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Abstract

This paper provides an overview of compile-time opti-
mizations being developed in the context of a program syn-
thesis system for a class of quantum chemistry computa-
tions. These computations are expressible as a set of ten-
sor contractions and arise in electronic structure modeling.
The synthesis system will take as input a high-level speci-
fication of the computation and generate high-performance
parallel code for a number of target architectures. Several
components of the synthesis system are described, focusing
on compile-time optimization issues that they address.

1. Introduction

The development of high-performance parallel programs
for scientific applications is often very complicated. The ef-
fect of the algorithm choice on memory access costs and
communication overhead are often very complex. Cur-
rently, available tools for software development and perfor-
mance optimization do not provide adequate support to the
developers of high-performance scientific applications. Of-
ten, the time to develop an efficient parallel program for
a computational model is the limiting factor in the rate of
progress of the science. Therefore, approaches to automated
synthesis of high-performance parallel programs from high-
level specifications are very attractive. In general, automatic
program synthesis is an intractable problem. However, for
specific domains, this is feasible, as is being demonstrated
by the SPIRAL project [23] for the domain of signal pro-
cessing.
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In this paper, we provide an overview of a project that
is developing a program synthesis system to facilitate the
rapid development of high-performance parallel programs
for a class of scientific computations encountered in chem-
istry and physics - electronic structure calculations, where
many computationally intensive components are express-
ible as a set of tensor contractions. Currently, manual de-
velopment of accurate quantum chemistry models in this
domain is very tedious and takes an expert several months
to years to develop and debug. The synthesis tool aims
to reduce the development time to hours/days, by hav-
ing the chemist specify the computation in a high-level
form, from which an efficient parallel program is automat-
ically synthesized. This should enable the rapid synthesis
of high-performance implementations of sophisticated ab-
initio quantum chemistry models, including models that are
too tedious for manual development by quantum chemists.

The computational domain that we consider is extremely
compute-intensive and consumes significant computer re-
sources at national supercomputer centers. Many of these
codes are limited in the size of the problem that they can
currently solve because of memory and performance lim-
itations. The computational structures that we address
are present in some computational physics codes modeling
electronic properties of semiconductors and metals, and in
computational chemistry codes such as ACES II, GAMESS,
Gaussian, NWChem[9], PSI, and MOLPRO. In particular,
they comprise the bulk of the computation with the cou-
pled cluster approach to the accurate description of the elec-
tronic structure of atoms and molecules [18, 19]. Compu-
tational approaches to modeling the structure and interac-
tions of molecules, the electronic and optical properties of
molecules, the heats and rates of chemical reactions, etc.,
are crucial to the understanding of chemical processes in
real-world systems. Examples of applications include com-
bustion and atmospheric chemistry, chemical vapor depo-



sition, protein structure and enzymatic chemistry, and in-
dustrial chemical processing. Computational chemistry and
materials science account for significant fractions of super-
computer usage at national centers (for example, approx-
imately 85% of total usage at Pacific Northwest National
Laboratories, 30% at NERSC, and about 50% of one of
SDSC’s systems).

2. The computational context

In the class of computations considered, the final result
to be computed can be expressed in terms of tensor contrac-
tions, essentially a collection of multi-dimensional summa-
tions of the product of several input arrays. Due to com-
mutativity, associativity, and distributivity, there are many
different ways to compute the final result, and they could
differ widely in the number of floating point operations re-
quired. Consider the following expression:
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If this expression is directly translated to code (with ten
nested loops, for indices � � �), the total number of arith-
metic operations required will be � � � �� if the range of
each index �� � is � . Instead, the same expression can be
rewritten by use of associative and distributive laws:
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This corresponds to the formula sequence shown in
Fig. 1(a) and can be directly translated into code as shown
in Fig. 1(b). This form only requires � � � � operations.
However, additional space is required to store temporary
arrays �� and ��. Often, the space requirements for the
temporary arrays poses a serious problem. For this exam-
ple, abstracted from a quantum chemistry model, the array
extents along indices �� � are the largest, while the extents
along indices � � � are the smallest. Therefore, the size of
temporary array �� would dominate the total memory re-
quirement.

The operation minimization problem encountered here
is a generalization of the well known matrix-chain multi-
plication problem, where a linear chain of matrices to be
multiplied is given, e.g., ABCD, and the optimal order of
pair-wise multiplications is sought, i.e., ((AB)C)D versus
(AB)(CD), etc. In contrast, for computations expressed as
sets of matrix contractions, there is additional freedom in
choosing the pair-wise products. For the above example,
instead of forcing a single chain order, e.g., ABCD, other
orders are possible, such as the BDCA order shown for the
operation-reduced form above.

The problem of determining the operator tree with mini-
mal operation count is NP-complete, and an efficient prun-
ing search procedure has been developed [16, 17]. For the

above example, although the latter form is far more eco-
nomical in terms of the number of operations, its imple-
mentation will require the use of temporary intermediate
arrays to hold the partial results of the parenthesized array
subexpressions. Sometimes, the sizes of intermediate ar-
rays needed for the “operation-minimal” form are too large
to even fit on disk.

A systematic way to explore ways of reducing the mem-
ory requirement for the computation is to view it in terms of
potential loop fusions. Loop fusion merges loop nests with
common outer loops into larger imperfectly nested loops.
When one loop nest produces an intermediate array which
is consumed by another loop nest, fusing the two loop nests
allows the dimension corresponding to the fused loop to be
eliminated in the array. This results in a smaller intermedi-
ate array and thus reduces the memory requirements. For
the example considered, the application of fusion is illus-
trated in Fig. 1(c). This way, �� can be reduced to a scalar
and �� to a 2-dimensional array, without changing the num-
ber of operations.

For a computation comprising of a number of nested
loops, there are often many fusion choices, that are not
all mutually compatible. This is because different fusion
choices could require different loops to be made the outer-
most. In prior work, we addressed the problem of finding
the choice of fusions for a given operator tree that mini-
mized the total space required for all arrays [13, 14, 15].

3. An example from CCSD(T)

One of the most computationally intensive components
of many quantum chemistry packages is the CCSD(T)
scheme. It is a coupled cluster approximation that includes
single and double excitations from the Hartree-Fock wave-
function plus a perturbative estimate for the connected triple
excitations. For molecules well described by a Hartree-
Fock wave function, this method predicts bond energies,
ionization potentials, and electron affinities to an accuracy
of ���� kcal/mol, bond lengths accurate to ������� Å, and
vibrational frequencies accurate to ������� This level of
accuracy is adequate to answer many of the questions that
arise in studies of chemical systems.

As a concrete example from quantum chemistry, we dis-
cuss a component of the CCSD(T) calculation. The follow-
ing representative equation arises in the Laplace factorized
expression for linear triples perturbation correction:
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Integrals with two vertical bars have been antisym-

metrized and may be expressed as: 	��� � ��� � ��� �



������ �
�
�	

����	 �����	

������ �
�
��

������ ������

����� �
�
��

������ � �����

(a) Formula sequence

T1=0; T2=0; S=0;
for b, c, d, e, f, l�

T1bcdf += Bbefl Dcdel
for b, c, d, f, j, k�

T2bcjk += T1bcdf Cdfjk
for a, b, c, i, j, k�

Sabij += T2bcjk Aacik
(b) Direct implementation (unfused code)

S = 0;
for b, c�
���������

T1f = 0; T2f = 0;
for d, f�
��

for e, l�
T1f += Bbefl Dcdel

for j, k�
T2fjk += T1f Cdfjk

for a, i, j, k�
Sabij += T2fjk Aacik

(c) Memory-reduced implementation (fused)

Figure 1. Example illustrating use of loop fusion for memory reduction.
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 and are quite expensive to compute (requir-
ing on the order of 1000 arithmetic operations). Electrons
may have either up or down (or alpha/beta) spin. Down spin
is denoted here with an over-bar. The indices �� �� �� ���� �
refer to occupied orbitals, of number O between 30 and 100.
The indices �� �� �� �� �� � refer to unoccupied orbitals of
number V between 1000 and 3000. The integrals are written
in the molecular orbital basis, but must be computed in the
underlying atom-centered Gaussian basis, and transformed
to the molecular orbital basis. We omit these details in our
discussion here.

A3A is one of many contributions to the energy, and
among the most expensive, scaling as �	�� �
� Here, we
assume that we have already computed the amplitudes 
���� ,
and they must be read as necessary, and contracted to form
a block of 
� The integrals ��� � ��� must be recomputed
as necessary, contracted to form a block of � corresponding
to
� and the two contracted to form the scalar contribution
to the energy.

Fig. 2 shows pseudo-code for the computation of one
of the energy components � for 	�	. Temporary ar-
rays �� and �� are used to store the integrals of form
��� � ���, where the functions �� and �� represent the in-
tegral calculations (in reality, �� and �� represent the same
array/function; but it is more convenient to treat them as dis-
tinct initially, to simplify our explanation about the space-
time trade-off problem addressed by the synthesis system).
The intermediate quantities 
���� are computed by con-
tracting over (i.e., summing over products of) input array
� , while the intermediate quantities ����� are obtained by
contracting over �� and ��. The final result is a single
scalar quantity �, that is obtained by adding together the
�	�� �
 pair-wise products
��������� .

The cost of computing each integral ��, �� is repre-
sented by  � , and in practice is of the order of hundreds
or a few thousand arithmetic operations. The pseudo-
code form shown in Fig. 2 is computationally very effi-
cient in minimizing the number of expensive integral func-
tion evaluations �� and ��, and maximizing the reuse of

the stored integrals in �� and �� (each element of �� and
�� is used �	� �
 times). However, it is impractical due
to the huge memory requirement. With � � ��� and
� � ����, the size of ��, �� is �	����
 bytes and the
size of 
 , � is �	����
 bytes. By fusing together pairs
of producer-consumer loops in the computation, reductions
in the needed array sizes may be sought, since the fusion
of a loop with common index in the pair of loops allows
the elimination of that dimension of the intermediate array.
It can be seen that the loop that produces 
 (with indices
�� �� �� � ), the loop that produces � (with indices �� �� �� � )
and the loop that consumes 
 and � to produce � (with
indices �� �� �� � ) can all be fully fused together, permitting
the elimination of all explicit indices in 
 and � to reduce
them to scalars. However, the loops producing �� (with in-
dices �� �� �� �) and �� (with indices �� �� �� �) cannot also
be directly fused with the other three loops because their
indices do not match.

Fig. 3 shows how a reduction of space for �� and �� can
be achieved by introducing redundant loops around their
producer loops — add loops with the missing indices �� �
for �� and �� � for ��. Now all five loops have common
indices �� �� �� � that can be fused, permitting elimination
of those indices from all temporaries. Further, by fusing the
producer loops for �� and �� with their consumer loop,
which produces � , the �� � indices can also be eliminated
from �� and ��. A dramatic reduction of memory space
is achieved, reducing all temporaries ��� ��� 
 and � to
scalars, but the space savings come at the price of a signif-
icant increase in computation. No reuse is achieved of the
quantities derived from the expensive integral calculations
�� and ��. Since  � is of the order of 1000 in practice, the
integral calculations now dominate the total compute time,
increasing the operation count by three orders of magnitude
over the unfused form in Fig. 2.

A desirable solution would be somewhere in between
the unfused structure of Fig. 2 (with maximal memory re-
quirement and maximal reuse) and the fully fused structure
of Fig. 3 (with minimal memory requirement and minimal
reuse). This is shown in Fig. 4, where tiling and partial
fusion of the loops is employed. The loops with indices



for a, e, c, f�
for i, j�

Xaecf += Tijae Tijcf
for c, e, b, k�

T1cebk = f�(c, e, b, k)

for a, f, b, k�
T2afbk = f�(a, f, b, k)

for c, e, a, f�
for b, k�

Yceaf += T1cebk T2afbk
for c, e, a, f�

E += Xaecf Yceaf

array space time
X � � � ���

T1 � �� ��� ��
T2 � �� ���

��
Y � � � ��
E 1 � �

Figure 2. Unfused operation-minimal form.

for a, e, c, f�
for i, j�
Xaecf += Tijae Tijcf

for a, f�
for c, e, b, k�
T1cebk = f�(c, e, b, k)

for c, e�
for a, f, b, k�
T2afbk = f�(a, f, b, k)

for c, e, a, f�
for b, k�
Yceaf += T1cebk T2afbk

for c, e, a, f�
E += Xaecf Yceaf

�

for a, e, c, f�
������

for i, j�
X += Tijae Tijcf

for b, k	
T1 = f�(c, e, b, k)
T2 = f�(a, f, b, k)
Y += T1 T2

E += X Y

array space time
X 1 � ���

T1 1 ��� ��
T2 1 ���

��
Y 1 � ��
E 1 � �

Figure 3. Use of redundant computation to allow full fusion.

for a
, e
, c
, f
�
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for a, e, c, f�
for i, j�

Xaecf += Tijae Tijcf
for b, k�
�����

for c, e�
T1ce = f�(c, e, b, k)

for a, f�
T2af = f�(a, f, b, k)

for c, e, a, f�
Yceaf += T1ce T2af

for c, e, a, f�
E += Xaecf Yceaf

array space time
X �� � ���

T1 �� ��������� ��
T2 �� ��������� ��
Y �� � ��
E 1 � �

Figure 4. Use of tiling and partial fusion to reduce recomputation cost.



�� �� �� � are tiled by splitting each of those indices into a
pair of indices. The indices with a superscript 
 represent
the tiling loops and the unsuperscripted indices now stand
for intra-tile loops with a range of !, the block size used
for tiling. For each tile 	��� ��� ��� � �
, blocks of �� and ��
of size !� are computed and used to form ! � product con-
tributions to the components of � , which are stored in an
array of size !�.

As the tile size ! is increased, the cost of function com-
putation for ��� �� decreases by a factor of !�, due to the
reuse enabled. However, the size of the needed temporary
array for � increases as !� (the space needed for 
 can
be reduced back to a scalar by fusing its producer loop with
the loop producing E, but � ’s space requirement cannot be
decreased). When!� becomes larger than the size of phys-
ical memory, expensive paging in and out of disk will be re-
quired for � . Further, there is diminishing returns on reuse
of �� and �� after !� becomes comparable to  � , since
the loop producing � now becomes the dominant one. So
we can expect that as ! is increased, performance will im-
prove and then level off and then deteriorate. The optimum
value of ! will clearly depend on the cost of access at the
various levels of the memory hierarchy.

The computation considered here is just one component
of the 	�	 term, which in turn is only one of very many
terms that must be computed. Although developers of quan-
tum chemistry codes naturally recognize and perform some
of these optimizations, a collective analysis of all these
computations to determine their optimal implementation is
beyond the scope of manual effort. Further, the time re-
quired to develop codes to implement such computational
models is quite large, especially since the tensor expres-
sions can get quite complex - Fig. 5 shows an example of
the kind of tensor expressions encountered when develop-
ing accurate computational models.

In the next section, we provide an overview of a trans-
formation system that we are developing to aid quantum
chemists in rapidly developing high-performance parallel
codes for computations that they specify as a set of high-
level tensor contractions.

4. Overview of the synthesis system

We present in this section a brief description of the ba-
sic components of the system being developed. Some of
these components are tightly coupled (for example, mem-
ory minimization and data distribution), and they are treated
together as one combined module in the synthesis system.
High-level language: The input to the synthesis system
is a sequence of tensor contraction expressions (essentially
sum-of-products array expressions) together with declara-
tions of index ranges and symmetry and sparsity of matri-
ces. This high-level notation provides essential information
to the optimization components that would be difficult or
impossible to extract out of low-level code.

Algebraic transformations: It takes input from the user
as tensor expressions and synthesizes an output computa-
tion sequence. The Algebraic Transformations module uses
the properties of commutativity and associativity of addi-
tion and multiplication and the distributivity of multiplica-
tion over addition. It searches for all possible ways of apply-
ing these properties to an input sum-of-products expression,
and determines a combination that results in an equivalent
form of the computation with minimal operation cost.
Memory minimization: The operation-minimal computa-
tion sequence synthesized by the Algebraic Transformation
module might require an excessive amount of memory due
to the large temporary intermediate arrays involved. The
Memory Minimization module attempts to perform loop fu-
sion transformations to reduce the memory requirements.
This is done without any change to the number of arithmetic
operations.
Data distribution and partitioning: This component de-
termines how best to partition the arrays among the pro-
cessors of a parallel system. We assume a data-parallel
model, where each operation in the operation sequence is
distributed across the entire parallel machine. The arrays
are to be disjointly partitioned between the physical mem-
ories of the processors. Since the data distribution pattern
affects the memory usage on the parallel machine, this com-
ponent is closely coupled with the memory minimization
component.
Space-time transformation: If the memory minimization
module is unable to reduce memory requirements of the
computation sequence below the available disk capacity on
the system, the computation is infeasible unless a space-
time trade-off is performed. If no satisfactory transforma-
tion is found, feedback is provided to the Memory Min-
imization module, causing it to seek a different solution.
If the Space-Time Transformation module is successful in
bringing down the memory requirement below the disk ca-
pacity, the Data Locality Optimization module is invoked.
Data locality optimization: If the space requirement ex-
ceeds physical memory capacity, portions of the arrays must
be moved between disk and main memory as needed, in a
way that maximizes reuse of elements in memory. The same
considerations are involved in minimizing cache misses —
blocks of data are moved between physical memory and the
space available in the cache.
Code generation: The back end of the synthesis system
provides the output as pseudocode, Fortran or C code. The
generated code can be either serial or parallel, using the
MPI libraries. Depending on the circumstances, the synthe-
sised code could also call highly-tuned, machine-specific
Basic Linear Algebra Subprograms (BLAS) libraries, or
optimized low-level functions from the existing quantum
chemistry packages.

In the next sections, we provide some details about the
optimizations implemented in some of these modules. For



hbar[a,b,i,j] == sum[f[b,c] * t[i,j,a,c], c] - sum[f[k,c] * t[k,b] * t[i,j,a,c], k,c] + sum[f[a,c] * t[i,j,c,b], c] - sum[f[k,c] * t[k,a] * t[i,j,c,b], k,c] - sum[f[k,j] * t[i,k,a,b], k] - sum[f[k,c] *

t[j,c] * t[i,k,a,b], k,c] - sum[f[k,i] * t[j,k,b,a], k] - sum[f[k,c] * t[i,c] * t[j,k,b,a], k,c] + sum[t[i,c] * t[j,d] * v[a,b,c,d], c,d] + sum[t[i,j,c,d] * v[a,b,c,d], c,d] + sum[t[j,c] * v[a,b,i,c],

c] - sum[t[k,b] * v[a,k,i,j], k] + sum[t[i,c] * v[b,a,j,c], c] - sum[t[k,a] * v[b,k,j,i], k] - sum[t[k,d] * t[i,j,c,b] * v[k,a,c,d], k,c,d] - sum[t[i,c] * t[j,k,b,d] * v[k,a,c,d], k,c,d] - sum[t[j,c]

* t[k,b] * v[k,a,c,i], k,c] + 2 * sum[t[j,k,b,c] * v[k,a,c,i], k,c] - sum[t[j,k,c,b] * v[k,a,c,i], k,c] - sum[t[i,c] * t[j,d] * t[k,b] * v[k,a,d,c], k,c,d] + 2 * sum[t[k,d] * t[i,j,c,b] * v[k,a,d,c],

k,c,d] - sum[t[k,b] * t[i,j,c,d] * v[k,a,d,c], k,c,d] - sum[t[j,d] * t[i,k,c,b] * v[k,a,d,c], k,c,d] + 2 * sum[t[i,c] * t[j,k,b,d] * v[k,a,d,c], k,c,d] - sum[t[i,c] * t[j,k,d,b] * v[k,a,d,c],

k,c,d] - sum[t[j,k,b,c] * v[k,a,i,c], k,c] - sum[t[i,c] * t[k,b] * v[k,a,j,c], k,c] - sum[t[i,k,c,b] * v[k,a,j,c], k,c] - sum[t[i,c] * t[j,d] * t[k,a] * v[k,b,c,d], k,c,d] - sum[t[k,d] * t[i,j,a,c]

* v[k,b,c,d], k,c,d] - sum[t[k,a] * t[i,j,c,d] * v[k,b,c,d], k,c,d] + 2 * sum[t[j,d] * t[i,k,a,c] * v[k,b,c,d], k,c,d] - sum[t[j,d] * t[i,k,c,a] * v[k,b,c,d], k,c,d] - sum[t[i,c] * t[j,k,d,a]

* v[k,b,c,d], k,c,d] - sum[t[i,c] * t[k,a] * v[k,b,c,j], k,c] + 2 * sum[t[i,k,a,c] * v[k,b,c,j], k,c] - sum[t[i,k,c,a] * v[k,b,c,j], k,c] + 2 * sum[t[k,d] * t[i,j,a,c] * v[k,b,d,c], k,c,d] -

sum[t[j,d] * t[i,k,a,c] * v[k,b,d,c], k,c,d] - sum[t[j,c] * t[k,a] * v[k,b,i,c], k,c] - sum[t[j,k,c,a] * v[k,b,i,c], k,c] - sum[t[i,k,a,c] * v[k,b,j,c], k,c] + sum[t[i,c] * t[j,d] * t[k,a] * t[l,b] *

v[k,l,c,d], k,l,c,d] - 2 * sum[t[k,b] * t[l,d] * t[i,j,a,c] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[k,a] * t[l,d] * t[i,j,c,b] * v[k,l,c,d], k,l,c,d] + sum[t[k,a] * t[l,b] * t[i,j,c,d] * v[k,l,c,d], k,l,c,d]

- 2 * sum[t[j,c] * t[l,d] * t[i,k,a,b] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[j,d] * t[l,b] * t[i,k,a,c] * v[k,l,c,d], k,l,c,d] + sum[t[j,d] * t[l,b] * t[i,k,c,a] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[i,c] *

t[l,d] * t[j,k,b,a] * v[k,l,c,d], k,l,c,d] + sum[t[i,c] * t[l,a] * t[j,k,b,d] * v[k,l,c,d], k,l,c,d] + sum[t[i,c] * t[l,b] * t[j,k,d,a] * v[k,l,c,d], k,l,c,d] + sum[t[i,k,c,d] * t[j,l,b,a] * v[k,l,c,d],

k,l,c,d] + 4 * sum[t[i,k,a,c] * t[j,l,b,d] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[i,k,c,a] * t[j,l,b,d] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[i,k,a,b] * t[j,l,c,d] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[i,k,a,c]

* t[j,l,d,b] * v[k,l,c,d], k,l,c,d] + sum[t[i,k,c,a] * t[j,l,d,b] * v[k,l,c,d], k,l,c,d] + sum[t[i,c] * t[j,d] * t[k,l,a,b] * v[k,l,c,d], k,l,c,d] + sum[t[i,j,c,d] * t[k,l,a,b] * v[k,l,c,d], k,l,c,d] - 2

* sum[t[i,j,c,b] * t[k,l,a,d] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[i,j,a,c] * t[k,l,b,d] * v[k,l,c,d], k,l,c,d] + sum[t[j,c] * t[k,b] * t[l,a] * v[k,l,c,i], k,l,c] + sum[t[l,c] * t[j,k,b,a] * v[k,l,c,i],

k,l,c] - 2 * sum[t[l,a] * t[j,k,b,c] * v[k,l,c,i], k,l,c] + sum[t[l,a] * t[j,k,c,b] * v[k,l,c,i], k,l,c] - 2 * sum[t[k,c] * t[j,l,b,a] * v[k,l,c,i], k,l,c] + sum[t[k,a] * t[j,l,b,c] * v[k,l,c,i], k,l,c]

+ sum[t[k,b] * t[j,l,c,a] * v[k,l,c,i], k,l,c] + sum[t[j,c] * t[l,k,a,b] * v[k,l,c,i], k,l,c] + sum[t[i,c] * t[k,a] * t[l,b] * v[k,l,c,j], k,l,c] + sum[t[l,c] * t[i,k,a,b] * v[k,l,c,j], k,l,c] - 2 *

sum[t[l,b] * t[i,k,a,c] * v[k,l,c,j], k,l,c] + sum[t[l,b] * t[i,k,c,a] * v[k,l,c,j], k,l,c] + sum[t[i,c] * t[k,l,a,b] * v[k,l,c,j], k,l,c] + sum[t[j,c] * t[l,d] * t[i,k,a,b] * v[k,l,d,c], k,l,c,d] +

sum[t[j,d] * t[l,b] * t[i,k,a,c] * v[k,l,d,c], k,l,c,d] + sum[t[j,d] * t[l,a] * t[i,k,c,b] * v[k,l,d,c], k,l,c,d] - 2 * sum[t[i,k,c,d] * t[j,l,b,a] * v[k,l,d,c], k,l,c,d] - 2 * sum[t[i,k,a,c] * t[j,l,b,d]

* v[k,l,d,c], k,l,c,d] + sum[t[i,k,c,a] * t[j,l,b,d] * v[k,l,d,c], k,l,c,d] + sum[t[i,k,a,b] * t[j,l,c,d] * v[k,l,d,c], k,l,c,d] + sum[t[i,k,c,b] * t[j,l,d,a] * v[k,l,d,c], k,l,c,d] + sum[t[i,k,a,c] *

t[j,l,d,b] * v[k,l,d,c], k,l,c,d] + sum[t[k,a] * t[l,b] * v[k,l,i,j], k,l] + sum[t[k,l,a,b] * v[k,l,i,j], k,l] + sum[t[k,b] * t[l,d] * t[i,j,a,c] * v[l,k,c,d], k,l,c,d] + sum[t[k,a] * t[l,d] * t[i,j,c,b]

* v[l,k,c,d], k,l,c,d] + sum[t[i,c] * t[l,d] * t[j,k,b,a] * v[l,k,c,d], k,l,c,d] - 2 * sum[t[i,c] * t[l,a] * t[j,k,b,d] * v[l,k,c,d], k,l,c,d] + sum[t[i,c] * t[l,a] * t[j,k,d,b] * v[l,k,c,d], k,l,c,d] +

sum[t[i,j,c,b] * t[k,l,a,d] * v[l,k,c,d], k,l,c,d] + sum[t[i,j,a,c] * t[k,l,b,d] * v[l,k,c,d], k,l,c,d] - 2 * sum[t[l,c] * t[i,k,a,b] * v[l,k,c,j], k,l,c] + sum[t[l,b] * t[i,k,a,c] * v[l,k,c,j], k,l,c] +

sum[t[l,a] * t[i,k,c,b] * v[l,k,c,j], k,l,c] + v[a,b,i,j]

Figure 5. A contraction expression from quantum chemistry.

details of the operation minimization algorithm see [16, 17].

5. Memory minimization and space-time
trade-offs

As discussed in Section 2, the operation minimization
procedure results in the creation of intermediate temporary
arrays. For typical computations in computational chem-
istry, the space required for storing these temporary arrays
can be several tera bytes, which makes the computation im-
practical. As shown in in Fig. 1(c), the problem with mem-
ory requirements of large intermediate arrays can be miti-
gated through loop fusion. Loop fusion merges loop nests
with common outer loops into larger imperfectly nested
loops. When one loop nest produces an intermediate array
that is consumed by another loop nest, fusing the two loop
nests allows the dimension corresponding to the fused loop
to be eliminated in the array. This results in a smaller in-
termediate array and thus lowers the memory requirement.
The use of loop fusion can be seen to result in significant
potential reduction to the total memory requirement. For a
computation comprising of a number of nested loops, there
will generally be a number of fusion choices, that are not
all mutually compatible. This is because different fusion
choices could require different loops to be made the outer-
most. A data structure that we call a fusion graph can be
used to facilitate enumeration of all possible compatible fu-
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Figure 6. Fusion graph for unfused operation-
minimal form of loop in Fig. 2

sion configurations for a given computation tree.
Fig. 6 shows the fusion graph for the unfused form of

the computation from Fig. 2. Corresponding to each node
in a computation tree, the fusion graph has a set of vertices
corresponding to the loop indices of the node of the com-
putation tree. In Fig. 6, we do not show the operator tree
corresponding to the computation, but directly illustrate the
fusion graph. The potential for fusion of a common loop
among a producer-consumer pair of loop nests is indicated
in the fusion graph through a dashed potential fusion edge
connecting the corresponding vertices. Leaf nodes in the



fusion graph correspond to input arrays or primitive func-
tion evaluations and do not represent a loop nest. The edges
from the leaves to their parents are shown as dotted edges
and do not affect the fusion possibilities. If a pair of loop
nests is fused using one or more common loops, it is cap-
tured in the fusion graph by changing the dashed potential-
fusion edges to continuous fusion edges. If more than two
loop nests are fused together, a chain of fusion edges results,
called a fusion chain. The scope of a fusion chain is the set
of nodes it spans. The fusion graph allows us to character-
ize the condition for feasibility of a particular combination
of fusions: the scope of any two fusion chains in a fusion
graph must either be disjoint or a subset/superset of each
other. Scopes of fusion chains do not partially overlap be-
cause loops do not (i.e., loops must be either separate or
nested).

The fusion graph in Fig. 6 can be used to determine
the fusion possibilities. On the left side of the graph, the
edges corresponding to 	�� �� �� �
 can all be made fusion
edges, suggesting that complete fusion is possible for the
loop nests producing and consuming 
 , reducing it to a
scalar. Similarly, on the right side of the graph, the edges
corresponding to 	�� �� �� �
 can also be made fusion edges,
reducing � to a scalar. Further, by creating fusion edges for
indices 	�� �
, the producer loop for �� can be fully fused
with the � loop that consumes it. However, now the pro-
ducer loop for �� cannot be fused since the addition of any
fusion edge (say for index �) will result in partially over-
lapping fusion chains for � and 	�� �
. The fully fused ver-
sion from Fig. 3 can be represented graphically as shown in
Fig. 7(a). Additional vertices have been added for indices
	�� �
 and 	�� �
, respectively, at the nodes corresponding
to the producer loops for �� and ��. Now, complete fu-
sion chains can be created without any partial overlap in the
scopes of the fusion chains. From the figure, it can be seen
that in fact the redundant computation need only be added
to one of �� or �� to achieve complete fusion. For exam-
ple, removing the additional vertices for 	�� �
 at �� does
not violate the non-partial-overlap condition for fusion.

The fusion graph was used to develop an algorithm
[15, 13] to determine the combination of fusions that min-
imizes the total storage required for all the temporary in-
termediate arrays. A bottom-up dynamic programming ap-
proach was used that maintains a set of pareto-optimal fu-
sion configurations at each node, merging solutions from
children nodes to generate the optimal configurations at a
parent. The two metrics used are the total memory required
under the subtree rooted at the node, and the constraints im-
posed by a configuration on fusion further up the tree. A
configuration is inferior to another if it is more or equally
constraining with respect to further fusions than the other,
and uses no less memory. At the root of the tree, the config-
uration with the lowest memory requirement is chosen.

Although the complexity of the algorithm is exponential

in the number of index variables and the number of solu-
tions could in theory grow exponentially with the size of
the expression tree, the number of index variables in practi-
cal applications is small enough and there is indication that
the pruning is effective in keeping the size of the solution
set at each node small.

If after memory minimization the storage requirements
still exceed the disk capacity, we need to recompute some
(parts of) temporary arrays in order to further reduce the
space requirements. The space-time trade-off algorithm we
have developed [4] employs a combination of fusion and
tiling to achieve a good balance between recomputation and
memory usage. The first step of the space-time trade-off
algorithm uses a dynamic programming approach similar
to the memory minimization algorithm that maintains a set
of pareto-optimal fusion/recomputation configurations, in
which the recomputation cost is used as a third metric. So-
lutions exceeding the memory limit are pruned out. The
result of the search is a set of loop structures with differ-
ent combinations of space requirements and recomputation
cost.

In the second step of the algorithm, recomputation in-
dices are split into tiling and intra-tile loop pairs. By mak-
ing intra-tile loops the inner-most loops, any recomputation
only needs to be performed once per iteration of the tiling
loop in exchange for increasing the storage requirements for
temporaries in which the dimension corresponding to the
tiled loop had been eliminated. For each solution from the
first step of the algorithm, we then search for tile sizes that
minimize the recomputation cost, and take the solution that
results in the lowest recomputation cost.

6. Data locality optimization

Once a solution is found that fits onto disk, we op-
timize the data locality to reduce memory and disk ac-
cess times. We developed algorithms [2, 3] that, given a
memory-reduced (fused) version of the code, find the ap-
propriate blocking of the loops in order to maximize data
reuse. These algorithms can be applied at different levels
of the memory hierarchy, for example, to minimize data
transfer between main memory and disk (disk access mini-
mization), or to minimize data transfer between main mem-
ory and the cache (cache optimization). In this section, we
briefly describe the main points of our algorithm [3], focus-
ing mostly on the cache management problem. For the disk
access minimization problem, the same approach is used,
replacing the cache size by the physical memory size.

We introduce a memory access cost model (Cost), an es-
timate on the number of cache misses, as a function of tile
sizes and loop bounds. In a bottom-up traversal of the ab-
stract syntax tree, we count for each loop the number (Ac-
cesses) of distinct array elements accessed in its scope. If
this number is smaller than the number of elements that fit
into the cache, then Cost = Accesses. Otherwise, it means



T
c f i ja e i j

T T1 T2

c e b k
f1

a f b k
f2

X  +ij
b k

Y  +bk

faec
E  +ceaf

T1 T2T
aet t jiea jifcf t

T
ct

ect t
f1

kbc e
f2

kbfafat t

X  +ij
kb

Y  +bk

faecfaect t t t

E  +ceaf

(a) Fully fused computation from Fig. 3. (b) Partially fused computation from Fig. 4.

Figure 7. Fusion graphs showing redundant compution and tiling.

that the elements in the cache are not reused from one loop
iteration to the next, and the cost is obtained by multiplying
the loop range by the cost of its inner loop(s).

Using this cost model, we can compute the total memory
access cost for given tile sizes. The procedure is repeated
for different sets of tile sizes, and new costs are computed.
In the end the lowest possible cost is chosen, thus deter-
mining the optimal tile sizes. We define our tile size search
space in the following way: if �� is a loop range, we use
a tile size starting from �� � � (no tiling), and succesively
increasing �� by doubling it until it reaches ��. This ap-
proach ensures a slow (logarithmic) growth of the search
space with increasing array dimension for large� �. If�� is
small enough, an exhaustive search is performed instead.

7. Data partitioning and communication mini-
mization

Given a sequence of formulae, we need to find an ef-
fective partitioning of arrays and operations among the pro-
cessors and a choice of loop fusions in order to minimize
inter-processor communication, while staying within the
available memory in implementing the computation on a
message-passing parallel computer.

Since primitive tensor contractions are essentially gen-
eralized multi-dimensional matrix multiplications, we use
a generalized form of the memory efficient Cannon algo-
rithm [12]. A logical view of the " processors as a two-
dimensional

�
" ��

" grid is used, and each array is fully
distributed along the two processor dimensions. We use
a pair of indices to denote the partitioning or distribution
of the elements of a data array on a two-dimensional pro-
cessor array. The �-th position in a pair #, denoted #���,
where � can be either 1 or 2, corresponds to the �-th pro-
cessor dimension. Each position is an index variable dis-
tributed along that processor dimension. As an example,
suppose 16 processors form a two-dimensional � � � log-
ical array. For the array !	�� �� �� �
 in Fig. 1(a), the pair
# � ��� �� specifies that the first (�) and the third (� )
dimensions of ! are distributed along the first and sec-
ond processor dimensions respectively, and that the sec-

ond (�) and fourth (�) dimensions of ! are not distributed.
Thus, a processor whose id is "����� , with $� and $� be-
tween 1 and 4, will be assigned a portion of ! specified
by !	myrange	$�� �
� �
� � 
 ���myrange	$�� ��� �
� � 

��
, where myrange	$��� �
 is the range 	$��
��%���
to $ ��%�.

A tensor contraction formula can be expressed as a gen-
eralized matrix multiplication C(I,J) += A(I,K) * B(K,J),
where I, J, and K represent index collections, or index sets.
This observation follows from a special property of tensor
contractions: all the indices appearing on the left-hand side
must appear on the right-hand side only once (index sets
I and J, for A and B, respectively), and all summation in-
dices must appear on both right-hand side arrays (index set
K). For example, the tensor contraction ��	�� �� �� �
 �


��� !	�� �� �� �
 � &	�� �� �� �
 is characterized by the in-
dex sets I = 	�� �
, J = 	�� �
, and K = 	�� �
.

We generalize Cannon’s algorithm for multi-
dimensional arrays as follows: a triplet 	�� �� �
 formed
by one index from each index set I, J, and K defines a
distribution ��� �� for the result array  , and distributions
��� �� and ��� �� for the input arrays 	 and !, respectively.
In addition, one of the 3 indices 	�� �� �
 is chosen as the
“rotation index,” along which the processor communica-
tion takes place. For example, in the traditional Cannon
algorithm for matrix multiplication, the summation index
� plays that role; blocks of the input arrays 	 and ! are
rotated among processors, and each processor holds a
different block of 	 and ! and the same block of  after
each rotation step. At every step, processors multiply their
local blocks of 	 and !, and add the result to the block of
 .

Due to the symmetry of the problem, any of the 3 indices
	�� �� �
 can be chosen as the rotation index, so it is always
possible to keep one of the arrays in a fixed distribution and
communicate (“rotate”) the other two arrays. Therefore, the
number of distinct communication patterns within the gen-
eralized Cannon’s algorithm framework is given by �� NI
NJ NK, where NI is defined as the number of indices in
the index set I. The communication costs of the tensor con-



traction depend on the distribution choice 	�� �� �
 and the
choice of rotation index.

In addition to the communication of array blocks dur-
ing the rotation phase of the Cannon algorithm, ar-
ray re-distribution may be necessary between the Can-
non steps. For instance, suppose the arrays !	�� �� �� �

and &	�� �� �� �
 have initial distributions ��� �� and ��� ��
respectively. If we want �� to have the distribution
��� �� when evaluating ��	�� �� �� �
 �



���!	�� �� �� �
�

&	�� �� �� �
, ! would have, for example, to be re-
distributed from ��� �� to ��� �� for the generalized Cannon
algorithm to be possible. But since the initial distribution
��� �� of&	�� �� �� �
 is the same as the distribution required
to perform the Cannon rotations, no re-distribution is nec-
essary for array &.

The partitioning of data arrays among the processors and
the fusions of loops both affect the total inter-processor
communication cost. Fusion generally results in an increase
of communication cost, but can significantly reduce the per-
processor memory requirement. We use a dynamic pro-
gramming algorithm to search among all combinations of
loop fusions and array distributions to find the one with
minimal total communication cost, that also fits within the
available memory. We omit details here and refer the reader
to [5, 6].

8. Related work and discussion

The approach undertaken in this project bears similari-
ties to some projects in other domains, such as the SPIRAL
project which is aimed at the design of a system to gen-
erate efficient libraries for digital signal processing algo-
rithms [23, 10, 26]. SPIRAL generates efficient implemen-
tations of algorithms expressed in a domain-specific lan-
guage called SPL by a systematic search through the space
of possible implementations.

Other efforts in automatically generating efficient imple-
mentations of programs include FFTW [8], the telescop-
ing languages project [11], ATLAS [25] for deriving effi-
cient implementation of BLAS routines, the PHIPAC [1]
project, and the TUNE project [24]. In addition, motivated
by the difficulty of detecting and optimizing matrix oper-
ations hidden in array subscript expressions within loop
nests, several projects have worked on efficient code gen-
eration from high-level languages such as MATLAB and
Maple [7, 20, 21, 22].

While our effort shares some common goals with sev-
eral of the projects mentioned above, there are also signif-
icant differences. Some of the optimizations we consider,
such as the algebraic optimizations, memory minimization,
and space-time trade-offs, do not appear to have been pre-
viously explored, to the best of our knowledge. We also
take advantage of certain domain-specific properties of the
computations; for example, since all expressions considered

in this framework are tensor contractions, the loops of the
resulting code are fully permutable, and there are no depen-
dencies preventing fusion. This observation is crucial for
the optimization algorithms of several components (mem-
ory minimization, space-time transformation, data locality).
Also, some of the multi-dimensional arrays involved in the
computation have certain domain-specific symmetry prop-
erties that can be exploited in order to lower the number of
arithmetic operations, and thus total execution time.

While optimization of performance is a significant goal,
more important in our context is the potential for dra-
matically reducing the developmental effort required of a
quantum chemist to develop a new ab initio computational
model. Currently, the manual development and testing of a
reasonably efficient parallel code for a computational model
such as the coupled cluster model typically takes several
weeks to many months for a computational chemist. We
aim to reduce the time to prototype a new model to under a
day, through use of the synthesis system being developed.
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