
Memory-Optimal Evaluation of Expression Trees
Involving Large Objects ?

Chi-Chung Lam1, Daniel Cociorva2, Gerald Baumgartner1, and P. Sadayappan1

1 Department of Computer and Information Science
The Ohio State University, Columbus, OH 43210
fclam,gb,saday g@cis.ohio-state.edu

2 Department of Physics
The Ohio State University, Columbus, OH 43210

cociorva@pacific.mps.ohio-state.edu

Abstract. The need to evaluate expression trees involving large objects arises in
scientific computing applications such as electronic structure calculations. Often,
the tree node objects are very large that only a subset of them can fit in memory at
a time. This paper addresses the problem of finding an evaluation order of nodes
in a given expression tree that uses the least memory. We develop an efficient
algorithm that finds an optimal evaluation order inO(n2) time for ann-node
expression tree.

1 Introduction

This paper addresses the problem of finding an evaluation order of the nodes in a given
expression tree that minimizes memory usage. The expression tree must be evaluated
in some bottom-up order, i.e., the evaluation of a node cannot precede the evaluation
of any of its children. The nodes of the expression tree are large data objects whose
sizes are given. If the total size of the data objects is so large that they cannot all fit
into memory at the same time, space for the data objects has to be allocated and deal-
located dynamically. Due to the parent-child dependence relation, a data object cannot
be deallocated until its parent node data object has been evaluated. The objective is to
minimize the maximum memory usage during the evaluation of the entire expression
tree.

This problem arises, for example, in optimizing a class of loop calculations imple-
menting multi-dimensional integrals of the products of several large input arrays that
computes the electronic properties of semiconductors and metals [2, 3, 9]. The multi-
dimensional integral can be represented as an expression tree in which the leaf nodes
are input arrays, the internal nodes are intermediate arrays, and the root is the final inte-
gral. In previous work, we have addressed the problems of 1) finding an expression tree
with the minimal number of arithmetic operations and 2) the mapping of the computa-
tion on parallel computers to minimize the amount of inter-processor communication
[4–6]. However, in practice, the input arrays and the intermediate arrays are often so
large that they cannot all fit into available memory. There is a need to allocate array

? Supported in part by the National Science Foundation under grant DMR-9520319.



C : 30

A : 20 D : 9

B : 3 E : 16 G : 25
�� @@

F : 15 H : 5

�
��

Q
QQ

I : 16

Fig. 1.An example expression tree

space dynamically and to evaluate the arrays in an order that uses the least memory.
Solving this problem would help the automatic generation of code that computes the
electronic properties. We believe that the solution we develop here may have potential
applicability to other areas such as database query optimization and data mining.

As an example of the memory usage optimization problem, consider the expression
tree shown in Fig. 1. The size of each data object is shown alongside the correspond-
ing node label. Before evaluating a data object, space for it must be allocated. That
space can be deallocated only after the evaluation of its parent is complete. There are
many allowable evaluation orders of the nodes. One of them is the post-order traversal
hA;B;C;D;E; F;G;H; Ii of the expression tree. It has a maximum memory usage of
45 units. This occurs during the evaluation ofH , whenF , G, andH are in memory.
Other evaluation orders may use more memory or less memory. Finding the optimal
orderhC;D;G;H;A;B;E; F; Ii, which uses 39 units of memory, is not trivial.

A simpler problem related to the memory usage minimization problem is the regis-
ter allocation problem in which the sizes of all nodes are unity. It has been addressed in
[8, 10] and can be solved inO(n) time, wheren is the number of nodes in the expres-
sion tree. But if the expression tree is replaced by a directed acyclic graph (in which all
nodes are still of unit size), the problem becomes NP-complete [11]. The algorithm in
[10] for expression trees of unit-sized nodes does not extend directly to expression trees
having nodes of different sizes. Appel and Supowit [1] generalized the register alloca-
tion problem to higher degree expression trees of arbitrarily-sized nodes. However, the
problem they addressed is slightly different from ours in that, in their problem, space
for a node is not allocated during its evaluation. Also, they restricted their attention
to solutions that evaluate subtrees contiguously, which is sub-optimal in some cases.
We are not aware of any existing algorithm to the memory usage optimization problem
considered in this paper.

The rest of this paper is organized as follows. In Section 2, we formally define the
memory usage optimization problem and make some observations about it. Section 3
presents an efficient algorithm that solves the problem inO(n2) time for ann-node ex-
pression tree. Section 4 provides conclusions. Due to space constraints, the correctness
proof of the algorithm is omitted from this paper but can be found in [7].



2 Problem Statement

The problem addressed is the optimization of memory usage in the evaluation of a
given expression tree, whose nodes correspond to large data objects of various sizes.
Each data object depends on all its children (if any), and thus can be evaluated only
after all its children have been evaluated. The goal is to find an evaluation order of the
nodes that uses the least amount of memory. Since an evaluation order is also a traversal
of the nodes, we will use these two terms interchangeably. Space for data objects is
dynamically allocated or deallocated under the following assumptions:

1. Each object is allocated or deallocated in its entirety.
2. Leaf node objects are created or read in as needed.
3. Internal node objects must be allocated before their evaluation begins.
4. Each object must remain in memory until the evaluation of its parent is completed.

We define the problem formally as follows:

Given a treeT and a sizev:sizefor each nodev 2 T , find a computation ofT
that uses the least memory, i.e., an orderingP = hv1; v2; : : : ; vni of the nodes
in T , wheren is the number of nodes inT , such that
1. for all vi; vj , if vi is the parent ofvj , theni > j; and
2. maxvi2P fhimem(vi; P )g is minimized, where

himem(vi; P ) = lomem(vi�1; P ) + vi:size

lomem(vi; P ) =

�
himem(vi; P )�

P
fchild vj of vig

vj :sizeif i > 0

0 if i = 0

Here, himem(vi; P ) is the memory usage during the evaluation ofvi in the traversal
P , and lomem(vi; P ) is the memory usage upon completion of the same evaluation.
In general, we need to allocate space forvi before its evaluation. Aftervi is evalu-
ated, the space allocated to all its children may be released. For instance, consider the
post-order traversalP = hA;B;C;D;E; F;G;H; Ii of the expression tree shown in
Fig. 1. During and after the evaluation ofA, A is in memory. So, himem(A;P ) =
lomem(A;P ) = A:size= 20. To evaluateB, we need to allocate space forB, thus
himem(B;P ) = lomem(A;P ) + B:size= 23. After B is obtained,A can be deallo-
cated, giving lomem(B;P ) = himem(B;P ) �A:size= 3. The memory usage for the
rest of the nodes is determined similarly and shown in Fig. 2(a).

However, the post-order traversal of the given expression tree is not optimal in
memory usage. For this example, none of the traversals that visit all nodes in one sub-
tree before visiting another subtree is optimal. For the given expression tree, there are
four such traversals. They arehA;B;C;D;E; F;G;H; Ii, hC;D;E;A;B; F;G;H; Ii,
hG;H;A;B;C;D;E; F; Ii, and hG;H;C;D;E;A;B; F; Ii. If we follow the tradi-
tional wisdom of visiting the subtree that uses more memory first, we obtain the best
of the four traversals, which ishG;H;C;D;E;A;B; F; Ii. Its overall memory us-
age is 44 units, as shown in Fig. 2(b), and is not optimal. The optimal traversal is
hC;D;G;H;A;B;E; F; Ii, which uses 39 units of memory (see Fig. 2(c)). Notice that
it ‘jumps’ back and forth between the subtrees. Therefore, any algorithm that only con-
siders traversals that visit subtrees contiguously may not produce an optimal solution.



Nodehimemlomem

A 20 20
B 23 3
C 33 33
D 42 12
E 28 19
F 34 15
G 40 40
H 45 20
I 36 16

max 45

Nodehimemlomem

G 25 25
H 30 5
C 35 35
D 44 14
E 30 21
A 41 41
B 44 24
F 39 20
I 36 16

max 44

Nodehimemlomem

C 30 30
D 39 9
G 34 34
H 39 14
A 34 34
B 37 17
E 33 24
F 39 20
I 36 16

max 39

(a) Post-order traversal (b) A better traversal (c) The optimal traversal

Fig. 2. Memory usage of three different traversals of the expression tree in Fig. 1

One possible approach to the memory usage optimization problem is to apply dy-
namic programming on an expression tree as follows. Each traversal can be viewed as
going through a sequence of configurations, each configuration being a set of nodes
that have been evaluated (which can be represented more compactly as a smaller set
of nodes in which none is an ancestor or descendant of another). In other words, the
set of nodes in a prefix of a traversal forms a configuration. Common configurations
in different traversals form overlapping subproblems. A configuration can be formed in
many ways, corresponding to different orderings of the nodes. The optimal way to form
a configurationZ containingk nodes can be obtained by minimizing over all valid con-
figurations that arek�1-subsets ofZ. By finding the optimal costs for all configurations
in the order of increasing number of nodes, we get an optimal traversal of the expres-
sion tree. However, this approach is inefficient in that the number of configurations is
exponential in the number of nodes.

The memory usage optimization problem has an interesting property: an expression
tree or a subtree may have more than one optimal traversal. For example, for the subtree
rooted atF , the traversalshC;D;E;A;B; F i andhC;D;A;B;E; F i both use the least
memory space of 39 units. One might attempt to take two optimal subtree traversals, one
from each child of a nodeX , merge them together optimally, and then appendX to form
a traversal forX . But, this resulting traversal may not be optimal forX . Continuing
with the above example, if we merge togetherhC;D;E;A;B; F i andhG;Hi (which
are optimal for the subtrees rooted atF andH , respectively) and then appendI , the
best we can get is a sub-optimal traversalhG;H;C;D;E;A;B; F; Ii that uses 44 units
of memory (see Fig. 2(b)). However, the other optimal traversalhC;D;A;B;E; F i for
the subtree rooted atF can be merged withhG;Hi to formhC;D;G;H;A;B;E; F; Ii
(with I appended), which is an optimal traversal of the entire expression tree. Thus,
locally optimal traversals may not be globally optimal. In the next section, we present
an efficient algorithm that finds traversals which are not only locally optimal but also
globally optimal.



3 An Efficient Algorithm

We now present an efficient divide-and-conqueralgorithm that, given an expression tree
whose nodes are large data objects, finds an evaluation order of the tree that minimizes
the memory usage. For each node in the expression tree, it computes an optimal traversal
for the subtree rooted at that node. The optimal subtree traversal that it computes has a
special property: it is not only locally optimal for the subtree, but also globally optimal
in the sense that it can be merged together with globally optimal traversals for other
subtrees to form an optimal traversal for a larger subtree which is also globally optimal.
As we have seen in Section 2, not all locally optimal traversals for a subtree can be used
to form an optimal traversal for a larger tree.

The algorithm stores a traversal not as an ordered list of nodes, but as an ordered list
of indivisible units called elements. Each element contains an ordered list of nodes with
the property that there necessarily exists some globally optimal traversal of the entire
tree wherein this sequence appears undivided. Therefore, as we show later, inserting any
node in between the nodes of an element does not lower the total memory usage. An
element initially contains a single node. But as the algorithm goes up the tree merging
traversals together and appending new nodes to them, elements may be appended to-
gether to form new elements containing a larger number of nodes. Moreover, the order
of indivisible units in a traversal stays invariant, i.e., the indivisible units must appear
in the same order in some optimal traversal of the entire expression tree. This means
that indivisible units can be treated as a whole and we only need to consider the relative
order of indivisible units from different subtrees.

Each element (or indivisible unit) in a traversal is a (nodelist, hi, lo) triple, where
nodelistis an ordered list of nodes,hi is the maximum memory usage during the eval-
uation of the nodes innodelist, andlo is the memory usage after those nodes are evalu-
ated. Using the terminology from Section 2,hi is the highest himem among the nodes
in nodelist, andlo is the lomem of the last node innodelist. The algorithm always main-
tains the elements of a traversal in decreasinghi and increasinglo order, which implies
in order of decreasinghi-lo difference.

Fig. 3 shows the algorithm. The input to the algorithm (theMinMemTraversal
procedure) is an expression treeT , in which each nodev has a fieldv:sizedenoting the
size of its data object. The procedure performs a bottom-up traversal of the tree and,
for each nodev, computes an optimal traversalv:seqfor the subtree rooted atv. The
optimal traversalv:seqis obtained by optimally merging together the optimal traversals
u:seqfrom each childu of v, and then appendingv. At the end, the procedure returns
a concatenation of all thenodelistsin T:root.seqas the optimal traversal for the given
expression tree. The memory usage of the optimal traversal isT:root:seq[1]:hi.

The MergeSeqprocedure merges two given traversalsS1 andS2 optimally and
returns the merged resultS. S1 andS2 are subtree traversals of two children nodes of
the same parent. The optimal merge is performed in a fashion similar to merge-sort.
Elements fromS1 andS2 are scanned sequentially and appended intoS in the order of
decreasinghi-lo difference. This order guarantees that the indivisible units are arranged
to minimize memory usage. SinceS1 andS2 are formed independently, thehi-lo values
in the elements fromS1 andS2 must be adjusted before they can be appended toS.



MinMemTraversal (T ):
foreach nodev in some bottom-up traversal ofT
v:seq= hi // an empty list
foreach child u of v
v:seq= MergeSeq(v:seq; u:seq)

if jv:seqj > 0 then // jxj is the length ofx
base= v:seq[jv:seqj]:lo

else
base= 0

AppendSeq(v:seq; hvi; v:size+ base; v:size)
nodelist= hi
for i = 1 to jT:root:seqj

nodelist= nodelist+ T:root:seq[i]:nodelist // + is the concatenation operator
return nodelist // memory usage isT:root:seq[1]:hi

MergeSeq(S1; S2):
S = hi
i = j = 1
base1= base2= 0
while i � jS1j or j � jS2j

if j > jS2j or (i � jS1j andS1[i]:hi � S1[i]:lo > S2[j]:hi � S2[j]:lo) then
AppendSeq(S; S1[i]:nodelist; S1[i]:hi + base1; S1[i]:lo + base1)
base2= S1[i]:lo
i++

else
AppendSeq(S; S2[j]:nodelist; S2[j]:hi + base2; S2[j]:lo + base2)
base1= S1[j]:lo
j++

end while
return S

AppendSeq(S, nodelist, hi, lo):
E = (nodelist, hi, lo) // new element to append toS
i = jSj
while i � 1 and(E:hi � S[i]:hi orE:lo � S[i]:lo)
E = (S[i]:nodelist+E:nodelist;max(S[i]:hi; E:hi); E:lo) // S[i] is combined intoE
removeS[i] from S

i – –
end while
S = S +E // jSj is nowi+ 1

Fig. 3. Procedure for finding an memory-optimal traversal of an expression tree



C : 30

A : 20 D : 9

B : 3 E : 16 G : 25
�� @@

F : 15 H : 5

�
��
Q
QQ

I : 16
Nodev Optimal traversalv:seq

A h(A; 20; 20)i

B h(AB; 23; 3)i

C h(C; 30; 30)i

D h(CD; 39; 9)i

E h(CD; 39; 9); (E; 25; 16)i

F h(CD; 39; 9); (ABEF; 34; 15)i

G h(G; 25; 25)i

H h(GH; 30; 5)i

I h(CDGHABEFI; 39; 16)i

(a) The expression tree in Fig. 1 (b) Optimal traversals for subtrees

Fig. 4. Optimal traversals for the subtrees in the expression tree in Fig. 1

The amount of adjustment for an element fromS1 (S2) equals thelo value of the last
merged element fromS2 (S1), which is kept inbase1(base2).

TheAppendSeqprocedure appends a new element specified bynodelist, hi, andlo
to the given traversalS. Before the new elementE is appended toS, it is combined
with elements at the end ofS whosehi is not higher thanE:hi or whoselo is not lower
thanE:lo. The combined element has the concatenatednodelistand the highesthi but
the originalE:lo. Elements are combined to form larger indivisible units.

To illustrate how the algorithm works, consider the expression tree shown in Fig. 1
and reproduced in Fig. 4(a). We visit the nodes in a bottom-up order. SinceA has
no children,A:seq = h(A; 20; 20)i (for clarity, we writenodelistsin a sequence as
strings). To formB:seq, we takeA:seqand append a new element(B; 3 + 20; 3) to
it. The AppendSeqprocedure combines the two elements into one, leavingB:seq=
h(AB; 23; 3)i. Here,A andB form an indivisible unit, implying thatB must follow
A in some optimal traversal of the entire expression tree. Similarly, we getE:seq=
h(CD; 39; 9); (E; 25; 16)i. For nodeF , which has two childrenB andE, we merge
B:seqandE:seqby the order of decreasinghi-lo difference. So, the elements merged
are first(CD; 39; 9), then(AB; 23+9; 3+ 9), and finally(E; 25+3; 16+3) with the
adjustments shown. They are the three elements inF:seqafter the merge as no elements
are combined so far. Then, we append toF:seqa new element(F; 15 + 19; 15) for the
root of the subtree. The new element is combined with the last two elements inF:seq.
Hence, the final content ofF:seqis h(CD; 39; 9); (ABEF; 34; 15)i, which consists of
two indivisible units. The optimal traversals for the other nodes are computed in the
same way and are shown in Fig. 4(b). At the end, the algorithm returns the optimal
traversalhC;D;G;H;A;B;E; F; Ii for the entire expression tree (see Fig. 2(c)).

The time complexity of this algorithm isO(n2) for ann-node expression tree be-
cause the processing for each nodev takesO(m) time, wherem is the number of nodes
in the subtree rooted atv. Another feature of this algorithm is that the traversal it finds
for a subtreeT 0 is not only optimal forT 0 but must also appear as a subsequence in
some optimal traversal for any larger tree that containsT 0 as a subtree. For example,
E:seqis a subsequence inF:seq, which is in turn a subsequence inI:seq(see Fig. 4(b)).



4 Conclusion

In this paper, we have considered the memory usage optimization problem in the evalu-
ation of expression trees involving large objects of different sizes. This problem can be
found in many practical applications such as scientific calculations, database query, and
data mining, for which the data objects can be so large that it is impossible to keep all
of them in memory at the same time. Hence, it is necessary to allocate and deallocate
space for the data objects dynamically and to find an evaluation order that uses the least
memory. We have proposed an efficient algorithm that finds an optimal evaluation in
O(n2) time for an expression tree containingn nodes. Also, we have described some
interesting properties of the problem and the algorithm.

References

1. A. W. Appel and K. J. Supowit.Generalizations of the Sethi-Ullman algorithm for register
allocation, Software—Practice and Experience, 17 (6), pp. 417–421, June 1987.

2. W. Aulbur,Parallel implementation of quasiparticle calculations of semiconductors and in-
sulators, Ph.D. Dissertation, Ohio State University, Columbus, October 1996.

3. M. S. Hybertsen and S. G. Louie,Electronic correlation in semiconductors and insulators:
band gaps and quasiparticle energies, Phys. Rev. B, 34 (1986), pp .5390.

4. C. Lam, P. Sadayappan, and R. Wenger,On optimizing a class of multi-dimensional loops
with reductions for parallel execution, Parallel Processing Letters, Vol. 7 No. 2, pp. 157–168,
1997.

5. C. Lam, P. Sadayappan, and R. Wenger,Optimization of a class of multi-dimensional inte-
grals on parallel machines, Eighth SIAM Conference on Parallel Processing for Scientific
Computing, March 1997.

6. C. Lam, P. Sadayappan, D. Cociorva, M. Alouani, and J. Wilkins,Performance optimization
of a class of loops involving sums of products of sparse arrays, Ninth SIAM Conference on
Parallel Processing for Scientific Computing, March 1999.

7. C. Lam,Performance optimization of a class of loops implementing multi-dimensional in-
tegrals, Technical report no. OSU-CISRC-8/99-TR22, Dept. of Computer and Information
Science, The Ohio State University, Columbus, August 1999.

8. I. Nakata,On compiling algorithms for arithmetic expressions, Comm. ACM, 10 (1967),
pp. 492–494.

9. H. N. Rojas, R. W. Godby, and R. J. Needs,Space-time method for Ab-initio calculations
of self-energies and dielectric response functions of solids, Phys. Rev. Lett., 74 (1995),
pp. 1827.

10. R. Sethi, J. D. Ullman,The generation of optimal code for arithmetic expressions, J. ACM,
17(1), October 1970, pp. 715–728.

11. R. Sethi,Complete register allocation problems, SIAM J. Computing, 4(3), September 1975,
pp. 226–248.


