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Abstract 

This paper presents a technique for memory 
optimization for a class of computations that arises 
in the field of correlated electronic structure 
methods such as coupled cluster and configuration 
interaction methods in quantum chemistry. In this 
class of computations, loop computations perform a 
multi-dimensional sum of product of input arrays. 
There are many different ways to get the same final 
results that differ in the required number of 
arithmetic operations required. In addition, for a 
given number of arithmetic operations, different 
expressions of the loop have different memory 
requirements. Loop fusion is a plausible solution for 
reducing memory usage. By fusing loops between 
producer loop nest and consumer loop nest, the 
required storage of intermediate array is reduced by 
the range of the fused loop. Because resultant loops 
have to be legal after fusion, some loops can not be 
fused at the same time. In this paper, we have 
developed a novel integer linear programming (ILP) 
formulation that is shown to be highly effective on a 
number of test cases producing the optimal solutions 
using very small execution times. The main idea in 
the ILP formulation is the encoding of legality rules 
for loop fusion of a special class of loops using 
logical constraints over binary decision variables 
and a highly effective approximation of memory 
usage. 
 
1.  Introduction  

The class of computations considered in this 
work arises in the field of correlated electronic 
structure methods such as coupled cluster and 
configuration interaction methods in quantum 
chemistry [Aul96, Hyb86, Roj95]. In this class of 
computations, loop computations are specified as 
multi-dimensional integrals of products of many 
input arrays. These computations can be expressed 
numerically as multi-dimensional sums of products 
of input arrays. There are many different ways to get 

the same final results; the different ways require 
differing number of arithmetic operations, due to 
operator properties such as commutativity, 
associativity and distributivity. Lam et al. [Lam97] 
have devised an optimization procedure to do loop 
computations using the minimum number of 
floating point operations through determining an 
equivalent sequence of multiplication and 
summation formulas; the resulting optimal sequence 
of formulas is called an operation-count-optimal 
formula sequence. The intermediate result from each 
formula is stored in an intermediate array that can be 
used many times without the need for re-computing 
these results. 

Resulting formulas can be implemented as 
separate sets of perfectly nested loops, one set for 
each formula. In this way, intermediate arrays have 
to be stored in full; in most cases they are huge and 
often exceed the available memory on most 
machines. Loop fusion [Gao92, Ken93, Lam97, 
Lam99a, Lam02, Man95, Sin96] is a candidate 
solution for reducing memory usage. By fusing 
loops between producer loop nest and consumer 
loop nest, the required storage of intermediate arrays 
is reduced by the range of the fused loop. Because 
resultant loops have to be legal after fusion, fusing 
some loops precludes fusing others. The problem of 
deciding which loops are to be fused to achieve 
minimal memory usage is called the optimal 
memory usage problem, which is what we are 
considering in this work. 
 
2.  Problem Definition and Formulation 
 
Figure 1 is an example of a multi-dimensional 
integral; Figure 1(a) shows a multi-dimensional 
integral expressed as a sum of product of arrays. 
Figure 1(b) shows the resultant operation-count-
optimal formula sequence and Figure 1(c) is its 
graph representation. This graph representation is 
the same as the one presented in [Lam02] except 
that the multiplication and summation nodes are 
combined together in one node.  



 

  

 

 

 

 

 

 
2.1  Modified Fusion Graph 

Another graph representation of the problem 
called the fusion graph FG = (V, E, Inds, N) is 
extracted from the original problem graph, which is 
suitable for formulating the fusion problem at hand 
and it is a modified version of the one presented in 
[Lam02] in order to decrease the number of 
variables used. In the fusion graph FG,  
• V is the set of nodes where each node represents 

an array (intermediate, input, or output array),  
• E is the set of potential fusion edges as 

described below,  
• Inds are the sets of loop indices associated with 

each node, and  
• N is the set of loop ranges.  
 
The fusion graph is constructed as follows: 
 Each node v∈V in the original graph is 

converted to a set of vertices, one for each loop 
i, where i is a loop index of node v (i∈Inds(v)). 

 For each common loop index between a node 
and its parent, an edge e∈E is introduced called 
a potential fusion edge; the common loop index 

in this case is said to be a candidate for fusion. 
If the common loop between a node and its 
parent is fused, the potential fusion edge is 
called a fusion edge. 
Figure 2(a) shows the potential fusion graph 

for the original graph in Figure 1(c). The potential 
fusion edges are dotted edges and the fusion edges 
are shown as solid edges in a fusion graph. In a 
fusion graph, each connected component of fusion 
edges forms a fusion chain, which corresponds to a 
fused loop in the loop structure. In Figure 2(b), there 
are three fusion chains, one for each of the j-, k-, and 
the l-loops. The set of nodes between and including 
nodes a and b, in which all the i-vertices of these 
nodes are connected through potential fusion edges 
is called the potential fusion scope of an i-loop 
between the two nodes, a and b, written as 
pfscope(a ,b, i). Similarly, the fusion scope of the i-
loop between two nodes, a and b, written as 
fscope(a ,b, i), is defined as the set of nodes between 
and including a and b, in which all the i-vertices of 
these nodes are connected through fusion edges. 
Again, in Figure 2(b), fscope(B, W, j) = <B,  f2, W>. 

 

 

 

 

 

 

Figure 1: An example of multi-dimensional integral. (a) A multi-dimensional integral; (b) A 
formula sequence for computing (a); (c) Graph representation of (b) 

f1 [j]     = ∑i  A[i,j] 
f2 [j, k]  = ∑l  B[j, k, l] × C[k, l] 
W [k]    = ∑j   f1 [j] × f2 [j, k] 

(b) 
(c)
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W [k] = ∑i,j,l  A[i,j] × B[j, k, l] × C[k, l] 
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Figure 2: Fusion graph for operation-minimal sequence in Figure 1. 
               (a) Potential fusion graph; (b) Resulting fusion graph 
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Lam et al. [Lam 02] describe the effect of 
fusion as follows: “In general, fusing a t-loop 
between a node v and its parent eliminates the t-
dimension of the array v and reduces the array size 
by a factor of Nt. In other words, the size of an array 
after loop fusions equals the product of the ranges of 
the loops that are not fused with its parent. We only 
consider fusions of loops among nodes that are all 
transitively related by (i.e., form a transitive closure 
over) parent-child relations. Fusing loops between 
unrelated nodes (such as fusing siblings without 
fusing their parent) has no effect on array sizes. We 
also restrict our attention to loop fusion 
configurations that do not increase the operation 
count. In the class of loops considered, the only 
dependence relations are those between children and 
parents, and array subscripts are simply loop index 
variables. Loop permutations, loop nests reordering, 
and loop fusions are, therefore, always legal as long 
as child nodes are evaluated before their parents. 
This freedom allows the loops to be permuted, 
reordered, and fused in a large number of ways that 
differ in memory usage.” [Lam02]. 

We have proposed a mathematical formulation 
for the optimal memory usage problem in which the 
objective is to minimize the total memory usage 
(static memory allocation model) for the given 
operation-count-optimal formula sequence. 
Constraints to assure legality for the resultant fusion 
graph are developed in a form of a set of linear 
inequalities. Because of the nature of the problem, 
the objective is formulated as a nonlinear function. 
Then, an efficient linearization technique has been 
developed that transforms the objective function to 

be linear and thus the memory usage problem is 
formulated as an integer linear programming (ILP) 
problem. Although the linearized objective function 
does not guarantee optimality, the solution is found 
to match the optimal one in several cases because 
the linearization we have devised is an effective 
approximation of the nonlinear objective function. 
 
3. Legality of Fusion 

 
The following theorem states the basic 

definitions and the sufficient conditions for a fusion 
to be legal. And based on that theorem, fusion 
legality constraints are generated. 
Theorem 1: Let FG = (V, E, Inds, N) be a fusion 
graph, and let a and b be any two nodes in FG. For 
any two loop-indices j and k, fusion is legal if one 
of the following conditions is satisfied: 

1. fscope(a, b, j) ∩ fscope(a, b, k) = ∅. 
2. fscope(a ,b, j)⊆ fscope(a, b, k). 
3. fscope(a, b, j)⊇ fscope(a, b, k). 

Proof: Since loops are not allowed to overlap (they 
must either be nested or separate), fusion is legal if 
the chains of any two loops in a fusion graph are not 
partially overlapped, i.e., they must be either disjoint 
or a subset/superset of each other, which can be 
mathematically rewritten as the conditions (1)-(3) 
above.  

Figure 3 shows different cases of illegal fusion 
and Figure 4 shows different configurations of legal 
fusion. 

 

 

 

 

 

 

 

 

 
Figure 3: Illegal Fusion configurations. 
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Figure 4: Legal Fusion configurations. 
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To capture the legality of fusion in a set of 

linear inequalities, we introduce a 0-1 unknown 
variable, xai, to denote the fusion edge between node 
a and its parent. The unknown variable xai takes a 
value 1 if the i-loop is fused between node a and its 
parent, and 0 otherwise. 

Fusion legality described by Theorem 1 can be 
posed as constraints in form of linear inequalities 
using Equation (1) shown below. That simply says: 
for each path P(s,t) that starts at node s and ends at 
node t, and for any two loop indices j and k in the 
fusion graph, a constraint in the form of Equation (1) 
is generated as long as  
1. both of these two loops are candidates for 

fusion (i.e., there are potential fusion edges 
between each intermediate node that belongs to 
that path and its parent for both j- and k-loop), 
and  

2. at least one potential fusion edge for node s and 
node t where the two loop indices are different, 
i.e., one node has potential fusion edge for the  
j-loop and the other for the k-loop.  

Although the first term in the right-hand side of 
Equations (1) and (2) is enough to guarantee legality 
for most of the fusion configurations, the second 
term is needed to take care of some legal 
configurations such as the one in Figure 4(d); 
without the second term, the configuration in Figure 
4(d) appears to be illegal even though it is legal. 

A depth-first search algorithm is used for path 
construction for generating fusion legality 
constraints. The fusion graph is treated as an 
undirected acyclic graph during path traversal, i.e., 
the notion of parent or child is no longer considered 
during path traversal. At the same time, the fusion 
edge definition is still as it is in the original graph. 
For example, consider the fusion graph shown in 
Figure 2(d) where node c is the parent of both node 
b and node d. In constructing the path P(b,e) = <b, c, 
d, e> that originates at node b and ends at node e for 
loop indices j and k, the unknown variable 

corresponding to the candidate fusion edge (e,d) is 
xek. 

 
4.  ILP formulation 
 
4.1  Fusion Constraints 
 

The fusion legality constraints in inequalities (1) 
and (2) work as the set of constraints in the ILP 
formulations; the objective function developed 
below completes the formulation. The number of 
fusion legality constraints may appear to be large, 
but in practice our experience with several 
benchmark expressions from computational 
chemistry indicates that most of the candidate pairs 
of loop indices do not exist in all nodes in the fusion 
graphs; this renders constraint (1) inapplicable to 
most of the paths and hence these constraints are not 
generated in the ILP formulation. Moreover, as 
shown in inequality (1), the coefficients of the 
constraint matrices are 1’s or 0’s, which plays a 
substantial role in decreasing the solution time from 
the ILP models as demonstrated in our experimental 
results. 

 
4.2  Fusion Objective Function 
 

Since the objective is to minimize memory 
usage, an expression for memory usage of an array 
needs to be developed. Equation (3) shows the 
memory usage for a multidimensional array ‘A’ 
assuming that the fused loops and unfused loops are 
known. The memory requirement for array ‘A’ is 
the product of the sizes along the unfused 
dimensions of array ‘A’. Using the associated 0-1 
variables introduced in the ILP formulation, in the 
expression as a trial to get a mathematical formula 
eligible to be used in an objective function, Equation 
(4) results. Summing over all the arrays (nodes in 
the fusion graph), the total-memory usage can be 



 

used as an objective function as shown in Equation 
(6). 
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Equation (5) is not a suitable form for a 

mathematical formulation to express an objective 
function to be minimized. This is because the 
unfused loops are not known apriori to restrict the 
memory expression to include only the unfused 
loops. Also, taking off the restriction and including 
all the loop indices in the memory expression 
creates another problem, in that only one loop to be 
fused in a multi-dimensional array is enough to 
make the memory contribution of this array in the 
objective function to be zero. In this way, the effect 
of fusing one loop in a multi-dimensional array has 
the same effect as fusing two or more loops, which 
is not the optimal solution. For example, consider a 
three-dimensional array A with loop indices i, j, and 
k; mem(A) = (1-xAi)(1-xAj)(1-xAk)NiNjNk. Fusing only 
loop i results in the same objective function value as 
fusing loops i and j. But in the first case mem(A) = 
NjNk, and in the second case mem(A) = Nk.  

The accurate memory expression of a multi-
dimensional array should include the different 
combinations of resulting memory after fusion 
including all its loops as shown in Equation (6). 
Consider again the three-dimensional array A above, 
its memory expression is as in Equation (7). 

 

 

     

     

 

 

 

Using the memory expression in (6) in the 
objective function results in a nonlinear objective 
function that needs a nonlinear solver which is 
expensive and inefficient (in terms of solution time). 
Thus we resort to linearization. 
 
4.3  Objective Function Linearization 
 

A direct way to linearize Equation (6) is by 
summing over all the complements of the 0-1 
variables xAi’s weighted by the corresponding loop-
ranges Ni’s, as shown in Equation (8). Since the 
objective is minimization, a maximum number of 
loops are fused as long as the fusion legality is 
satisfied giving more preference to the loops with 
larger dimensions. 

Minimize: 
( )

(1 )
∈

−∑ ∑ Ai i
A i Inds A

x N   (8) 

This can be rewritten as: 
Maximize: 

( )∈
∑ ∑ Ai i

A i Inds A

x N .                 (9) 

Linearization as defined in Equation (9) is 
exact only when all the arrays are one-dimensional 
arrays but this is not the general case. For example, 
consider a two-dimensional array A, and loop 
indices i and j in A with loop-ranges 10 and 15 
respectively, and a one-dimensional array B that has 
loop index k with loop-range 20 and assume that the 
solver has to choose between j- and k-loops to fuse 
because of legality constraints. Applying Equation 
(9), the objective function fobj will be: fobj = 10xAi + 
15xAj + 20xBk. Because the objective in (9) is a 
maximization problem, the ILP solver will set xBk to 
1 and xAj to 0, which results in fobj = 30 and the total 
memory for this case is 150 + 1 = 151. On the other 
hand, if had set xAj to 1 and xBk to 0, fobj = 15 (which 
is less than the other case), but this will result in an 
optimal memory usage with total memory = 10 + 20 
= 30. This is the key idea used in the efficient 
linearization of the objective function given by the 
following function 
Maximize: ( )

( )
( ) ( , )Ai

A i Inds A
x size A rsize A i

∈

−∑ ∑    (10) 

where size(A) is the memory size of array A and 
rsize(A,i) is the reduced memory size of array A if 
the i-loop is fused. The expressions for these turn 
out to be easily expressed as 

( ) ( )

( ) , ( , )i k
i Inds A k Inds A

and k i

size A N rsize A i N
∈ ∈

≠

=   =∏ ∏  

The expression size(A) – rsize(A,i) expresses the 
reduction in memory for array A if the i-loop is 
fused between node A and its parent. From the 
previous example, size(A) - rsize(A,i) = 150 – 15 = 

mem(A) = resultant memory of array A  
                 if none of the loops are fused. 

 + if one  loop is  fused at a time. 
 + if two  loops are  fused at a time      (6)
 +  … 
 + if all  loops are fused. 

mem(A) =  
      (1- xAi)(1-xAj)(1-xAk)NiNjNk + 
      (xAi)(1-xAj)(1-xAk)NjNk + (1-xAi)(xAj)(1-xAk)NiNk 

         + (1-xAi)(1-xAj)(xAk)NiNj +xAi xAj(1-xAk)Nk  
      + xAi(1-xAj)xAkNj + (1- xAi)xAj xAkNi + xAi xAj xAk 

                                                                                                                     (7)



 

135, size(A) - rsize(A,j) = 150 – 10 = 140, and size(B) 
- rsize(B,k) = 20 – 1 = 19. On plugging these values 
in Equation (10), we get fobj = 135xAi + 140xAj + 
19xBk. Because the objective is maximization, the 
ILP solver will pick xAj to be one and xBk to be zero, 
this will result in an optimal memory usage for this 
example with total memory = 10 + 20 = 30.  
 
5.  Example 
 
Consider the potential fusion graph in Figure 2(a) 
(assuming that the ranges for loops i, j, k, l are 10, 
10, 12, and 10 respectively). The associated 0-1 
variables for each potential fusion edge is shown in 
Table 1; the complete ILP formulation is as shown 
in Figure 5 below. The associate path and its pair of 
loop indices for each set of constraints in Figure 5 

are as shown in Table 2. The output of the ILP 
solver is shown in Figure 2(b), where the solid lines 
represent the resulting fused edges. 
 
6.  Experimental Results 
 

We have tested our ILP formulation on test 
examples taken from [Lam02] that arise in the field 
of correlated electronic structure methods such as 
coupled cluster and configuration interaction 
methods in quantum chemistry. Table 3 shows the 
comparison between the memory usage results from 
the optimal solution and our ILP formulation. It also 
shows that our formulation is efficient where the 
solution time is a fraction of seconds even for large 
test cases. Additional details on the benchmarks can 
be found in the first author’s PhD thesis [All05]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Potential fusion edges and their associated 0-1 variables 

edge (A,f1) (A,f1) (f1,W) (B,f2) (B,f2) (B,f2) (C,f2) (C,f2) (f2,W) (f2,W)
loop-index i j j j k l k l j k 

variable x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

Maximize:   obj: 90 x1 + 90 x2 + 9 x3 + 1080 x4 + 1100 x5+  
           1080 x6 + 110 x7 + 108 x8 + 108 x9 + 110 x10 

Subject To: 
 c1:  x1 - x2 + x3 <= 1 
 c2:  - x1 + x2 - x3 <= 1 
 c3:  x4 - x5 - x9 + x10 <= 1 
 c4:  - x4 + x5 + x9 - x10 <= 1 
 c5:  - x7 - x9 + x10 <= 1 
 c6:  x7 + x9 - x10 <= 1 
 c7:  x4 - x6 - x9 <= 1 
 c8:  - x4 + x6 + x9 <= 1 
 c9:  - x8 - x9 <= 1 
 c10: x8 + x9 <= 1 
 c11: x5 - x6 - x10 <= 1 
 c12: - x5 + x6 + x10 <= 1 
 c13: x7 - x8 - x10 <= 1 
 c14: - x7 + x8 + x10 <= 1 
 c15: x4 - x5 + x7 <= 1 
 c16: - x4 + x5 - x7 <= 1 
 c17: x3 - x9 + x10 <= 1 
 c18: - x3 + x9 - x10 <= 1 
 c19: x3 - x4 + x5 + x10 <= 2 
 c20: - x3 + x4 - x5 + x9 <= 2 
 c21: x3 + x7 + x10 <= 2 
 c22: - x3 - x7 + x9 <= 2 
 c23: x4 - x6 + x8 <= 1 
 c24: - x4 + x6 - x8 <= 1 
 c25: x5 - x6 - x7 + x8 <= 1 
 c26: - x5 + x6 + x7 - x8 <= 1 
 

Figure 5: Complete ILP formulation for the fusion graph in Figure 2(a) 



 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

7.  Conclusions 
 
This paper presented a technique for memory 
optimization for a class of computations that arises 
in the field of correlated electronic structure 
methods such as coupled cluster and configuration 
interaction methods in quantum chemistry. In this 
class of computations, loop computations perform a 
multi-dimensional sum of product of input arrays. 
There are many different ways to get the same final 
results that differ in the required number of 
arithmetic operations required. In addition, for a 
given number of arithmetic operations, different 
expressions of the loop have different memory 
requirements. Loop fusion is a plausible solution for 
reducing memory usage. By fusing loops between 
producer loop nest and consumer loop nest, the 
required storage of intermediate array is reduced by 
the range of the fused loop. Because resultant loops 
have to be legal after fusion, some loops can not be 
fused at the same time. In this paper, we have 
developed a novel integer linear programming (ILP) 

formulation that is shown to be highly effective on a 
number of test cases producing the optimal solutions 
using very small execution times. The main idea in 
the ILP formulation is the encoding of legality rules 
for loop fusion of a special class of loops using 
logical constraints over binary decision variables 
and a highly effective approximation of memory 
usage. Work is in progress in incorporating different 
objective functions to precisely capture memory 
usage. In addition, we plan to explore ways to 
incorporate disk access costs. 
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Table 2: Associated paths and their pairs of loop indices for the constraints in Figure 5 

constraints associated path loop indices
c1, c2 < A, f1, W> i, j 
c3, c3 <B, f2, W> j, k 
c5, c6 <C, f2, W> j, k 
c7, c8 <B, f2, W> j, l 

c9, c10 <C, f2, W> j, l 
c11, c12 <B, f2, W> k, l 
c13, c14 <C, f2, W> k, l 
c15, c16 <B, f2, C> j, k 
c17, c18 < f1, W, f2> j, k 
c19, c20 < f1, W, f2, B> j, k 
c21, c22 < f1, W, f2, C> j, k 
c23, c24 <B, f2, C> j, l 
c25, c26 <B, f2, C> k, l 

Table 3: Fusion Results on Benchmarks 

Problem Optimal Sol Our ILP time(sec)  
Test 0 23 23 0.01  
Test 1 2.700909300006 e+12 2.700909300006 e+12 0.05  
Test 2 2.700900000206000 e+12 2.700900000206000 e+12 0.17  
Test 3 600008 600008 0.10  
Test 4 1.809003105 e+9 1.809003105 e+9 0.09  
Test 5 1.62027018006003 e+14 1.62027018006003 e+14 0.18  
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