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Abstract. Complex tensor contraction expressions arise in accurate electronic
structure models in quantum chemistry, such as the coupled cluster méthos-
formations using algebraic properties of commutativity and associatigitybe
used to significantly decrease the number of arithmetic operations reédaire
evaluation of these expressions. Operation minimization is an important opti-
mization step for the Tensor Contraction Engine, a tool being developetédo
automatic transformation of high-level tensor contraction expressidoseffi-

cient programs. The identification of common subexpressions amagg af
tensor contraction expressions can result in a reduction of the totalerunfib
operations required to evaluate the tensor contractions. In this papdevwe®p

an effective algorithm for common subexpression identification ancdetrate

its effectiveness on tensor contraction expressions for coupledrofggiations.

1 Introduction

Users of current and emerging high-performance parallglpeders face major chal-
lenges to both performance and productivity in the develatrof their scientific appli-
cations. For example, the manual development of accuratetgon chemistry models
typically takes an expert several months of tedious effogh-performance implemen-
tations can take substantially longer. One approach toeaddhis situation is the use
of automatic code generation to synthesize efficient pelrplograms from the equa-
tions to be implemented, expressed in a very high-level doispecific language. The
Tensor Contraction Engine (TCE) [3, 2] is such a tool, beiagatoped through a col-
laboration between computer scientists and quantum ckemis

The first step in the TCE’s code synthesis process is theftnanation of input
equations into an equivalent form with minimal operatiommo Equations typically
range from around ten to over a hundred terms, each invothiegontraction of two
or more tensors, and most quantum chemical methods invaleeot more coupled



equations of this type. This optimization problem can beveig as a generalization of
the matrix chain multiplication problem, which, unlike thratrix-chain case, has been
shown to beNP-hard [6]. Our prior work focused on the use of single-terrtirojzation
(strength reduction or parenthesization), which decomgasulti-tensor contraction
operations into a sequence of binary contractions, coupléda global search of the
composite single-term solution space for factorizatiopafunities. Exhaustive search
(for small cases) and a number of heuristics were shown tdféetige in minimizing
the operation count [4].

Common subexpression elimination (CSE) is a classicalropdition technique
used in traditional optimizing compilers [1] to reduce thamber of operations, where
intermediates are identified that can be computed once aretidor use multiple times
later. CSE is routinely used in the manual formulation ofrguen chemical methods,
but because of the complexity of the equations, it is extigrdifficult to explore all
possible formulations manually. CSE is a powerful techeitjat allows the explo-
ration of the much larger algorithmic space than our previapproaches to operation
minimization. However, the cost of the search itself growglesively. In this paper,
we develop an approach to CSE identification in the contegpefation minimization
for tensor contraction expressions. The developed apbrigashown to be very effec-
tive, in that it automatically finds efficient computatioriaims for challenging tensor
equations.

Quantum chemists have proposed domain-specific heuristissrength reduction
and factorization for specific forms of tensor contractigpressions (e.g., [7, 9]). How-
ever, their work does not consider the general form of abyjttensor contraction ex-
pressions. Single-term optimizations in the context of aegel class of tensor con-
traction expressions were addressed in [6]. Approacheggdesterm optimizations
and factorization of tensor contraction expressions weesented in [4, 8]. Common
subexpression identification to enhance single-term apdition was not considered in
any of these approaches.

The rest of this paper is organized as follows. Section 2igesva more detailed
description of the operation minimization and the commadmegpression elimination
problem in the context of tensor contraction expressioesti@ 3 describes our ap-
proach. Experimental results are presented in Section 4Sastion 5 concludes the
paper.

2 Common Subexpressions and Operation Count Reduction

A tensor contraction expression comprises a sum of a nunitkerms, where each
term might involve the contraction of two or more tensors. fik& illustrate the issue
of operation minimization for a single term, before addirggshe issue of finding com-
mon subexpressions to optimize across multiple terms. i@enthe following tensor
contraction expression involving three tensr ands, with indicesx andz that have
rangeV, and indices andk that have rang®. Distinct ranges for different indices is a
characteristic of the quantum chemical methods of intevdstreO andV correspond
to the number of occupied and virtual orbitals in the repnestéon of the molecule
(typically V >> O). Computed as a single nested loop computation, the nunflaeitio-
metic operations needed would b®%/?.

X =Y,k fxss (cost=D?V?)



However, by performing a two-step computation with an imediatel, it is possi-

ble to compute the result using@¥? operations:
1X =3 fXs¢ (cost=2v?); X =y 4% (cost=2v?)

Another possibility using@?V computations, which is more efficient when> O
(as is usually the case in quantum chemistry calculatiasmsjjown below:

Ik =y, t2fk (cost=0?V); X =sylks (cost=20?V)

The above example illustrates the problem of single-tertmopation, also called
strength reduction: find the best sequence of two-tensdraxions to achieve a multi-
tensor contraction. Different orders of contraction casutein very different operation
costs; for the above example, if the ratiobfO were 10, there is an order of magnitude
difference in the number of arithmetic operations for the thoices.

With complex tensor contraction expressions involvingrgdanumber of terms, if
multiple occurrences of the same subexpression can befiddnit will only be neces-
sary to compute it once and use it multiple times. Thus, comsutbexpressions can be
stored as intermediate results that are used more than iotice overall computation.
Manual formulations of computational chemistry model&pfinvolve the use of such
intermediates. The class of quantum chemical methods efest, which include the
coupled cluster singles and doubles (CCSD) method [7, 8Jparst commonly formu-
lated using the molecular orbital basis (MO) integral teasdowever the MO integrals
are intermediates, derived from the more fundamental atonbital basis (AO) integral
tensors. Alternate “AO-based” formulations of CCSD haverbdeveloped in which the
more fundamental AO integrals are used directly, witholy fiorming the MO inte-
grals [5]. However it is very difficult to manually explorel alossible formulations of
this type to find the one with minimal operation count, esgicisince it can depend
strongly on the characteristics of the particular moletdimg studied.

The challenge in identifying cost-effective common sulyegpions is the combina-
torial explosion of the search space, since single-termmagetion of different product
terms must be treated in a coupled manner. The following Isiragample illustrates
the problem.

Suppose we have two MO-basis tensa@ndw, which can be expressed as a trans-
formation of the AO-basis tensoa, in two steps. Using single-term optimization to
form tensow, we consider two possible sequences of binary contractisishown be-
low, which both have the same (minimal) operation cost. Editgg the notation above,
indicesp andq represent AO indices, which have raride= O+ V.

Seq. 1 11;=7ypa4c, (cost=2DM?); v‘j = zpllipdjp (cost=20°M)
Seq.2: 120 =yqahd] (cost=DM?);  V, =y,120c, (cost=20?M)
To generate tensav, suppose that there is only one cost-optimal sequence:

11, = ¥ pafch, (cost=2DM?); W =5 ,l1hel (cost=2DVM)

Note that the first step in the formation of uses the same intermediate tensor
I1 that appears in sequence 1 forConsidering just the formation of either of the
two sequences is equivalent in cost. But one form uses a consuigexpression that
is useful in computing the second MO-basis tensor, whileatier form does not.
If sequence 1 is chosen for the total cost of computing both andw is 20M? +
20°M + 20VM. On the other hand, the total cost is higher if sequence 2 dsesh
(40M2 + 20°M + 20V M). The 20M? cost difference is significant whew is large.



When a large number of terms exist in a tensor contractionessjon, there is a
combinatorial explosion in the search space if all poss#ggivalent-cost forms for
each product term must be compared with each other.

In this paper, we address the following question: By devielpan automatic op-
eration minimization procedure that is effective in idéyitig suitable common subex-
pressions in tensor contraction expressions, can we atit@ita find more efficient
computational forms? For example, with the coupled clustgrations, can we auto-
matically find AO-based forms by simply executing the operaminimization proce-
dure on the standard MO-based CCSD equations, where oncagef the MO integral
terms are explicitly expanded out in terms of AO integrald imwegral transformations?

3 Algorithms for Operation Minimization with CSE

In this section, we describe the algorithm used to perforeraton minimization, by
employing single-term optimization together with CSE. BEx@onentially large space
of possible single-term optimizations, together with C8takes an exhaustive search
approach prohibitively expensive. So we use a two-stepagaprto apply single-term
optimization and CSE in tandem.

The algorithm is shown in Fig. 2. It uses the single-termraj#tation algorithm,
which is broadly illustrated in Fig. 1 and described in geeatetail in our earlier work
[4]. It takes as input a sequence of tensor contractionmates. Each statement defines
atensor in terms of a sum of tensor contraction expressidresoutput is an optimized
sequence of tensor contraction statements involving dnlgri tensor contractions. All
intermediate tensors are explicitly defined.

The key idea is to determine the parenthesization of moreresipe terms before
the less expensive terms. The most expensive terms caetfiiteavily to the overall
operation cost, and potentially contain expensive sulesgions. Early identification
of these expensive subexpressions can facilitate theserguthe computation of other
expressions, reducing the overall operation count.

The algorithm begins with theerm set to be optimized as the set of all the terms
of the tensor contraction expressions on the right handdfi@ach statement. The set
of intermediates is initially empty. In each step of theatere procedure, the parenthe-
sization for one term is determined. Single-term optindrats applied to each termin
the term set using the current set of intermediates and tiseerpensive term is chosen
to be parenthesized. Among the set of optimal parenthésizator the chosen term,
the one that maximally reduces the cost of the remaininggdsnthosen. Once the
term and its parenthesization are decided upon, the setasfriediates is updated and
the corresponding statements for the new intermediategearerated. The procedure
continues until the term set is empty.

4 Experimental Results

We evaluated our approach by comparing the optimized dparabunt of the MO-
based CCSD T1 and T2 computations with the correspondingtiemqs in which the
occurrences of MO integrals are replaced by the expresgiahproduce them, referred
to as the expanded form. Table 1 illustrates the charatitsrisf CCSD T1 and T2
equations. Fig. 3 shows the CCSD T1 equation, consistingetbomputation of the



SINGLE-TERM-OPT-CSHE, is)

1 if Eis a single-tensor expression

2 thenreturn {(E,0)}

3 else \* E is a multiple-tensor contraction expression (iE....*Ep) * \

4 {(prist), (p2,is2), ...}

5 set of pairs of optimal parenthesizationtbfind its corresponding intermediate set
6 (the given intermediate sigis used to find effective common subexpressions)
7

return {(py,isy), (P2,isz), ...}

Fig. 1. Single-term optimization algorithm with common subexpression elimination

OPTIMIZE(StmtS)
1 MSET « set of all terms obtained from RHS expressionstots
2 s« 0\*the set of intermediates ¥
3 while MSET #0
4 do Mpeajieg < the heaviest term iMSET
5 (searched by applyingi8GLE-TERM-OPT-CSEM,;,is) on each ternM; € MSET)
6 PSET < SINGLE-TERM-OPT-CSHEMpeqies s 19)
7 (Poest; 1Sbest) ¢ NIL
8 profit < 0
9 for each(pj,is) € PSET
10 do cur _profit < 0

11 for eachM; € (MSET — {Mpeavies })

12 do base_cost < op-cost of optimal parenth. iNSGLE-TERM-OPT-CSEMj, is)

13 opt_cost +— op-cost of optimal parenth. inSGLE-TERM-OPT-CSEM;,isUis)
14 cur_profit < cur_profit 4 (base_cost — opt_cost)

15 if ({Pbest;iSpes) = NIL) V (cur_profit > profit)

16 then (Ppest; iSvest) < (Pi,ISi)

17 profit < cur_profit

18 gmts « replace the termVipegiieg i EMtSWith pPpeg
19 MSET + MSET — {Mpeaiest }

20 IS« iSUiSpeg

21 return smts

Fig. 2. Global operation minimization algorithm

MO integrals (Steps 1a—1d) and the expression for the sixg#ation residual (Step
2). Whereas our examples above used rank-2 tensors for sitpplie CCSD equations
primarily involve rank-4 integral tensors.

The number of arithmetic operations depends upandV, which are specific to
the molecule and quality of the simulation, but a typicalgauis 1<V /O < 100. To
provide concrete comparisons, we €eto 10 andv to 100 or 500.

The CCSD computation proceeds through a number of itestiowhich the AO
integrals remain unchanged. At convergence, the ampitude andt_woo attain val-
ues such that the residual vector in Step 2 of Fig. 3 is equaéto and this typically
takes 10-50 iterations. In different variants of CCSD, thHe Mtegrals may also remain
unchanged, or may change at each iteration, requiring théoA@O transformation to
be repeated. To represent these two cases, we use iteratiots ®f 10 and 1, respec-
tively, to evaluate the different formulations obtained.



Table 1.Characteristics of input equations used in experiments

Equation Number of terms MO Integrals

CCSDT1 14 V_000V, V_00WV, V_OVOV, V_OVW

CCSD T2 31 V_0000, V_000V, V_00WV, V_0V0O0, V_0VOV, V_OVW, V_WO0O0, V_WOV, V_-WW
1h2 _ al P2 1 2 a3q4

(1a) v_000vj3hs = (c-mogs + ¢Vl  c.omfs « c.omfg « a mmmmp; )

(1b) v-00whi2 = (c.mvily  c.mv® + c_omld « c_omf2 « a mmmmies)
1pl ql g2 1 pl q3g4

(1c) v,0v0\)"thz = (C-MOp, * C.MV g, * c,omg3 * C_VIThy,  8-MMMMy; )

(1d) voowV5PE = (c-mv® « c.mv s« c_omfl « c.vmpy  a mmmm )

) 2p1 2p1 2
(2) residugf; = 0.25x (t-woofly * f_ovi) —0.25x (v,ovovhhlg2 «t_vofy)
+0.25x (f,wgé ¥t voPZ) — 0.25+ (f_0ol2 «t Vo) 4 0.25+ f voPy

pl p2 p3 2h3
—0.25+ (t_vofy, #t_vofiy xt vof; v_.oowhZi3)

+0.25: (t WoolaP t_voPs V-00WhZH) — 0.125x t VOP3 +t WoOPSPS v-oowh32)

2 1 2 2p1 3
—0.125+ (t_vOP? xt W00 abs v.0owhZ) — 0.25+ (t vofy + v,ovm);223 xt.vopbs)
—0.25% (t_vOfs V_000VE"S t VOf5) — 0.25+ (t_voby +t voZ « fov2)
2p3 2pl 2pl 2h
+0.125x (t_WooPoP v,OW\)gzgs) +0.125x (t-Woofih; * v.000vj2h3)

Fig. 3. The input formulation of CCSD T1. For compactness, summations aieitiygherever
the same index appears twice in a term.

Tables 2 and 3 illustrate the results obtained by optimiZ@$sD T1 and T2 equa-
tions with the algorithm described above. The total operatiounts are shown for dif-
ferent ©O,V) pairs, changing iteration counts, and choice of MO integi@expand. We
applied single-term optimization and CSE to the AO-to-MQcgkation and the MO-
basis expression separately, without expanding any M@iiake - this is representative
of current implementations of coupled cluster methods. ggert the operation count
reduction using our approach relative to the optimized eatienal two-step formula-
tion as discussed above.

Among all the sixteen cases we have studied, twelve of thetd gireduction factor
ranging from 214 to 1475 and two of them have a reduction factor close .2 We
can conclude that our algorithm performs well in practiceniwst cases. The following
observations can be made from the results in Tables 2 and 3.

— The benefits decrease with an increase of the iteration count
— The benefits increase with increasing number of explicitlyasnded terms; and
— The benefits are greater when ¥¢O ratio is large.

Fig. 4 shows an optimized formulation of the CCSD T1 equatioRig. 3, when
(O,V) = (10,500) and the MO integrals_ovwv, v_0oov, v_ovov are expanded. It may be
seen that this form, with an operation-count reductiondiaof 2.49, is significantly
different from the original MO-basis formulation in Fig. 8. this new formulation, the
it arrays are the common subexpressions identified to redaagptration count.

5 Conclusions

In this paper, we presented a coupled approach of utilizingles-term optimization
and identification of common subexpressions to reduce teeatipn count in the eval-
uation of tensor contraction expressions. The benefitseohtiproach were shown by



Table 2. Results of optimizing CCSD T1 with our algorithm

(O,V) |lteration Count Expanded TensorgTotal Operation CounReduction Factar

None 1.12x 1010 1

1 V_OVW 5.25x 10° 2.14

(10,100 V_OVWV, V_000V, V_OVOV 452x10° 2.48
None 1.40x 10™ 1

10 V_OVW 1.20x 10™ 1.17

V_OVWV, V_000V, V_OVOV. 1.18x 10% 1.19
None 5.36 x 102 1

1 V_OVW 1.59x 102 3.37

(10,500 V_OVWV, V_000V, V_OVOV 1.51x 10% 3.55
None 5.63x 10%? 1

10 V_OVW 2.34x 10" 241

V_OVWV, V_000V, V_OVOV. 2.26x 102 2.49

Table 3. Results of optimizing CCSD T2 with our algorithm

(O,V) Ilteration Counl{ Expanded TensorsTotal Operation CoufiReduction Factgr
None 1.51x 10T 1
1 V_WW 6.87 x 109 2.20
(10,100 V_WW, V_OVWV, VWOV 5.40x 10 2.80
None 4.68x 10! 1
10 V_WW 4.68x 10T 1
V_WW, V_OVWV, VWOV 4.67x 101 1
None 2.85x 10M 1
1 V_WW 2.72x 105 10.48
(10,500 V_WWV, V_OVWV, VWOV 1.93x 105 14.75
None 4.22x 10 1
10 V_WW 1.76x 10% 2.40
V_WW, V_OVWV, VWOV 1.67x 10% 2.53

expanding the tensor contraction expressions in two reptave computations, and
demonstrating a reduction in the operation count for thepmsite computation.
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