

Memory Minimization for Tensor Contractions using Integer Linear Programming

A. Allam1, J. Ramanujam1, G. Baumgartner2, and P. Sadayappan3

1 Department of Electrical and Computer Engineering, Louisiana State University, USA

2 Department of Computer Science, Louisiana State University, USA
3 Department of Computer Science and Engineering, The Ohio State University, USA

{atef,jxr}@ece.lsu.edu, {gb,saday}@cse.ohio-state.edu

Abstract

This paper presents a technique for memory
optimization for a class of computations that arises
in the field of correlated electronic structure
methods such as coupled cluster and configuration
interaction methods in quantum chemistry. In this
class of computations, loop computations perform a
multi-dimensional sum of product of input arrays.
There are many different ways to get the same final
results that differ in the required number of
arithmetic operations required. In addition, for a
given number of arithmetic operations, different
expressions of the loop have different memory
requirements. Loop fusion is a plausible solution for
reducing memory usage. By fusing loops between
producer loop nest and consumer loop nest, the
required storage of intermediate array is reduced by
the range of the fused loop. Because resultant loops
have to be legal after fusion, some loops can not be
fused at the same time. In this paper, we have
developed a novel integer linear programming (ILP)
formulation that is shown to be highly effective on a
number of test cases producing the optimal solutions
using very small execution times. The main idea in
the ILP formulation is the encoding of legality rules
for loop fusion of a special class of loops using
logical constraints over binary decision variables
and a highly effective approximation of memory
usage.

1. Introduction

The class of computations considered in this
work arises in the field of correlated electronic
structure methods such as coupled cluster and
configuration interaction methods in quantum
chemistry [Aul96, Hyb86, Roj95]. In this class of
computations, loop computations are specified as
multi-dimensional integrals of products of many
input arrays. These computations can be expressed
numerically as multi-dimensional sums of products
of input arrays. There are many different ways to get

the same final results; the different ways require
differing number of arithmetic operations, due to
operator properties such as commutativity,
associativity and distributivity. Lam et al. [Lam97]
have devised an optimization procedure to do loop
computations using the minimum number of
floating point operations through determining an
equivalent sequence of multiplication and
summation formulas; the resulting optimal sequence
of formulas is called an operation-count-optimal
formula sequence. The intermediate result from each
formula is stored in an intermediate array that can be
used many times without the need for re-computing
these results.

Resulting formulas can be implemented as
separate sets of perfectly nested loops, one set for
each formula. In this way, intermediate arrays have
to be stored in full; in most cases they are huge and
often exceed the available memory on most
machines. Loop fusion [Gao92, Ken93, Lam97,
Lam99a, Lam02, Man95, Sin96] is a candidate
solution for reducing memory usage. By fusing
loops between producer loop nest and consumer
loop nest, the required storage of intermediate arrays
is reduced by the range of the fused loop. Because
resultant loops have to be legal after fusion, fusing
some loops precludes fusing others. The problem of
deciding which loops are to be fused to achieve
minimal memory usage is called the optimal
memory usage problem, which is what we are
considering in this work.

2. Problem Definition and Formulation

Figure 1 is an example of a multi-dimensional
integral; Figure 1(a) shows a multi-dimensional
integral expressed as a sum of product of arrays.
Figure 1(b) shows the resultant operation-count-
optimal formula sequence and Figure 1(c) is its
graph representation. This graph representation is
the same as the one presented in [Lam02] except
that the multiplication and summation nodes are
combined together in one node.

2.1 Modified Fusion Graph

Another graph representation of the problem
called the fusion graph FG = (V, E, Inds, N) is
extracted from the original problem graph, which is
suitable for formulating the fusion problem at hand
and it is a modified version of the one presented in
[Lam02] in order to decrease the number of
variables used. In the fusion graph FG,
• V is the set of nodes where each node represents

an array (intermediate, input, or output array),
• E is the set of potential fusion edges as

described below,
• Inds are the sets of loop indices associated with

each node, and
• N is the set of loop ranges.

The fusion graph is constructed as follows:
 Each node v∈V in the original graph is

converted to a set of vertices, one for each loop
i, where i is a loop index of node v (i∈Inds(v)).

 For each common loop index between a node
and its parent, an edge e∈E is introduced called
a potential fusion edge; the common loop index

in this case is said to be a candidate for fusion.
If the common loop between a node and its
parent is fused, the potential fusion edge is
called a fusion edge.
Figure 2(a) shows the potential fusion graph

for the original graph in Figure 1(c). The potential
fusion edges are dotted edges and the fusion edges
are shown as solid edges in a fusion graph. In a
fusion graph, each connected component of fusion
edges forms a fusion chain, which corresponds to a
fused loop in the loop structure. In Figure 2(b), there
are three fusion chains, one for each of the j-, k-, and
the l-loops. The set of nodes between and including
nodes a and b, in which all the i-vertices of these
nodes are connected through potential fusion edges
is called the potential fusion scope of an i-loop
between the two nodes, a and b, written as
pfscope(a ,b, i). Similarly, the fusion scope of the i-
loop between two nodes, a and b, written as
fscope(a ,b, i), is defined as the set of nodes between
and including a and b, in which all the i-vertices of
these nodes are connected through fusion edges.
Again, in Figure 2(b), fscope(B, W, j) = <B, f2, W>.

Figure 1: An example of multi-dimensional integral. (a) A multi-dimensional integral; (b) A
formula sequence for computing (a); (c) Graph representation of (b)

f1 [j] = ∑i A[i,j]
f2 [j, k] = ∑l B[j, k, l] × C[k, l]
W [k] = ∑j f1 [j] × f2 [j, k]

(b)
(c)

A(i j)
C(k l) B(j k l)

f2

W

f1

W [k] = ∑i,j,l A[i,j] × B[j, k, l] × C[k, l]

(a)

Figure 2: Fusion graph for operation-minimal sequence in Figure 1.
 (a) Potential fusion graph; (b) Resulting fusion graph

(a)

i j
k l j k l

A

f2

C B

W

f1

(b)

i j
k l j k l

A

f2

CB

W

f1

Lam et al. [Lam 02] describe the effect of
fusion as follows: “In general, fusing a t-loop
between a node v and its parent eliminates the t-
dimension of the array v and reduces the array size
by a factor of Nt. In other words, the size of an array
after loop fusions equals the product of the ranges of
the loops that are not fused with its parent. We only
consider fusions of loops among nodes that are all
transitively related by (i.e., form a transitive closure
over) parent-child relations. Fusing loops between
unrelated nodes (such as fusing siblings without
fusing their parent) has no effect on array sizes. We
also restrict our attention to loop fusion
configurations that do not increase the operation
count. In the class of loops considered, the only
dependence relations are those between children and
parents, and array subscripts are simply loop index
variables. Loop permutations, loop nests reordering,
and loop fusions are, therefore, always legal as long
as child nodes are evaluated before their parents.
This freedom allows the loops to be permuted,
reordered, and fused in a large number of ways that
differ in memory usage.” [Lam02].

We have proposed a mathematical formulation
for the optimal memory usage problem in which the
objective is to minimize the total memory usage
(static memory allocation model) for the given
operation-count-optimal formula sequence.
Constraints to assure legality for the resultant fusion
graph are developed in a form of a set of linear
inequalities. Because of the nature of the problem,
the objective is formulated as a nonlinear function.
Then, an efficient linearization technique has been
developed that transforms the objective function to

be linear and thus the memory usage problem is
formulated as an integer linear programming (ILP)
problem. Although the linearized objective function
does not guarantee optimality, the solution is found
to match the optimal one in several cases because
the linearization we have devised is an effective
approximation of the nonlinear objective function.

3. Legality of Fusion

The following theorem states the basic

definitions and the sufficient conditions for a fusion
to be legal. And based on that theorem, fusion
legality constraints are generated.
Theorem 1: Let FG = (V, E, Inds, N) be a fusion
graph, and let a and b be any two nodes in FG. For
any two loop-indices j and k, fusion is legal if one
of the following conditions is satisfied:

1. fscope(a, b, j) ∩ fscope(a, b, k) = ∅.
2. fscope(a ,b, j)⊆ fscope(a, b, k).
3. fscope(a, b, j)⊇ fscope(a, b, k).

Proof: Since loops are not allowed to overlap (they
must either be nested or separate), fusion is legal if
the chains of any two loops in a fusion graph are not
partially overlapped, i.e., they must be either disjoint
or a subset/superset of each other, which can be
mathematically rewritten as the conditions (1)-(3)
above.

Figure 3 shows different cases of illegal fusion
and Figure 4 shows different configurations of legal
fusion.

Figure 3: Illegal Fusion configurations.

(a)

(d) (c)

(b)
j k

a

b

c

k

 j

d

a

b

c

e
j k

a

b

c

 j k

b

c

d

e a

Figure 4: Legal Fusion configurations.

(a)

(d) (c)

(b)
j k

a

b

c

k

 j

d

a

b

c

e
j k

a

b

c

 j k

b

c

d

e a

{ }

{ }

(,)
:

() () 1 (1)
(,) ,

and () () 1 (1) (1)
(,) ,

which can be rewritten as:

(

for each path P s t and
for each candidate pair of loop indices j and k

x x x x xsj tk sk tj aka P s t s t
x x x x xsk tj sj tk aja P s t s t

xsj

 + − + ≤ + −∑
∈ −

+ − + ≤ + −∑
∈ −

 −
{ }

{ }

) 1
(,) ,

() 1 (2)
(,) ,

where is the number of intermediate nodes in the path (,).

x x x x mtj sk kj aka P s t s t

and x x x x x msk tk sj tj aja P s t s t
m P s t

⎛ ⎞
⎜ ⎟+ − + + ≤ +∑
⎜ ⎟∈ −⎝ ⎠

⎛ ⎞
⎜ ⎟− + − + + ≤ +∑
⎜ ⎟∈ −⎝ ⎠

To capture the legality of fusion in a set of

linear inequalities, we introduce a 0-1 unknown
variable, xai, to denote the fusion edge between node
a and its parent. The unknown variable xai takes a
value 1 if the i-loop is fused between node a and its
parent, and 0 otherwise.

Fusion legality described by Theorem 1 can be
posed as constraints in form of linear inequalities
using Equation (1) shown below. That simply says:
for each path P(s,t) that starts at node s and ends at
node t, and for any two loop indices j and k in the
fusion graph, a constraint in the form of Equation (1)
is generated as long as
1. both of these two loops are candidates for

fusion (i.e., there are potential fusion edges
between each intermediate node that belongs to
that path and its parent for both j- and k-loop),
and

2. at least one potential fusion edge for node s and
node t where the two loop indices are different,
i.e., one node has potential fusion edge for the
j-loop and the other for the k-loop.

Although the first term in the right-hand side of
Equations (1) and (2) is enough to guarantee legality
for most of the fusion configurations, the second
term is needed to take care of some legal
configurations such as the one in Figure 4(d);
without the second term, the configuration in Figure
4(d) appears to be illegal even though it is legal.

A depth-first search algorithm is used for path
construction for generating fusion legality
constraints. The fusion graph is treated as an
undirected acyclic graph during path traversal, i.e.,
the notion of parent or child is no longer considered
during path traversal. At the same time, the fusion
edge definition is still as it is in the original graph.
For example, consider the fusion graph shown in
Figure 2(d) where node c is the parent of both node
b and node d. In constructing the path P(b,e) = <b, c,
d, e> that originates at node b and ends at node e for
loop indices j and k, the unknown variable

corresponding to the candidate fusion edge (e,d) is
xek.

4. ILP formulation

4.1 Fusion Constraints

The fusion legality constraints in inequalities (1)
and (2) work as the set of constraints in the ILP
formulations; the objective function developed
below completes the formulation. The number of
fusion legality constraints may appear to be large,
but in practice our experience with several
benchmark expressions from computational
chemistry indicates that most of the candidate pairs
of loop indices do not exist in all nodes in the fusion
graphs; this renders constraint (1) inapplicable to
most of the paths and hence these constraints are not
generated in the ILP formulation. Moreover, as
shown in inequality (1), the coefficients of the
constraint matrices are 1’s or 0’s, which plays a
substantial role in decreasing the solution time from
the ILP models as demonstrated in our experimental
results.

4.2 Fusion Objective Function

Since the objective is to minimize memory
usage, an expression for memory usage of an array
needs to be developed. Equation (3) shows the
memory usage for a multidimensional array ‘A’
assuming that the fused loops and unfused loops are
known. The memory requirement for array ‘A’ is
the product of the sizes along the unfused
dimensions of array ‘A’. Using the associated 0-1
variables introduced in the ILP formulation, in the
expression as a trial to get a mathematical formula
eligible to be used in an objective function, Equation
(4) results. Summing over all the arrays (nodes in
the fusion graph), the total-memory usage can be

used as an objective function as shown in Equation
(6).

()

()

()

() (3)

() (1) (4)

:

(1) (5)

i
i Inds A

and i is unfused

Ai i
i Inds A

and i is unfused

Ai i
A i Inds A

and i is unfused

mem A N

mem A x N

Minimize

total memory x N

 ∈

 ∈

 ∈

=

= −

⎡ ⎤
⎢ ⎥ = − ⎢ ⎥
⎢ ⎥⎣ ⎦

∏

∏

∑ ∏

Equation (5) is not a suitable form for a

mathematical formulation to express an objective
function to be minimized. This is because the
unfused loops are not known apriori to restrict the
memory expression to include only the unfused
loops. Also, taking off the restriction and including
all the loop indices in the memory expression
creates another problem, in that only one loop to be
fused in a multi-dimensional array is enough to
make the memory contribution of this array in the
objective function to be zero. In this way, the effect
of fusing one loop in a multi-dimensional array has
the same effect as fusing two or more loops, which
is not the optimal solution. For example, consider a
three-dimensional array A with loop indices i, j, and
k; mem(A) = (1-xAi)(1-xAj)(1-xAk)NiNjNk. Fusing only
loop i results in the same objective function value as
fusing loops i and j. But in the first case mem(A) =
NjNk, and in the second case mem(A) = Nk.

The accurate memory expression of a multi-
dimensional array should include the different
combinations of resulting memory after fusion
including all its loops as shown in Equation (6).
Consider again the three-dimensional array A above,
its memory expression is as in Equation (7).

Using the memory expression in (6) in the
objective function results in a nonlinear objective
function that needs a nonlinear solver which is
expensive and inefficient (in terms of solution time).
Thus we resort to linearization.

4.3 Objective Function Linearization

A direct way to linearize Equation (6) is by
summing over all the complements of the 0-1
variables xAi’s weighted by the corresponding loop-
ranges Ni’s, as shown in Equation (8). Since the
objective is minimization, a maximum number of
loops are fused as long as the fusion legality is
satisfied giving more preference to the loops with
larger dimensions.

Minimize:
()

(1)
∈

−∑ ∑ Ai i
A i Inds A

x N (8)

This can be rewritten as:
Maximize:

()∈
∑ ∑ Ai i

A i Inds A

x N . (9)

Linearization as defined in Equation (9) is
exact only when all the arrays are one-dimensional
arrays but this is not the general case. For example,
consider a two-dimensional array A, and loop
indices i and j in A with loop-ranges 10 and 15
respectively, and a one-dimensional array B that has
loop index k with loop-range 20 and assume that the
solver has to choose between j- and k-loops to fuse
because of legality constraints. Applying Equation
(9), the objective function fobj will be: fobj = 10xAi +
15xAj + 20xBk. Because the objective in (9) is a
maximization problem, the ILP solver will set xBk to
1 and xAj to 0, which results in fobj = 30 and the total
memory for this case is 150 + 1 = 151. On the other
hand, if had set xAj to 1 and xBk to 0, fobj = 15 (which
is less than the other case), but this will result in an
optimal memory usage with total memory = 10 + 20
= 30. This is the key idea used in the efficient
linearization of the objective function given by the
following function
Maximize: ()

()
() (,)Ai

A i Inds A
x size A rsize A i

∈

−∑ ∑ (10)

where size(A) is the memory size of array A and
rsize(A,i) is the reduced memory size of array A if
the i-loop is fused. The expressions for these turn
out to be easily expressed as

() ()

() , (,)i k
i Inds A k Inds A

and k i

size A N rsize A i N
∈ ∈

≠

= =∏ ∏

The expression size(A) – rsize(A,i) expresses the
reduction in memory for array A if the i-loop is
fused between node A and its parent. From the
previous example, size(A) - rsize(A,i) = 150 – 15 =

mem(A) = resultant memory of array A
 if none of the loops are fused.

 + if one loop is fused at a time.
 + if two loops are fused at a time (6)
 + …
 + if all loops are fused.

mem(A) =
 (1- xAi)(1-xAj)(1-xAk)NiNjNk +
 (xAi)(1-xAj)(1-xAk)NjNk + (1-xAi)(xAj)(1-xAk)NiNk

 + (1-xAi)(1-xAj)(xAk)NiNj +xAi xAj(1-xAk)Nk
 + xAi(1-xAj)xAkNj + (1- xAi)xAj xAkNi + xAi xAj xAk

 (7)

135, size(A) - rsize(A,j) = 150 – 10 = 140, and size(B)
- rsize(B,k) = 20 – 1 = 19. On plugging these values
in Equation (10), we get fobj = 135xAi + 140xAj +
19xBk. Because the objective is maximization, the
ILP solver will pick xAj to be one and xBk to be zero,
this will result in an optimal memory usage for this
example with total memory = 10 + 20 = 30.

5. Example

Consider the potential fusion graph in Figure 2(a)
(assuming that the ranges for loops i, j, k, l are 10,
10, 12, and 10 respectively). The associated 0-1
variables for each potential fusion edge is shown in
Table 1; the complete ILP formulation is as shown
in Figure 5 below. The associate path and its pair of
loop indices for each set of constraints in Figure 5

are as shown in Table 2. The output of the ILP
solver is shown in Figure 2(b), where the solid lines
represent the resulting fused edges.

6. Experimental Results

We have tested our ILP formulation on test
examples taken from [Lam02] that arise in the field
of correlated electronic structure methods such as
coupled cluster and configuration interaction
methods in quantum chemistry. Table 3 shows the
comparison between the memory usage results from
the optimal solution and our ILP formulation. It also
shows that our formulation is efficient where the
solution time is a fraction of seconds even for large
test cases. Additional details on the benchmarks can
be found in the first author’s PhD thesis [All05].

Table 1: Potential fusion edges and their associated 0-1 variables

edge (A,f1) (A,f1) (f1,W) (B,f2) (B,f2) (B,f2) (C,f2) (C,f2) (f2,W) (f2,W)
loop-index i j j j k l k l j k

variable x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Maximize: obj: 90 x1 + 90 x2 + 9 x3 + 1080 x4 + 1100 x5+
 1080 x6 + 110 x7 + 108 x8 + 108 x9 + 110 x10

Subject To:
 c1: x1 - x2 + x3 <= 1
 c2: - x1 + x2 - x3 <= 1
 c3: x4 - x5 - x9 + x10 <= 1
 c4: - x4 + x5 + x9 - x10 <= 1
 c5: - x7 - x9 + x10 <= 1
 c6: x7 + x9 - x10 <= 1
 c7: x4 - x6 - x9 <= 1
 c8: - x4 + x6 + x9 <= 1
 c9: - x8 - x9 <= 1
 c10: x8 + x9 <= 1
 c11: x5 - x6 - x10 <= 1
 c12: - x5 + x6 + x10 <= 1
 c13: x7 - x8 - x10 <= 1
 c14: - x7 + x8 + x10 <= 1
 c15: x4 - x5 + x7 <= 1
 c16: - x4 + x5 - x7 <= 1
 c17: x3 - x9 + x10 <= 1
 c18: - x3 + x9 - x10 <= 1
 c19: x3 - x4 + x5 + x10 <= 2
 c20: - x3 + x4 - x5 + x9 <= 2
 c21: x3 + x7 + x10 <= 2
 c22: - x3 - x7 + x9 <= 2
 c23: x4 - x6 + x8 <= 1
 c24: - x4 + x6 - x8 <= 1
 c25: x5 - x6 - x7 + x8 <= 1
 c26: - x5 + x6 + x7 - x8 <= 1

Figure 5: Complete ILP formulation for the fusion graph in Figure 2(a)

7. Conclusions

This paper presented a technique for memory
optimization for a class of computations that arises
in the field of correlated electronic structure
methods such as coupled cluster and configuration
interaction methods in quantum chemistry. In this
class of computations, loop computations perform a
multi-dimensional sum of product of input arrays.
There are many different ways to get the same final
results that differ in the required number of
arithmetic operations required. In addition, for a
given number of arithmetic operations, different
expressions of the loop have different memory
requirements. Loop fusion is a plausible solution for
reducing memory usage. By fusing loops between
producer loop nest and consumer loop nest, the
required storage of intermediate array is reduced by
the range of the fused loop. Because resultant loops
have to be legal after fusion, some loops can not be
fused at the same time. In this paper, we have
developed a novel integer linear programming (ILP)

formulation that is shown to be highly effective on a
number of test cases producing the optimal solutions
using very small execution times. The main idea in
the ILP formulation is the encoding of legality rules
for loop fusion of a special class of loops using
logical constraints over binary decision variables
and a highly effective approximation of memory
usage. Work is in progress in incorporating different
objective functions to precisely capture memory
usage. In addition, we plan to explore ways to
incorporate disk access costs.

Acknowledgments

We gratefully acknowledge the support provided in
part by the US National Science Foundation through
awards CHE-0121676, CHE-0121706, CCF-
0508245, CNS-0509442, and CNS-0509467.

Table 2: Associated paths and their pairs of loop indices for the constraints in Figure 5

constraints associated path loop indices
c1, c2 < A, f1, W> i, j
c3, c3 <B, f2, W> j, k
c5, c6 <C, f2, W> j, k
c7, c8 <B, f2, W> j, l

c9, c10 <C, f2, W> j, l
c11, c12 <B, f2, W> k, l
c13, c14 <C, f2, W> k, l
c15, c16 <B, f2, C> j, k
c17, c18 < f1, W, f2> j, k
c19, c20 < f1, W, f2, B> j, k
c21, c22 < f1, W, f2, C> j, k
c23, c24 <B, f2, C> j, l
c25, c26 <B, f2, C> k, l

Table 3: Fusion Results on Benchmarks

Problem Optimal Sol Our ILP time(sec)
Test 0 23 23 0.01
Test 1 2.700909300006 e+12 2.700909300006 e+12 0.05
Test 2 2.700900000206000 e+12 2.700900000206000 e+12 0.17
Test 3 600008 600008 0.10
Test 4 1.809003105 e+9 1.809003105 e+9 0.09
Test 5 1.62027018006003 e+14 1.62027018006003 e+14 0.18

References

[All05] A. Allam, Power and Memory Optimization
Techniques in Embedded Systems. Ph.D.
Dissertation, Louisiana State University, Baton
Rouge, LA, August 2005.

[Aul96] W. Aulbur, Parallel implementation of
quasi-particle calculations of semiconductors and
insulators. Ph.D. Dissertation, The Ohio State
University, Columbus, October 1996.

[Cha93] S. Chatterjee, J. R. Gilbert, R. Schreiber,
and S.-H. Teng, “Automatic array alignment in data-
parallel programs,” In Proc. 20th Annual ACM
SIGACT/SIGPLAN Symposium on Principles of
Programming Languages, New York, pp. 16–28,
1993.

[Cha95] S. Chatterjee, J. R. Gilbert, R. Schreiber,
and S.-H. Teng, “Optimal evaluation of array
expressions on massively parallel machines,” ACM
TOPLAS, 17 (1), pp. 123–156, Jan. 1995.

[Fis91] C. N. Fischer and R. J. LeBlanc Jr., Crafting
a compiler, Benjamin/Cummings, Menlo Park, CA,
1991.

[Gui78] L. J. Guibas and D. K. Wyatt, “Compilation
and Delayed Evaluation in APL,” Fifth Annual
ACM Symposium on Principles of Programming
Languages, Tucson, Arizona, pp. 1–8, Jan. 1978.

[Gao92] G. Gao, R. Olsen, V. Sarkar, and R.
Thekkath, “Collective loop fusion for array
contraction,” Languages and Compilers for Parallel
Computing, New Haven, CT, August 1992.

[Hyb86] M. S. Hybertsen and S. G. Louie,
“Electronic correlation in semiconductors and
insulators: band gaps and quasiparticle energies,”
Phys. Rev. B, 34 (1986), pp. 5390.

[Ken93] K. Kennedy and K. S. McKinley,
“Maximizing loop parallelism and improving data
locality via loop fusion and distribution,” Languages
and Compilers for Parallel Computing, Portland,
OR, pp. 301–320, August 1993.

[Lam99] C. Lam, D. Cociorva, G. Baumgartner, and
P. Sadayappan, “Memory-optimal evaluation of
expression trees involving large objects,” Technical
Report OSU-CISRC-5/99-TR13, Dept. of Computer
and Information Science, The Ohio State University,
May 1999.

[Lam97] C. Lam, P. Sadayappan, and R. Wenger,
“On optimizing a class of multi-dimensional loops
with reductions for parallel execution,” Parallel
Processing Letters, Vol. 7 No. 2, pp. 157–168, 1997.

[Lam97a]C. Lam, P. Sadayappan, and R. Wenger,
“Optimization of a class of multi-dimensional
integrals on parallel machines,” Eighth SIAM
Conference on Parallel Processing for Scientific
Computing, Minneapolis, MN, March 1997.

[Lam99] C. Lam, P. Sadayappan, D. Cociorva, M.
Alouani, and J. Wilkins, “Performance optimization
of a class of loops involving sums of products of
sparse arrays,” Ninth SIAM Conference on Parallel
Processing for Scientific Computing, San Antonio,
TX, March 1999.

[Lam99a] C. Lam, Performance optimization of a
class of loops implementing multi-dimensional
integrals, PhD thesis, Technical Report OSU-
CISRC-8/99-TR22, Dept. of Computer and
Information Science, The Ohio State University,
Columbus, August 1999.

[Lam02] C. Lam, G. Baumgartner, D. Cociorva, and
P. Sadayappan, “Memory Minimization for a Class
of Loops Implementing Multi-Dimensional
Integrals” manuscript, 2002.

[Man95] N. Manjikian and T. S. Abdelrahman,
“Fusion of Loops for Parallelism and Locality,”
International Conference on Parallel Processing,
pp. II:19–28, Oconomowoc, WI, August 1995.

[Roj95] H. N. Rojas, R. W. Godby, and R. J. Needs,
“Space-time method for Ab-initio calculations of
self-energies and dielectric response functions of
solids,” Phys. Rev. Lett., 74 (1995), pp. 1827.

[Sin96] S. Singhai and K. McKinley, “Loop Fusion
for Data Locality and Parallelism,” Mid-Atlantic
Student Workshop on Programming Languages and
Systems, SUNY at New Paltz, April 1996.

