory usage.
(b) If two units of the second kind become adjacent to each other as a result

of the swapping, combine the two units into one and recomputeits newhi
andlo.

When the above sorting process finishes, all units of the first kind, which are components
of the indivisible units inv.seq, are in the order of decreasinghi− lo. Since, for each child
u of v, indivisible units inu.seqhave been in the correct order before the sorting process,
their relative order is not changed. The order of the nodes fromT−T′ is preserved because
the sorting process never swaps two units of the second kind.Also, v and its ancestors do
not appear inP′, and nodes in units of the first kind are not ancestors or descendants of
any nodes in units of the second kind. Therefore, the sortingprocess does not violate
parent-child dependencies.

3. Now that the components of the indivisible units inv.seqare in the correct order, we make
the indivisible units contiguous using the following combining process.

For each indivisible unitE in v.seq,
(a) In the traversalP, if there are nodes fromT − T′ in between the nodes

from E, move them either to the beginning or the end ofE as specified by
Lemma 2.

(b) Make the contiguous sequence of nodes fromE an indivisible unit.

Upon completion, each indivisible unit inv.seqis contiguous inP and the order inP of the
indivisible units is the same as they are inv.seq. According to Lemma 2, moving ‘foreign’
nodes out of an indivisible unit does not increase the memoryusage. Also, the order of the
nodes fromT−T′ is preserved. Hence, the combining process does not violateparent-child
dependencies.

We use induction to show that the above procedure correctly transforms any given traversal
P into an optimal traversal found by the algorithm. The induction hypothesisH(u) for each node
u is that:

• the nodes in each indivisible unit inu.seqappear contiguously inP and are in the same
order as they are inu.seq, and

• the order inP of the indivisible units inu.seqis the same as they are inu.seq.

Initially, H(u) is true for every leaf nodeu because there is only one traversal order for a leaf
node. As the induction step, assumeH(u) is true for each childu of a nodev. The procedure
rearranges the nodes inP′ such that the nodes that form an indivisible unit inv.seqare contiguous
in P, the sets of nodes corresponding to the indivisible units are in the same order inP as they are
in v.seq, and the order among the nodes that are not in the subtree rooted atv is preserved. Thus,
when the procedure finishes processing a nodev, H(v) becomes true. By induction,H(T.root) is
true and a traversal found by the algorithm is obtained. Since any traversalP can be transformed
into a traversal found by the algorithm without increasing memory usage in any transformation
step, no traversal can use less memory and the algorithm is correct. �
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Equation terms left-to-right right-to-left optimal opt. time

Example from Figure 1(b) 1 1.6GB 2.0GB 1.6GB 0.023ms
CCSD Energy, small 3 1,624B 1,608B 1,608B 0.025ms
CCSD Singles, small 14 6,888B 6,080B 6,000B 0.063ms
CCSD Doubles, small 31 17,968B 32,800B 15,800B 0.161ms
CCSD Energy, large 3 400MB 400MB 400MB 0.026ms
CCSD Singles, large 14 600MB 600MB 600MB 0.065ms
CCSD Doubles, large 31 1.8GB 2.2GB 1.4GB 0.159ms
CCSDTQ Lambda 1 264 8.0EB 8.0EB 8.0EB 2.761ms

Table 1: Memory usage for different traversals and the running time of our optimization algorithm
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Figure 9: The spin-orbital CCSD Doubles equation

6. Experiments

We have implemented our algorithm in the Tensor ContractionEngine [21] and tested it on a
variety of equations. Table 1 shows the results of several representative equations.

For the example from Figure 1(b), we used the following arraydimensions:V = 100,O = 50.
The Coupled Cluster Singles and Doubles (CCSD) equations are the equations for an impor-

tant quantum chemistry model. We used the shorter spin-orbital variant of these equations. Each
term in these equations is the contraction of up to five two- and four-dimensional tensors. To
illustrate the complexity of these equations, Figure 9 shows the factored (parenthesized) CCSD
Doubles equation in Einstein notation, where indices that occur twice in a term (once as upper
and once as lower index) are implicitly summed over. Theh indices represent occupied orbitals
of rangeO; the p indices represent virtual orbitals of rangeV. For our measurements, we used
two different dimension sizes:O = 5 andV = 2 for modeling a water molecule andO = 50 and
V = 100 for modeling a larger molecule.

The Coupled Cluster Singles, Doubles, Triples, and Quadruples (CCSDTQ) equation is the
largest equation in the TCE testsuite with 264 terms of up to six two-, four-, six-, and eight-
dimensional tensors. We usedO = 10 andV = 100.

For many equations, either a left-to-right or a right-to-left post-order traversal will find a
solution that is close to optimal. Which of these traversals works best depends on how the
equation was written or which tool generated the equation. Ahand-factorized equation, such as
the CCSD Doubles equation, typically has less structure than an equation that was generated and,
therefore, provides more opportunity for reducing the memory usage. Some equations, such as
CCSDTQ, are dominated by a few terms involving very big tensors such that any improvements
in the evaluation order are minimal. The optimal traversal for CCSDTQ uses 80GB less memory

15



than the right-to-left traversal and slightly less memory than the left-to-right traversal, but these
differences are insignificant compared to the 8EB term. Similarly, the CCSD Doubles equation
would be dominated by the terms involvingv vvvvif V were orders of magnitude larger thanO.
However, for many interesting tensor sizes the improvementis significant and can result in the
computation to fit in memory without resorting to loop fusion.

We measured the performance of our algorithm by averaging the running time over 100 runs.
The measurements were performed on a Lenovo Thinkpad T400 with a 2.8GHz Core 2 Duo
processor. The results are shown in the right-most column ofTable 1.

The implementation of our algorithm simply represents traversals as doubly-linked lists in-
stead of using a balanced tree. Even so, the algorithm computes the optimal traversal for most
examples in less than 0.5ms and takes only 2.76ms for CCSDTQ.Our implementation of the
O(n) post-order traversal is actually slightly slower in most cases, since we use the same data
structure for representing traversals. It takes 2.80ms forCCSDTQ. A simple list of nodes, in-
stead of a list of indivisible units containing one-elementnode lists, would have been sufficient
as the data structure for a post-order traversal. The efficiency of our algorithm compared to the
post-order traversal does show, though, that a data structure with a balanced tree will likely only
pay off for much larger equations.

7. Conclusion

In this paper, we have considered the memory usage optimization problem in the evaluation
of expression trees involving large objects of different sizes. This problem arose in the context of
optimizing electronic structure calculations. The developed solution would apply in any context
involving the evaluation of an expression tree, in which intermediate results are so large that it is
impossible to keep all of them in memory at the same time. In such situations, it is necessary to
dynamically allocate and deallocate space for the intermediate results and to find an evaluation
order that uses the least memory. We have developed an efficient algorithm that finds an optimal
evaluation order inΘ(n log2 n) time for an expression tree containingn nodes and proved its
correctness.

The problem that has been presented is very similar to that ofregister allocation for expres-
sion trees, except that the definition of the cost functions himem and lomem would be different,
since in machine instructions one of the argument registersis typically reused for the result of
the instruction. For binary expression trees with unit-sized nodes, our algorithm would find the
same evaluation order as the Sethi-Ullman algorithm [16]. Our strategy of evaluating indivisi-
ble units inhi − lo order is similar to that of the Appel-Supowit algorithm [18], except that the
latter evaluates entire subtree contiguously and then sorts the subtrees inhi − lo order, which is
suboptimal, as we have shown in Section 2.

Modern compilers employ register allocators based on graphcoloring [22]. While a graph-
coloring register allocator is an approximation algorithm, it allows register allocation across
multiple expression trees or for directed acyclic graphs. Using the Sethi-Ullman algorithm for
determining the evaluation order of individual expressions will minimize the number of simulta-
neously live temporaries and improve the result of a graph-coloring register allocator [23].

Our algorithm has some limitations. It assumes that the datafor leaf nodes is produced or
read in, and it minimizes the memory usage for evaluating a single expression tree. If the result-
ing evaluation order does not fit in memory, we need to resort to loop fusion [9, 14] and tiling
[12] for producing an out-of-core solution. For future work, we are planning to explore the use
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of MinMemTraversal together with a generalized graph-coloring register allocator for produc-
ing out-of-core solutions for sequences of expression trees. Such an approach could also allow
leaf nodes that are already memory-resident as well as directed acyclic graphs. Similar as with
the combination of the Sethi-Ullman algorithm and a graph-coloring register allocator in a tra-
ditional compiler, our algorithm could produce an evaluation order for the individual expression
trees. Then, following liveness analysis, a graph-coloring register allocator with heuristics for
large data objects could decide which nodes need to be spilled, i.e., temporarily stored on disk.
Since loop fusion can result in poor temporal locality and tiling results in temporaries being read
in repeatedly, a combination of our algorithm with a graph-coloring register allocator has the
potential of producing competitive out-of-core solutions.

Another possible generalization of our algorithm is to use it for parallelizing the evaluation
of an expression tree by scheduling different indivisible units for evaluation on different (sets of)
processors. Since the last node in an indivisible unit has a small lomem, it is a good candidate for
sending to another processor, since it will help keep the communication cost small. For achiev-
ing load balancing, the algorithm could be turned into a dynamic programming algorithm that
computes all solutions with minimal memory usage as well as estimates of the communication
and computation cost for each solution. The communication and computation costs would then
be used for selecting among multiple solutions with minimalmemory usage and for limiting the
size of indivisible units to aid in load balancing.
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