
Identifying Cost-Effective Common Subexpressions to
Reduce Operation Count in Tensor Contraction

Evaluations

Albert Hartono1, Qingda Lu1, Xiaoyang Gao1, Sriram Krishnamoorthy1, Marcel
Nooijen3, Gerald Baumgartner4, David E. Bernholdt6, Venkatesh Choppella1,7,

Russell M. Pitzer2, J. Ramanujam5, Atanas Rountev1, and P. Sadayappan1

1 Dept. of Computer Science and Engineering
2 Dept. of Chemistry

The Ohio State University, Columbus, OH 43210, USA
3 Dept. of Chemistry, University of Waterloo, Waterloo, Ontario N2L BG1, Canada

4 Dept. of Computer Science
5 Dept. of Electrical and Computer Engineering

Louisiana State University, Baton Rouge, LA 70803, USA
6 Computer Sci. & Math. Div., Oak Ridge National Laboratory, Oak Ridge,TN 37831, USA

7 Indian Institute of Information Technology and Management, Kerala, India

Abstract. Complex tensor contraction expressions arise in accurate electronic
structure models in quantum chemistry, such as the coupled cluster method. Trans-
formations using algebraic properties of commutativity and associativity can be
used to significantly decrease the number of arithmetic operations required for
evaluation of these expressions. Operation minimization is an important opti-
mization step for the Tensor Contraction Engine, a tool being developed for the
automatic transformation of high-level tensor contraction expressions into effi-
cient programs. The identification of common subexpressions among aset of
tensor contraction expressions can result in a reduction of the total number of
operations required to evaluate the tensor contractions. In this paper, wedevelop
an effective algorithm for common subexpression identification and demonstrate
its effectiveness on tensor contraction expressions for coupled cluster equations.

1 Introduction
Users of current and emerging high-performance parallel computers face major chal-
lenges to both performance and productivity in the development of their scientific appli-
cations. For example, the manual development of accurate quantum chemistry models
typically takes an expert several months of tedious effort;high-performance implemen-
tations can take substantially longer. One approach to address this situation is the use
of automatic code generation to synthesize efficient parallel programs from the equa-
tions to be implemented, expressed in a very high-level domain-specific language. The
Tensor Contraction Engine (TCE) [3, 2] is such a tool, being developed through a col-
laboration between computer scientists and quantum chemists.

The first step in the TCE’s code synthesis process is the transformation of input
equations into an equivalent form with minimal operation count. Equations typically
range from around ten to over a hundred terms, each involvingthe contraction of two
or more tensors, and most quantum chemical methods involve two or more coupled



equations of this type. This optimization problem can be viewed as a generalization of
the matrix chain multiplication problem, which, unlike thematrix-chain case, has been
shown to beNP-hard [6]. Our prior work focused on the use of single-term optimization
(strength reduction or parenthesization), which decomposes multi-tensor contraction
operations into a sequence of binary contractions, coupledwith a global search of the
composite single-term solution space for factorization opportunities. Exhaustive search
(for small cases) and a number of heuristics were shown to be effective in minimizing
the operation count [4].

Common subexpression elimination (CSE) is a classical optimization technique
used in traditional optimizing compilers [1] to reduce the number of operations, where
intermediates are identified that can be computed once and stored for use multiple times
later. CSE is routinely used in the manual formulation of quantum chemical methods,
but because of the complexity of the equations, it is extremely difficult to explore all
possible formulations manually. CSE is a powerful technique that allows the explo-
ration of the much larger algorithmic space than our previous approaches to operation
minimization. However, the cost of the search itself grows explosively. In this paper,
we develop an approach to CSE identification in the context ofoperation minimization
for tensor contraction expressions. The developed approach is shown to be very effec-
tive, in that it automatically finds efficient computationalforms for challenging tensor
equations.

Quantum chemists have proposed domain-specific heuristicsfor strength reduction
and factorization for specific forms of tensor contraction expressions (e.g., [7, 9]). How-
ever, their work does not consider the general form of arbitrary tensor contraction ex-
pressions. Single-term optimizations in the context of a general class of tensor con-
traction expressions were addressed in [6]. Approaches to single-term optimizations
and factorization of tensor contraction expressions were presented in [4, 8]. Common
subexpression identification to enhance single-term optimization was not considered in
any of these approaches.

The rest of this paper is organized as follows. Section 2 provides a more detailed
description of the operation minimization and the common subexpression elimination
problem in the context of tensor contraction expressions. Section 3 describes our ap-
proach. Experimental results are presented in Section 4 andSection 5 concludes the
paper.

2 Common Subexpressions and Operation Count Reduction

A tensor contraction expression comprises a sum of a number of terms, where each
term might involve the contraction of two or more tensors. Wefirst illustrate the issue
of operation minimization for a single term, before addressing the issue of finding com-
mon subexpressions to optimize across multiple terms. Consider the following tensor
contraction expression involving three tensorst, f ands, with indicesx andz that have
rangeV , and indicesi andk that have rangeO. Distinct ranges for different indices is a
characteristic of the quantum chemical methods of interest, whereO andV correspond
to the number of occupied and virtual orbitals in the representation of the molecule
(typicallyV ≫O). Computed as a single nested loop computation, the number of arith-
metic operations needed would be 2O2V 2.

rx
i = ∑z,k tz

i f k
z sx

k (cost=2O2V 2)



However, by performing a two-step computation with an intermediateI, it is possi-
ble to compute the result using 4OV 2 operations:

Ix
z = ∑k f k

z sx
k (cost=2OV 2); rx

i = ∑z tz
i Ix

z (cost=2OV 2)
Another possibility using 4O2V computations, which is more efficient whenV > O

(as is usually the case in quantum chemistry calculations),is shown below:
Ik
i = ∑z tz

i f k
z (cost=2O2V ); rx

i = ∑k Ik
i sx

k (cost=2O2V )
The above example illustrates the problem of single-term optimization, also called

strength reduction: find the best sequence of two-tensor contractions to achieve a multi-
tensor contraction. Different orders of contraction can result in very different operation
costs; for the above example, if the ratio ofV/O were 10, there is an order of magnitude
difference in the number of arithmetic operations for the two choices.

With complex tensor contraction expressions involving a large number of terms, if
multiple occurrences of the same subexpression can be identified, it will only be neces-
sary to compute it once and use it multiple times. Thus, common subexpressions can be
stored as intermediate results that are used more than once in the overall computation.
Manual formulations of computational chemistry models often involve the use of such
intermediates. The class of quantum chemical methods of interest, which include the
coupled cluster singles and doubles (CCSD) method [7, 9], are most commonly formu-
lated using the molecular orbital basis (MO) integral tensors. However the MO integrals
are intermediates, derived from the more fundamental atomic orbital basis (AO) integral
tensors. Alternate “AO-based” formulations of CCSD have been developed in which the
more fundamental AO integrals are used directly, without fully forming the MO inte-
grals [5]. However it is very difficult to manually explore all possible formulations of
this type to find the one with minimal operation count, especially since it can depend
strongly on the characteristics of the particular moleculebeing studied.

The challenge in identifying cost-effective common subexpressions is the combina-
torial explosion of the search space, since single-term optimization of different product
terms must be treated in a coupled manner. The following simple example illustrates
the problem.

Suppose we have two MO-basis tensors,v andw, which can be expressed as a trans-
formation of the AO-basis tensor,a, in two steps. Using single-term optimization to
form tensorv, we consider two possible sequences of binary contractionsas shown be-
low, which both have the same (minimal) operation cost. Extending the notation above,
indicesp andq represent AO indices, which have rangeM = O+V .
Seq. 1: I1i

q = ∑p ap
qci

p (cost=2OM2); vi
j = ∑p I1i

pdp
j (cost=2O2M)

Seq. 2: I2p
i = ∑q ap

qdq
i (cost=2OM2); vi

j = ∑p I2p
j ci

p (cost=2O2M)
To generate tensorw, suppose that there is only one cost-optimal sequence:

I1i
q = ∑p ap

qci
p (cost=2OM2); wi

x = ∑p I1i
pep

x (cost=2OV M)
Note that the first step in the formation ofw uses the same intermediate tensor

I1 that appears in sequence 1 forv. Considering just the formation ofv, either of the
two sequences is equivalent in cost. But one form uses a common subexpression that
is useful in computing the second MO-basis tensor, while theother form does not.
If sequence 1 is chosen forv, the total cost of computing bothv and w is 2OM2 +
2O2M + 2OV M. On the other hand, the total cost is higher if sequence 2 is chosen
(4OM2+2O2M+2OV M). The 2OM2 cost difference is significant whenM is large.



When a large number of terms exist in a tensor contraction expression, there is a
combinatorial explosion in the search space if all possibleequivalent-cost forms for
each product term must be compared with each other.

In this paper, we address the following question: By developing an automatic op-
eration minimization procedure that is effective in identifying suitable common subex-
pressions in tensor contraction expressions, can we automatically find more efficient
computational forms? For example, with the coupled clusterequations, can we auto-
matically find AO-based forms by simply executing the operation minimization proce-
dure on the standard MO-based CCSD equations, where occurrences of the MO integral
terms are explicitly expanded out in terms of AO integrals and integral transformations?

3 Algorithms for Operation Minimization with CSE

In this section, we describe the algorithm used to perform operation minimization, by
employing single-term optimization together with CSE. Theexponentially large space
of possible single-term optimizations, together with CSE,makes an exhaustive search
approach prohibitively expensive. So we use a two-step approach to apply single-term
optimization and CSE in tandem.

The algorithm is shown in Fig. 2. It uses the single-term optimization algorithm,
which is broadly illustrated in Fig. 1 and described in greater detail in our earlier work
[4]. It takes as input a sequence of tensor contraction statements. Each statement defines
a tensor in terms of a sum of tensor contraction expressions.The output is an optimized
sequence of tensor contraction statements involving only binary tensor contractions. All
intermediate tensors are explicitly defined.

The key idea is to determine the parenthesization of more expensive terms before
the less expensive terms. The most expensive terms contribute heavily to the overall
operation cost, and potentially contain expensive subexpressions. Early identification
of these expensive subexpressions can facilitate their reuse in the computation of other
expressions, reducing the overall operation count.

The algorithm begins with theterm set to be optimized as the set of all the terms
of the tensor contraction expressions on the right hand sideof each statement. The set
of intermediates is initially empty. In each step of the iterative procedure, the parenthe-
sization for one term is determined. Single-term optimization is applied to each term in
the term set using the current set of intermediates and the most expensive term is chosen
to be parenthesized. Among the set of optimal parenthesizations for the chosen term,
the one that maximally reduces the cost of the remaining terms is chosen. Once the
term and its parenthesization are decided upon, the set of intermediates is updated and
the corresponding statements for the new intermediates aregenerated. The procedure
continues until the term set is empty.

4 Experimental Results

We evaluated our approach by comparing the optimized operation count of the MO-
based CCSD T1 and T2 computations with the corresponding equations in which the
occurrences of MO integrals are replaced by the expressionsthat produce them, referred
to as the expanded form. Table 1 illustrates the characteristics of CCSD T1 and T2
equations. Fig. 3 shows the CCSD T1 equation, consisting of the computation of the



SINGLE-TERM-OPT-CSE(E, is)
1 if E is a single-tensor expression
2 then return {〈E, /0〉}
3 else \* E is a multiple-tensor contraction expression (i.e.,E1 ∗ . . .∗En) * \
4 {〈p1, is1〉,〈p2, is2〉, . . .}←
5 set of pairs of optimal parenthesization ofE and its corresponding intermediate set
6 (the given intermediate setis is used to find effective common subexpressions)
7 return {〈p1, is1〉,〈p2, is2〉, . . .}

Fig. 1.Single-term optimization algorithm with common subexpression elimination

OPTIMIZE(stmts)
1 MSET ← set of all terms obtained from RHS expressions ofstmts
2 is← /0 \* the set of intermediates *\
3 while MSET 6= /0
4 do Mheaviest ← the heaviest term inMSET
5 (searched by applying SINGLE-TERM-OPT-CSE(Mi, is) on each termMi ∈MSET )
6 PSET ← SINGLE-TERM-OPT-CSE(Mheaviest , is)
7 〈pbest , isbest〉 ← NIL

8 pro f it← 0
9 for each 〈pi, isi〉 ∈ PSET

10 do cur pro f it← 0
11 for each Mi ∈ (MSET −{Mheaviest})
12 do base cost← op-cost of optimal parenth. in SINGLE-TERM-OPT-CSE(Mi, is)
13 opt cost← op-cost of optimal parenth. in SINGLE-TERM-OPT-CSE(Mi, is∪ isi)
14 cur pro f it← cur pro f it +(base cost−opt cost)
15 if (〈pbest , isbest〉= NIL)∨ (cur pro f it > pro f it)
16 then 〈pbest , isbest〉 ← 〈pi, isi〉
17 pro f it← cur pro f it
18 stmts← replace the termMheaviest in stmts with pbest
19 MSET ←MSET −{Mheaviest}
20 is← is∪ isbest
21 return stmts

Fig. 2.Global operation minimization algorithm

MO integrals (Steps 1a–1d) and the expression for the single-excitation residual (Step
2). Whereas our examples above used rank-2 tensors for simplicity, the CCSD equations
primarily involve rank-4 integral tensors.

The number of arithmetic operations depends uponO andV , which are specific to
the molecule and quality of the simulation, but a typical range is 1≤ V/O ≤ 100. To
provide concrete comparisons, we setO to 10 andV to 100 or 500.

The CCSD computation proceeds through a number of iterations in which the AO
integrals remain unchanged. At convergence, the amplitudes t vo andt vvoo attain val-
ues such that the residual vector in Step 2 of Fig. 3 is equal tozero and this typically
takes 10–50 iterations. In different variants of CCSD, the MO integrals may also remain
unchanged, or may change at each iteration, requiring the AO-to-MO transformation to
be repeated. To represent these two cases, we use iteration counts of 10 and 1, respec-
tively, to evaluate the different formulations obtained.



Table 1.Characteristics of input equations used in experiments

Equation Number of terms MO Integrals
CCSD T1 14 v ooov,v oovv,v ovov,v ovvv
CCSD T2 31 v oooo,v ooov,v oovv,v ovoo,v ovov,v ovvv,v vvoo,v vvov,v vvvv

(1a) v ooovh1h2
h3p1 = (c moq1

h3 ∗ c mvq2
p1 ∗ c omh1

q3 ∗ c omh2
q4 ∗a mmmmq3q4

q1q2)

(1b) v oovvh1h2
p1p2 = (c mvq1

p1 ∗ c mvq2
p2 ∗ c omh1

q3 ∗ c omh2
q4 ∗a mmmmq3q4

q1q2)

(1c) v ovovh1p1
h2p2 = (c moq1

h2 ∗ c mvq2
p2 ∗ c omh1

q3 ∗ c vmp1
q4 ∗a mmmmq3q4

q1q2)

(1d) v ovvvh1p1
p2p3 = (c mvq1

p2 ∗ c mvq2
p3 ∗ c omh1

q3 ∗ c vmp1
q4 ∗a mmmmq3q4

q1q2)

(2) residualp2
h1 = 0.25∗ (t vvoop2p1

h2h1 ∗ f ovh2
p2)−0.25∗ (v ovovh2p1

h1p2 ∗ t vop2
h2)

+0.25∗ ( f vvp1
p2 ∗ t vop2

h1)−0.25∗ ( f ooh2
h1 ∗ t vop1

h2)+0.25∗ f vop1
h1

−0.25∗ (t vop1
h2 ∗ t vop2

h1 ∗ t vop3
h3 ∗ v oovvh2h3

p2p3)

+0.25∗ (t vvoop2p1
h2h1 ∗ t vop3

h3 ∗v oovvh2h3
p2p3)−0.125∗ (t vop1

h2 ∗ t vvoop2p3
h3h1 ∗v oovvh3h2

p2p3)

−0.125∗ (t vop2
h1 ∗ t vvoop3p1

h2h3 ∗ v oovvh2h3
p3p2)−0.25∗ (t vop2

h1 ∗ v ovvvh2p1
p2p3 ∗ t vop3

h2)

−0.25∗ (t vop1
h2 ∗ v ooovh2h3

h1p2 ∗ t vop2
h3)−0.25∗ (t vop1

h2 ∗ t vop2
h1 ∗ f ovh2

p2)

+0.125∗ (t vvoop2p3
h2h1 ∗ v ovvvh2p1

p2p3)+0.125∗ (t vvoop2p1
h2h3 ∗ v ooovh2h3

h1p2)

Fig. 3. The input formulation of CCSD T1. For compactness, summations are implicit wherever
the same index appears twice in a term.

Tables 2 and 3 illustrate the results obtained by optimizingCCSD T1 and T2 equa-
tions with the algorithm described above. The total operation counts are shown for dif-
ferent (O,V ) pairs, changing iteration counts, and choice of MO integrals to expand. We
applied single-term optimization and CSE to the AO-to-MO calculation and the MO-
basis expression separately, without expanding any MO integrals - this is representative
of current implementations of coupled cluster methods. We report the operation count
reduction using our approach relative to the optimized conventional two-step formula-
tion as discussed above.

Among all the sixteen cases we have studied, twelve of them yield a reduction factor
ranging from 2.14 to 14.75 and two of them have a reduction factor close to 1.2. We
can conclude that our algorithm performs well in practice inmost cases. The following
observations can be made from the results in Tables 2 and 3.

– The benefits decrease with an increase of the iteration count;
– The benefits increase with increasing number of explicitly expanded terms; and
– The benefits are greater when theV/O ratio is large.

Fig. 4 shows an optimized formulation of the CCSD T1 equationin Fig. 3, when
(O,V ) = (10,500) and the MO integralsv ovvv,v ooov,v ovov are expanded. It may be
seen that this form, with an operation-count reduction factor of 2.49, is significantly
different from the original MO-basis formulation in Fig. 3.In this new formulation, the
it arrays are the common subexpressions identified to reduce the operation count.

5 Conclusions
In this paper, we presented a coupled approach of utilizing single-term optimization
and identification of common subexpressions to reduce the operation count in the eval-
uation of tensor contraction expressions. The benefits of the approach were shown by



Table 2.Results of optimizing CCSD T1 with our algorithm

(O,V ) Iteration Count Expanded TensorsTotal Operation CountReduction Factor
None 1.12×1010 1

1 v ovvv 5.25×109 2.14
(10,100) v ovvv,v ooov,v ovov 4.52×109 2.48

None 1.40×1010 1
10 v ovvv 1.20×1010 1.17

v ovvv,v ooov,v ovov 1.18×1010 1.19
None 5.36×1012 1

1 v ovvv 1.59×1012 3.37
(10,500) v ovvv,v ooov,v ovov 1.51×1012 3.55

None 5.63×1012 1
10 v ovvv 2.34×1012 2.41

v ovvv,v ooov,v ovov 2.26×1012 2.49

Table 3.Results of optimizing CCSD T2 with our algorithm

(O,V ) Iteration Count Expanded TensorsTotal Operation CountReduction Factor
None 1.51×1011 1

1 v vvvv 6.87×1010 2.20
(10,100) v vvvv,v ovvv,v vvov 5.40×1010 2.80

None 4.68×1011 1
10 v vvvv 4.68×1011 1

v vvvv,v ovvv,v vvov 4.67×1011 1
None 2.85×1014 1

1 v vvvv 2.72×1013 10.48
(10,500) v vvvv,v ovvv,v vvov 1.93×1013 14.75

None 4.22×1014 1
10 v vvvv 1.76×1014 2.40

v vvvv,v ovvv,v vvov 1.67×1014 2.53

expanding the tensor contraction expressions in two representative computations, and
demonstrating a reduction in the operation count for the composite computation.
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