
Efficient Synthesis of Out-of-Core Algorithms
Using a Nonlinear Optimization Solver�

Sandhya Krishnan� Sriram Krishnamoorthy�

Gerald Baumgartner� Chi-Chung Lam�

J. Ramanujam� P. Sadayappan�

Venkatesh Choppella�

�Department of Computer and Information Science
The Ohio State University, Columbus, OH 43210, USA.

�krishnas,krishnsr,gb,clam,saday�@cis.ohio-state.edu

�Department of Electrical and Computer Engineering
Louisiana State University, Baton Rouge, LA 70803, USA.

jxr@ece.lsu.edu

�Indian Institute of Information Technology and Management, Kerala
Technopark, Thiruvananthapuram, Kerala 695 581, INDIA.

choppell@iiitmk.ac.in

Abstract

We address the problem of efficient out-of-core code gen-
eration for a special class of imperfectly nested loops en-
coding tensor contractions. These loops operate on arrays
too large to fit in physical memory. The problem involves
determining optimal tiling and placement of disk I/O state-
ments. This entails a search in an explosively large param-
eter space. We formulate the problem as a non-linear op-
timization problem and use a discrete constraint solver to
generate optimized out-of-core code. Measurements on se-
quential and parallel versions of the generated code demon-
strate the effectiveness of the proposed approach.

1 Introduction

Many scientific and engineering applications need to op-
erate on data sets that are too large to fit in the physical
memory of the machine. The application we consider is
the implementation of electronic structure calculations in
quantum chemistry [41, 18]. These calculations employ

�Supported in part by the National Science Foundation through the In-
formation Technology Research program (CHE-0121676)

multi-dimensional tensors involved in contractions (gener-
alized matrix multiplications) that are often much larger
than available physical memory. In such situations, it is nec-
essary to develop so-called out-of-core algorithms that ex-
plicitly orchestrate the movement of subsets of data between
main memory and secondary disk storage. These algo-
rithms ensure that data is operated in chunks small enough
to fit within the system’s physical memory but large enough
to minimize the cost of moving data between disk and main
memory.

The problem addressed in this paper is the following: We
are given an imperfectly nested loop structure containing a
collection of tensor contraction computations expressed in
“abstract” form, that is, without concern for whether the
arrays can fit within available physical memory. The prob-
lem consists of generating a “concrete” form of the code by
suitably tiling the loops and inserting the necessary disk I/O
statements so as to minimize the cost of disk I/O. In the case
of parallel code generation, it also involves distributing the
workload among processors and inserting the requisite com-
munication calls. The search space of possible placements
of the disk I/O statements and possible combinations of tile
sizes is explosively large. We formulate the problem as a
non-linear optimization problem and use a general-purpose
discrete constraint solver to generate optimized out-of-core

1



code.
The paper is organized as follows: In Sec. 2, we explain

the context in which the data locality optimization is being
performed. In Sec. 3, we review related work in the area. In
Sec. 4, we describe the Discrete Constrained Search (DCS)
solver [43] and outline the steps used to convert the abstract
code specification into concrete code. Our experimental re-
sults in Sec. 5 demonstrate that the DCS-based approach to
out-of-core code generation is orders of magnitude faster
that our previous approach [10, 38]. This enables us to deal
with more complex higher order coupled cluster methods,
for which our previous approach becomes impractical.

2 The Computational Context

The optimization presented in this paper has been imple-
mented as part of the Tensor Contraction Engine (TCE) [13,
10], a domain-specific compiler for ab initio quantum
chemistry calculations. The TCE takes as input a high-level
specification of a computation expressed as a set of tensor
contraction expressions and transforms it into efficient par-
allel code. Several compile-time optimizations are incorpo-
rated into the TCE: algebraic transformations to minimize
operation counts [6, 7], loop fusion to reduce memory re-
quirements [3, 5, 4], space-time trade-off optimization [8],
communication minimization [11], and data locality opti-
mization [10, 9] of memory-to-cache traffic.

A tensor contraction expression is comprised of a col-
lection of multi-dimensional summations of the product of
several input arrays. As an example, consider the following
contraction, used often in quantum chemistry calculations
to transform a set of two-electron integrals from an atomic
orbital (AO) basis to a molecular orbital (MO) basis:

���� �� �� �� �
�

�������
����� �������� ���

���	� ��� ���
� �����
� 	� �� ��

This contraction is referred to as a four-index transform.
Here, ���� �� �� �� is a four-dimensional input array initially
stored on disk, and ���� �� 	� 
� is the transformed output
array to be placed on disk at the end of the computation. The
arrays �� through �� are called transformation matrices.
In practice, these four arrays are identical; we identify them
by different names only in order to be able to distinguish
them in the text.

The indices �, �, �, and � have the same range � , denot-
ing the total number of orbitals, which is equal to 
 � � .

 denotes the number of occupied orbitals and � denotes
the number of unoccupied (virtual) orbitals. Likewise, the
index ranges for �, �, 	, and 
 are the same, and equal to � .
Typical values for 
 range from 10 to 300; the number of
virtual orbitals � is usually between 50 and 1000.

The calculation of � is done in four steps to reduce the
number of floating point operations from 
�� ���� in the

initial formula (8 nested loops, for �, �, �, �, �, �, 	, and 
)
to 
�� ���:

���� �� �� �� ��
�
����� ���

��
�
����� ���

��
�
���	� ��

�

��
�
���
� �����
� 	� �� ��

���

This operation-minimization transformation results in the
creation of three intermediate arrays:

����� �� �� �� �
�
�

����� ������� �� �� ��

����� �� �� �� �
�
�

����� ��� ����� �� �� ��

����� �� 	� �� �
�
�

����� 	�� ����� �� �� ��

Assuming that the available memory on the machine run-
ning this calculation is less than � � (which for � � �		
and double precision arrays is about ���), none of �, ��,
��, ��, and � can entirely fit in memory. Therefore, the
intermediates ��, ��, and �� need to be written to disk
once they are produced, and read from disk before they are
used in the next step. Since none of these arrays can be fully
stored in memory, it may not be possible to perform all mul-
tiplication operations by reading each element of the input
arrays from disk only once. This could result in the amount
of disk I/O volume being much larger than the total volume
of the data on disk.

For illustration purposes, we focus on the following con-
traction (a two-index transform):

����
� �
�

���
����� ��� ���
� ������� ��

The operation minimal form of the two-index transform
and the corresponding intermediate array are as follows:

����
� �
�

�
����� ��� �

�
�
���
� ������� ���

� ��� �� �
�
�

����� ������� ��

Fig. 1 shows an abstract form of the computation of the
array � and illustrates how memory requirements for the
computation of � may be reduced using loop fusion. The
computation is abstract because it can be executed only if
the sizes of the arrays are small enough to fit in the avail-
able physical memory. The transformation of abstract forms
into concrete forms that can be executed is addressed later
in Sec. 4. Concrete forms have explicit disk I/O state-
ments between disk-resident arrays and their in-memory
counterparts. Fig. 1(a) shows the abstract form of the com-
putation before loop fusion. The computation consists of
two loop nests: a first loop that produces the intermediate

2



double T(V,N)

T(*,*) = 0
B(*,*) = 0
FOR i = 1, N

FOR n = 1, V
FOR j = 1, N

T(n,i) += C2(n,j) * A(i,j)
END FOR j,n,i

FOR i = 1, N
FOR n = 1, V

FOR m = 1, V
B(m,n) += C1(m,i) * T(n,i)

END FOR m,n,i

(a) Unfused code

double T(V,N)

T(*,*) = 0
B(*,*) = 0
FOR i, n, j

T(n,i) += C2(n,j) * A(i,j)
END FOR j,n,i

FOR i, n, m
B(m,n) += C1(m,i) * T(n,i)

END FOR m,n,i

(b) Compact notation

double T

B(*,*) = 0
FOR i, n

T = 0
FOR j

T += C2(n,j) * A(i,j)
END FOR j

FOR m
B(m,n) += C1(m,i) * T

END FOR m
END FOR n,i

(c) Fused code

Figure 1. Example of the use of loop fusion to reduce memory requirements. Loops � and � are fused
to reduce � to a scalar.

� �� 
 �� � 
 ��, and a second loop that uses � to produce
the result ��� 
 �� � 
 � �.

In Fig. 1(b), each loop nest is abbreviated into a single
loop with a sequence of indices. Fig. 1(c) illustrates the
result of loop fusion. Note that all loops in each of the two
loop nests in Fig. 1(a) are fully permutable and there are no
fusion-preventing dependences between the loops. Hence,
the common loops � and �, shown bold-faced, can be fused.
After loop fusion, the storage requirements for � can be
reduced because there is no longer a need for an explicit
dimension of � corresponding to any loop indices that are
fused between the producer of � and the consumer of �
— storage elements can be reused over sequential iterations
of fused loops. In this example, � can be contracted to a
scalar as shown in Fig. 1(c). Although the total number
of arithmetic operations remains unchanged, the significant
reduction in size of the intermediate array � implies that it
may be completely stored in memory, without the need for
any disk I/O for it. In contrast, if � � � is larger than the
available memory, the unfused version will require that �
be written out to disk after it is produced in the first loop,
and then read in from disk for the second loop.

3 Related Work

The issue arising in the synthesis context described ear-
lier has been previously addressed by us, focusing primarily
on minimizing memory-to-cache data movement [9, 10]. In
[9], an integrated approach to fusion and tiling transforma-
tions was developed for a restricted class of loops arising
in the context of our program synthesis system. The algo-
rithm developed in [10] removed the restrictions assumed in
[9]. A tile size search procedure was developed to estimate
the total capacity miss cost for each of a large number of
combinations of tile sizes for the various loops of an imper-
fectly nested loop set. After finding the best combination of

tile sizes, adjustments were made to address spatial locality
considerations done — by adjusting the tile sizes for any
loop indexing the fastest varying dimension of any array to
be larger than the cache line size.

This approach was extended to the disk-memory hier-
archy in [38], where a greedy approach to disk read/write
placement was taken. For each set of tile sizes, the algo-
rithm places read/write statements immediately inside those
loops at which the memory limit is exceeded. In [39], a set
of candidate fusion structures with disk I/O placements was
taken as input and the tile size search space was explored.
The search space was divided into feasible and infeasible
solution spaces and their boundary was shown to contain
the optimal solution. An algorithm was devloped to locate
the boundary efficiently and a steepest ascent hill-climbing
used to determine an efficient solution for the tile sizes.

There has been some work in the area of software tech-
niques for optimizing disk I/O. These include parallel file
systems, compile time [33, 32, 31, 26, 25, 24, 42, 27] and
runtime libraries and optimizations [34, 47]. Bordawekar et
al. [33, 31] discuss several compiler methods for optimizing
out-of-core programs in High Performance Fortran. Bor-
dawekar et al. [32] develop a scheduling strategy to elimi-
nate additional I/O arising from communication among pro-
cessors. Solutions for choreographing disk I/O with compu-
tation are presented by Paleczny et al. [27]. They organize
computations into groups that operate efficiently on data
accessed in chunks. Compiler-directed pre-fetching is dis-
cussed by Mowry et al. [42]. This is orthogonal to compiler
transformations discussed in this paper. ViC* (Virtual C*)
[40] is a preprocessor that transforms out-of-core C* pro-
grams into in-core programs with appropriate calls to the
ViC* I/O library. Kandemir et al. [26, 25, 24] develop file
layout and loop transformations for reducing I/O. None of
these techniques address model-driven automatic tile size
selection for optimizing I/O and all of them address only
perfectly nested loops.

3



Considerable research on loop transformations for lo-
cality in nested loops has been reported in the literature
[35, 45, 46, 21, 22]. Nevertheless, a performance-model
driven approach to the integrated use of loop fusion and
loop tiling for enhancing locality in imperfectly nested
loops has not been addressed in these works. Loop tiling
for enhancing data locality has been studied extensively
[17, 35, 16, 15, 14, 22, 23, 48], and analytical models of the
impact of tiling on locality in perfectly nested loops have
been developed [36, 28, 30]. Ahmed et. al. [29] have de-
veloped a framework that embeds an arbitrary collection of
loops into an equivalent perfectly nested loop that can be
tiled; this allows a cleaner treatment of imperfectly nested
loops. Lim et al. [2] developed a framework based on affine
partitioning and blocking to reduce synchronization and im-
prove data locality. Specific issues of locality enhancement,
I/O optimization and automatic tile size selection have not
been addressed in the works that can handle imperfectly
nested loops [29, 2, 48].

4 Proposed Approach

This section gives a detailed explanation of the approach
proposed for out-of-core code generation. We use the Dis-
crete Constrained Search (DCS) [43, 12] package, a non-
linear programming solver, developed at the University of
Illinois at Urbana Champaign. The DCS package takes as
input a set of unknown variables to be determined, the ob-
jective function to be minimized, and a set of constraints to
be satisfied. DCS uses AMPL, A Modeling Language for
Mathematical Programming [1], as the problem input for-
mat.

The out-of-core code generation process uses loop tiling
and placement of disk I/O statements to convert an abstract
code to concrete code. The search space of disk I/O place-
ments and tile sizes is fully explored here. The search is for-
mulated as a non-linear constrained minimization problem
where the objective function is the disk I/O cost. The so-
lution to be determined is constrained by the memory limit
and minimum I/O block size for efficient disk I/O. The non-
linear problem that is formulated is input to the DCS sys-
tem, which determines the optimal combination of place-
ment of disk I/O statements and tile sizes.

We continue with the two-index transform example in-
troduced in Sec. 2. Fig. 2(a) shows an abstract code for the
two-index transform. We assume that the arrays involved
are too large to fit in the physical memory of the machine.
The arrays involved in the loop structure fall into the fol-
lowing three categories: input arrays that initially reside
on disk (�, �� and ��), intermediate arrays produced and
consumed within the computation and not required on com-
pletion (� ), and output arrays that must be finally written to
disk (�). Fig. 2(b) shows the parse tree corresponding to

the abstract code in Fig. 2(a).
The input to the out-of-core code generation algorithm

consists of the abstract code, ranges of the loops and mem-
ory limit of the machine. The algorithm comprises of the
following three steps:

1. Loop Tiling: Each loop is split into a tiling loop and
an intra tile loop, and the intra tile loops are propagated
down to the leaves. For example, as shown in Fig. 3,
loop � is split into tiling loop �� and intra tile loop �� .
Fig. 3(b) shows the tiled parse tree for the tiled abstract
code in Fig. 3(a).

2. Candidate Placements: For each array, all the possi-
ble placements of disk read/write statements are enu-
merated.

3. DCS Input Construction: Given the enumeration
from step �, non-linear equations for the objective
function and constraints are constructed and provided
as input to the DCS solver. The DCS solver outputs
the disk read/write placement for each array and the
tile sizes that minimize the disk I/O cost and satisfy
the memory limit constraint.

4.1 Candidate Placements

Given a tiled imperfectly nested loop structure (Fig. 3),
we consider various possible placements of reads for input
arrays, reads and writes for intermediates, and writes (and
reads, if required) for output arrays. In enumerating the can-
didate placements, there are some constraints that must be
satisfied.

1. Input Array Constraints: The read statement for an
input array may only be placed to be executed before
the statement where it is consumed. For example, in
Fig. 3(a), the read for input array � can be placed any-
where before line �.

2. Output Array Constraints: The write for an output
array may only be placed after the statement where it
is produced. For example, in Fig. 3(a), the write for
output array � can be placed anywhere after line �.

3. Intermediate Array Constraints: For intermediate
arrays, we have two cases to consider: the array is ei-
ther kept in memory or written to disk. If the array is
kept in memory, there will be no disk I/O statements
inserted for the array. On the other hand, if it is writ-
ten to disk, there is a constraint imposed on its disk
read/write placement. For example, in Fig. 3(a), inter-
mediate � is produced in statement � and consumed
in statement �. If we consider these statements in the
parse tree in Fig. 3(b), the lowest common ancestor for

4



FOR m, n
B[m,n] = 0

FOR i, n
T = 0
FOR j

T += A[i,j] * C2[n,j]
FOR m

B[m,n] += T * C1[m,i]

(a) Abstract code for 2-index transform example

(b) Parse tree for 2-index transform example

Figure 2. Example of abstract code and corresponding parse tree for 2-index transform.

1. FOR mT, nT, mI, nI
2. B[mT+mI,nT+nI] = 0
3. FOR iT, nT
4. FOR iI, nI
5. T[iI,nI] = 0
6. FOR jT, iI, nI, jI
7. T[iI,nI] += A[iT+iI,jT+jI] * C2[nT+nI,jT+jI]
8. FOR mT, iI, nI, mI
9. B[mT+mI,nT+nI] += T[iI,nI] * C1[mT+mI,iT+iI]

(a) Abstract tiled code for 2-index transform example

(b) Tiled parse tree for 2-index transform example

Figure 3. Example of abstract tiled code and corresponding parse tree for 2-index transform.

Input Arrays: (Read Placements)
A: iI, nT
C2: iI, jT
C1: iI, nT

Output Arrays: (Write Placements)
B:
Write Placement: iI, mT
Read Required : Yes, Yes

Intermediates: (Write and Read Placements)
T: In Memory

(a) Candidate I/O placements

FOR mT, nT
FOR mI, nI

B[mI,nI] = 0
Write BDisk

FOR jT, nT
FOR jI, nI

T[jI,nI] = 0
FOR iT

C2[1..Tn,1..Ti] = Read C2Disk
A[1..Tj,1..Ti] = Read ADisk
FOR jI, nI, iI

T[jI,nI] += C2[nI,iI] * A[jI,iI]
FOR mT

B[1..Tm,1..Tn] = Read BDisk
C1[1..Tm,1..Tj] = Read C1Disk
FOR jI, nI, mI

B[mI,nI] += T[jI,nI] * C1[mI,jI]
Write BDisk

(b) Final concrete code for 2-index transform

Figure 4. Candidate I/O placements and final concrete code. �� � �� � �
			� �� � �� � �				,
memory limit = �GB, double precision arrays.

5



both the statements is loop �� . The write statement for
the production and read statement for the consumption
must be inside this �� loop.

The approach to enumerating the placements for input,
output and intermediate arrays is sketched below; details
may be found in [38].

1. Input Arrays: Each loop index surrounding the con-
sumption of an input array is considered as a candi-
date position for placing the read. At any candidate
position, if there exists a redundant loop immediately
surrounding it, then we ignore that position and move
further up. A redundant loop for a read statement is
one that does not index the array being read. We also
ignore those read placements that cause the in-memory
version of the input array to be a scalar or a vector. This
is because, the resulting concrete code will involve in-
memory matrix-matrix products using BLAS kernels,
and scalar and vector operands will result in poor per-
formance. Consider the abstract tiled code in Fig. 3.
All loops surrounding statement � are candidate posi-
tions for placing the read for array �. Loops � � and ��
are ignored so that the in-memory version of array �
is at least two-dimensional. Loop �� is not considered
because the surrounding loop �� is redundant for array
�. Another important check that needs to be made is
that the in-memory version of the array fits in memory.
For every candidate position, we compute the memory
cost of the corresponding local buffer assuming a tile
size of one. If the buffer does not fit in memory, we do
not move further up.

2. Output Arrays: The algorithm for enumerating write
placements for an output array is exactly the same as
that for input arrays, except that if any redundant loop
surrounds the write statement, we need to insert a cor-
responding read for the array before the production.
This is required as we will be re-accessing the disk ar-
ray for every iteration of the redundant loop. For exam-
ple, consider statement � in Fig. 3(a), where the output
array � is produced. If the write for array � is placed
just after loop �� , an extra read will be required as the
write will be surrounded by the redundant loop �� .

3. Intermediate Arrays: If an intermediate array is writ-
ten to disk, the algorithm for enumerating the disk
read/write statements is exactly the same as for in-
put/output arrays, except that the constraint specified
earlier for intermediate arrays must be satisfied.

Fig. 4(a) shows the candidate read and write placements
computed for each array in the code shown in Fig. 3(a).

4.2 DCS Input Construction

If all possible combinations of disk I/O placements,
shown in Fig. 4(a), are considered for all the arrays, a very
large number of cases will have to be evaluated. Our ap-
proach to avoid explicit evaluation for each combination of
I/O placements is to encode the placement into the formula-
tion of a nonlinear optimization problem that is input to the
DCS system, as explained below. DCS attempts to mini-
mize an objective function subject to equality and inequality
constraints. The input to DCS comprises of input parame-
ters, variables, objective function, and a set of constraints.

Parameters

The input parameters for our problem are the memory limit
of the machine and the ranges ��� �� � ��� of the loop indices
�� �� ���.

Variables

The variables in our case include tile sizes ��� �� � ��� for
loops �� �� ��� where each tile size variable has a lower bound
of � and an upper bound of the full loop range. In addition
to tile size variables, placement variables, ��� � � 	� �� �� ���,
are introduced for those arrays that have more that one can-
didate placement. These variables are used to determine the
I/O placement for an array. Each of these � variables is
constrained to take value of either 	 or �.

Objective Function

The objective function for our problem is the disk I/O cost.
The disk I/O cost for an I/O statement is the product of the
size of the array being read/written and the ranges of any
redundant loops surrounding the statement. Consider the
two possible read placements for input array � shown in
Fig. 4(a). For the first read placement above loop � � , the
disk I/O cost will be:

��	 � �������� Size	

where the total size of array � is multiplied by the range
of the redundant loop �� . The disk I/O cost for the second
read placement (above loop �� ), is ��	 � ����	. Since
there are two possible placements for �, ��������� � �
placement variable �� is introduced as follows, to express
the disk I/O cost:

��� ���	� � ���� ������	�

If �� � �, the first placement is selected, else if �� � 	,
the second one is selected. The placement encoding vari-
ables are constrained to have a value of 	 or �.

6



Constraints

The first constraint is the memory limit. A static memory
cost model is used, in which all the in-memory buffers are
allocated memory at compile time. The total memory cost
is the sum of the memory usage for all the individual in-
memory buffers. The memory cost for an in-memory buffer
is the product of the ranges of its indices. The memory cost
expression for array � can be constructed along the same
lines as the disk cost expression as follows. For the read
placement above loop �� , the in-memory buffer for input
array � will be ���� � �� �, which makes the memory cost
��	 � ����� . On the other hand, for the read placement
above loop �� , the in-memory buffer is ���� � ��, thus mak-
ing the memory cost ��	 � �� ��� . The memory limit
constraint using placement variable �� is:

��� ���	� � ���� ������	� � MemoryLimit

The placement variables are constrained to take values 	
or � as follows:

�� � ��� ��� � 	� � � 	� �� � � � �

We also introduce constraints on the minimum size of
the in-memory version of an array. The arrays are stored in
a blocked fashion on disk. The block sizes of the arrays are
equal to the size of their in-memory versions, determined by
the out-of-core code generation algorithm. A block is the
basic unit of I/O and is chosen to be large enough to make
the disk seek time negligible compared to the block transfer
time. In [37], the incremental improvement obtained in the
ratio of transfer time to seek time was observed to become
negligible and approach the performance of sequential I/O
beyond a block size, which depends on the system under
consideration. The in-memory version of the array, and
hence the block size, is constrained to be larger than this
block size. For the system whose configuration is shown in
Table 1, block size for reads must be at least �MB, while
that for writes must be at least �MB.

In this manner, we can construct disk cost, memory cost
and other constraint expressions for all arrays. Using these
expressions, we build the input to DCS using the AMPL
format [1]. DCS minimizes the objective function, that is,
the disk I/O cost expression, while satisfying the memory
limit, boundary, placement variable and buffer size con-
straints. DCS outputs values for the placement variables
and tile sizes, thus giving the parameters for the concrete
code.

The code generated for a multi-processor system uses
the Global Arrays (GA) and Disk Resident Arrays (DRA)
library [20, 19]. GA provides a shared-memory program-
ming model while encouraging locality of access. DRA ex-
tends the shared-memory model to the secondary storage.
GA/DRA provide an array abstraction in which the portion

of data to be accessed is specified as a section of the array.
In the generated code, the reads and writes from the disk
are performed by the read and write routines in DRA. The
in-memory computation is performed using kernel matrix
multiplication libraries in GA. The I/O operations and the
in-memory computations are collective operations.

5 Experimental Results

The performance of the generated concrete code was
measured on the Itanium 2 Cluster at The Ohio Supercom-
puter Center [44]. Each node in the cluster has the configu-
ration shown in Table 1. The generated code was compiled
with the Intel Itanium Fortran Compiler for Linux. The im-
perfectly nested loop structure shown in Fig. 5 was used for
the four-index transform example discussed in Sec. 2. The
loop structure was given as input to two out-of-core code
synthesis algorithms:

1. Uniform Sampling Approach, developed by extend-
ing the memory-cache algorithm from [10] to disk-
memory hierarchy in [38]. Here, a greedy approach
to disk I/O placement is used, where for each set of
tile sizes, the algorithm places read/write statements
immediately inside those loops at which the memory
limit is exceeded. The tile size search space is sampled
uniformly in a logarithmic fashion along each dimen-
sion. This sampled search space is then explored using
a brute force approach.

2. DCS-Based Approach, described in this paper.

The sizes of the tensors (double precision) used for the ex-
periment were: �� � �� � �� � �
 � ���	� ��	� and
�� � �� � �
 � �� � ���	� ��	�. The generated code
was run sequentially and in parallel using � and � proces-
sors. Although the total physical memory size of each ma-
chine used for the experiments is �GB, the codes were gen-
erated using a memory limit of �GB per node. This is be-
cause the operating system kernel, write buffers, and other
utilities occupy almost half of the physical memory on the
machine. If the in-memory versions of the disk resident ar-
rays in the generated code occupy more than half the mem-
ory, significant paging caused degradation of performance.

Table 2 shows the code generation times for the uniform
sampling approach and for the DCS approach for the ab-
stract code in Fig. 5. The DCS code generation process
is orders of magnitude faster than the uniform sampling ap-
proach (which takes two hours to generate the solution com-
pared to a couple of minutes for the DCS approach). For
more complex computations such as energy calculations
with higher order coupled cluster methods, the computa-
tional complexity of the uniform sampling approach makes
it impractical. The DCS-based approach took no more than

7



Processor OS Compiler Memory

Dual Itanium-2 (900 MHz) Linux 2.4.18 efc version 7.1 4GB

Table 1. Configuration of the system whose I/O characteristics were studied.

T1[*,*,*,*]=0
FOR a,p,q,r,s

T1[a,q,r,s]+=C4[p,a]*A[p,q,r,s]
B[*,*,*,*]=0
FOR a,b

T3[*,*]=0
FOR r,s

T2=0
FOR q
T2+=C3[q,b]*T1[a,q,r,s]

FOR c
T3[c,s]+=C2[r,c]*T2

FOR c,d,s
B[a,b,c,d]+=C1[s,d]*T3[c,s]

Figure 5. Abstract code for AO-to-MO transform

a few minutes of execution time even for the most complex
computations wo which we have applied it so far.

Table 3 shows the measured and predicted disk access
times for the generated sequential concrete code. The mea-
sured times match quite well with the predicted times. The
table presents results for the two approaches to out-of-core
code generation. The code generated by the DCS approach
has superior performance compared to the uniform sam-
pling approach.

Table 4 shows the measured disk I/O times for the par-
allel code generated for two and four processors. It can be
seen that the scaling of I/O time with four processors as
compared to two processors is non-linear. This is because,
as the number of processors is doubled, the total amount of
aggregate physical memory available is also doubled, thus
providing a decrease in the total amount of disk I/O, which
is further shared and performed concurrently from the mul-
tiple local disks of the processors.

6 Conclusion

We have described an approach to the synthesis of out-
of-core algorithms for a class of imperfectly nested loops.
The approach was developed for the implementation in a
component of a program synthesis system targeted at the
quantum chemistry domain. The determination of optimal
placements of disk I/O statements and choice of tile sizes
requires search in a very large search space. By formulat-
ing it as a non-linear constrained optimization problem, and
use of a general-purpose constrained optimization solver,
dramatic reduction was achieved in the time taken to gener-
ate good solutions. Experimental results were provided that
showed a good match between the predicted and measured
performance for the synthesized code.

Acknowledgments

We would like to sincerely thank Prof. Benjamin Wah
and Yi Xin Chen of the University of Illinois for their sig-
nificant help with using the Discrete Constrained Search
(DCS) Solver. We wish to express our appreciation to the
reviewers of the paper for their suggestions. Special thanks
go to anonymous “Reviewer #1”, whose thorough critique
helped us rewrite significant portions of Section 4 and make
other changes throughout the paper in an attempt to improve
the presentation. We are grateful to the Ohio Supercom-
puter Center (OSC) for the use of their computing facilities.

References

[1] A Modeling Language for Mathematical Programming
(AMPL).

[2] A. W. Lim, S.-W. Liao, and M. S. Lam. Blocking and array
contraction across arbitrarily nested loops using ane parti-
tioning. In Proc. of the Eigth ACM SIGPLAN Symposium
on Principles and Practices of Parallel Programming, pages
103–112. ACM Press, 2001.

[3] C. Lam. Performance Optimization of a Class of Loops Im-
plementing Multi-Dimensional Integrals. PhD thesis, The
Ohio State University, Columbus, OH, August 1999.

[4] C. Lam, D. Cociorva, G. Baumgartner, and P. Sadayappan.
Memory-optimal evaluation of expression trees involving
large objects. In Proc. of Intl. Conf. on High Perf. Comp.,
1999.

[5] C. Lam, D. Cociorva, G. Baumgartner and P. Sadayap-
pan. Optimization of Memory Usage and Communication
Requirements for a Class of Loops Implementing Multi-
Dimensional Integrals. In Proc. of Twelfth LCPC Workshop,
1999.

[6] C. Lam, P. Sadayappan and R. Wenger. On Optimizing a
Class of Multi-Dimensional Loops with Reductions for Par-
allel Execution. Parallel Processing Letters, 7(2):157–168,
1997.

8



Memory Limit Uniform Sampling DCS
= 2GB Approach Approach

Ranges Ranges Code generation Code generation
��� �� �� 
� ��� �� 
� �� time (secs) time(secs)

140 120 7920 65
190 180 9000 118

Table 2. Code generation times for the two approaches to out-of-core code generation

Memory Limit Uniform Sampling DCS
= 2GB Approach Approach

Ranges Ranges Measured time Predicted time Measured time Predicted time
��� �� �� 
� ��� �� 
� �� (secs) (secs) (secs) (secs)

140 120 426 430 227 296
190 180 2461 2630 1545 1537

Table 3. Measured and predicted sequential disk I/O times for the two approaches

[7] C. Lam, P. Sadayappan and R. Wenger. Optimization of a
Class of Multi-Dimensional Integrals on Parallel Machines.
In Proc. of Eighth SIAM Conf. on Parallel Processing for
Scientific Computing, 1997.

[8] D. Cociorva, G. Baumgartner, C. Lam, P. Sadayappan, J.
Ramanujam, M. Nooijen, D. Bernholdt, and R. Harrison.
Space-Time Trade-Off Optimization for a Class of Elec-
tronic Structure Calculations. In Proc. of ACM SIGPLAN
2002 Conference on Programming Language Design and
Implementation (PLDI), pages 177–186, 2002.

[9] D. Cociorva, J. Wilkins, C. Lam, G. Baumgartner, P. Sa-
dayappan, and J. Ramanujam. Loop optimization for a class
of memory-constrained computations. In Proc. of the Fif-
teenth ACM International Conference on Supercomputing
(ICS’01), pages 500–509, 2001.

[10] D. Cociorva, J. Wilkins, G. Baumgartner, P. Sadayappan, J.
Ramanujam, M. Nooijen, D. E. Bernholdt, and R. Harrison.
Towards Automatic Synthesis of High-Performance Codes
for Electronic Structure Calculations: Data Locality Opti-
mization. In Proc. of the Intl. Conf. on High Performance
Computing, volume 2228, pages 237–248. Springer-Verlag,
2001.

[11] D. Cociorva, X. Gao, S. Krishnan, G. Baumgartner, C. Lam,
P. Sadayappan, J. Ramanujam. Global Communication Op-
timization for Tensor Contraction Expressions under Mem-
ory Constraints. In Proc. of Seventeenth International Par-
allel and Distributed Processing Symposium (IPDPS), 2003.

[12] Dr. Benjamin W. Wah and Yi Xin Chen. Web Interface for
Discrete Constrained Search Solver.

[13] G. Baumgartner and D.E. Bernholdt and D. Cociorva and
R. Harrison and S. Hirata and C. Lam and M. Nooijen and
R. Pitzer and J. Ramanujam and P. Sadayappan. A High-
Level Approach to Synthesis of High-Performance Codes
for Quantum Chemistry. In Proc. of Supercomputing 2002,
November 2002.

[14] G. Rivera and C.-W. Tseng. Eliminating Conflict Misses for
High Performance Architectures. In Proc. of Intl. Conf. on
Supercomputing, 1998.

[15] I. Kodukula, K. Pingali, R. Cox, and D. Maydan. An experi-
mental evaluation of tiling and shackling for memory hierar-
chy management. In Proc. of ACM International Conference
on Supercomputing (ICS 99), 1999.

[16] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-
level blocking. In Proc. of SIGPLAN Conf. Programming
Language Design and Implementation, 1997.

[17] J. M. Anderson and S. P. Amarasinghe and M. S. Lam. Data
and Computation Transformations for Multiprocessors. In
Proc. of the Fifth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Processing, July 1995.

[18] J. M. L. Martin. In P. v. R. Schleyer, P. R. Schreiner, N. L.
Allinger, T. Clark, J. Gasteiger, P. Kollman, H. F. Schaefer
III (Eds.). . Encyclopedia of Computational Chemistry,
1:115–128, 1998.

[19] J. Nieplocha and I. Foster. Disk Resident Arrays: An Array-
Oriented I/O Library for Out-Of-Core Computations. In
Proc. of the Sixth Symposium on the Frontiers of Massively
Parallel Computation, pages 196–204, 1996.

[20] J. Nieplocha, I. J. Harrison and R. J. Littlefield. Global Ar-
rays: A Nonuniform Memory Access Programming Model
for High-Performance Computers. The Journal of Super-
computing, 10:197–220, 1996.

[21] K. S. McKinley, S. Carr and C.-W. Tseng. Improving
Data Locality with Loop Transformations. ACM TOPLAS,
18(4):424–453, July 1996.

[22] M. E. Wolf and M. S. Lam. A Data Locality Algorithm. In
Proc. of ACM SIGPLAN PLDI, 1991.

[23] M. E. Wolf, D. E. Maydan, and D. J. Chen. Combining
loop transformations considering caches and scheduling. In
Proc. of the Twenty Ninth Annual International Symposium
on Microarchitecture, pages 274–286, 1996.

[24] M. Kandemir, A. Choudhary, and J. Ramanujam. An I/O
conscious tiling strategy for disk-resident data sets. The
Journal of Supercomputing, 21(3):257–284, 2002.

[25] M. Kandemir, A. Choudhary, J. Ramanujam, and M. Kan-
daswamy. A unified framework for optimizing locality,
parallelism, and communication in out-of-core computa-
tions. IEEE Transactions of Parallel and Distributed Sys-
tems, 11(7):648–668, July 2000.

[26] M. Kandemir, A. Choudhary, J. Ramanujam and R. Bor-
dawekar. Compilation techniques for out-of-core parallel
computations. Parallel Computing, 24(3-4):597–628, June
1998.

[27] M. Paleczny, K. Kennedy, and C. Koelbel. Compiler Sup-
port for Out-of-Core Arrays on Parallel Machines. Technical

9



Measured time (secs)
Number of processors Total Memory limit Uniform Sampling Approach DCS Approach

2 4GB 997 778
4 8GB 491.6 368.4

Table 4. Measured parallel disk I/O times, for the two approaches to out-of-core code generation.
�� � �� � �� � �
 � ��	� �� � �� � �
 � �� � ��	

Report 94509-S, Rice University, Houston, TX, December
1994.

[28] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache per-
formance and optimizations of blocked algorithms. In Proc.
of Fourth Intl. Conf. on Architectural Support for Program-
ming Languages and Operating Systems, 1991.

[29] N. Ahmed and N. Mateev and K. Pingali. Synthesiz-
ing transformations for locality enhancement of imperfectly
nested loops. In Proc. of ACM Intl. Conf. on Supercomput-
ing, 2000.

[30] N. Mitchell, K. Högstedt, L. Carter, and J. Ferrante. Quanti-
fying the multi-level nature of tiling interactions. Intl. Jour-
nal of Parallel Programming, 26(6):641–670, June 1998.

[31] R. Bordawekar. Techniques for Compiling I/O Intensive Par-
allel Programs. PhD thesis, Dept. of Electrical and Com-
puter Eng., Syracuse University, April 1996.

[32] R. Bordawekar, A. Choudhary, and J. Ramanujam. Auto-
matic Optimization of Communication in Out-of-Core Sten-
cil Codes. In Proc. of Tenth ACM International Conference
on Supercomputing, pages 366–373, 1996.

[33] R. Bordawekar, A. Choudhary, K. Kennedy, C. Koelbel, and
M. Paleczny. A Model and Compilation Strategy for Out-
of-Core Data-Parallel Programs. In Proc. of the Fifth ACM
Symposium on Principles and Practice of Parallel Program-
ming, 1995.

[34] R. Thakur, R. Bordawekar, A. Choudhary, R. Ponnusamy,
and T. Singh. PASSION Runtime Library for Parallel I/O.
In Proc. of Scalable Parallel Libraries Conference, pages
119–128, 1994.

[35] S. Coleman and K. S. McKinley. Tile Size Selection Using
Cache Organization and Data Layout. In Proc. of the SIG-
PLAN ’95 Conference on Programming Languages Design
and Implementation, 1995.

[36] S. Ghosh, M. Martonosi and S. Malik. Precise Miss Anal-
ysis for Program Transformations with Caches of Arbitrary
Associativity. In Proc. of the Eighth ACM Intl. Conf. on
Architectural Support for Programming Languages and Op-
erating Systems, 1998.

[37] S. Krishnamoorthy, G. Baumgartner, D. Cociorva, C. Lam
and P. Sadayappan. On Efficient Out-of-core Matrix Trans-
position. Technical Report OSU-CIRSC-9/03-T52, The
Ohio State University, Columbus, OH, September 2003.

[38] S. Krishnan. DataLocality Optimization for Synthesis of
Out-of-Core Programs. Master’s thesis, The Ohio State Uni-
versity, Columbus, OH, September 2003.

[39] S. Krishnan, S. Krishnamoorthy, G. Baumgartner, D. Co-
ciorva, C. Lam, P. Sadayappan, J. Ramanujam, D. E. Bern-
holdt, and V. Choppella. Data Locality Optimization for
Synthesis of Efficient Out-of-Core Algorithms. In Proc. of
the Intl. Conf. on High Performance Computing, 2003.

[40] T. Cormen and A. Colvin. ViC*: A Preprocessor for Virtual-
Memory C*. Technical Report PCS-TR94-243, Dartmouth
College, November 1994.

[41] T. J. Lee and G. E. Scuseria. Achieving chemical ac-
curacy with coupled cluster theory. In S. R. Langhoff
(Ed.). Quantum Mechanical Electronic Structure Calcula-
tions with Chemical Accuracy, pages 47–109, 1997.

[42] T. Mowry, A. Demke, and O. Krieger. Automatic Compiler-
Inserted I/O Prefetching for Out-of-Core Applications. In
Proc. of Second Symposium on Operating Systems Design
and Implementations, pages 3–17, 1996.

[43] T. Wang. Global Optimization of Constrained Nonlinear
Programming. PhD thesis, University of Illinois at Urbana-
Champaign, IL, December 2000.

[44] The Ohio Supercomputer Center.
[45] W. Li. Compiling for NUMA Parallel Machines. PhD thesis,

Cornell University, August 1993.
[46] W. Li. Compiler cache optimizations for banded matrix

problems. In Proc. of International Conference on Super-
computing, 1995.

[47] Y. Chen, M. Winslett, Y. Cho, and S. Kuo. Automatic paral-
lel I/O performance optimization. In Proc. of Tenth Annual
ACM Symposium on Parallel Algorithms and Architectures,
1998.

[48] Y. Song and Z. Li. New Tiling Techniques to Improve Cache
Temporal Locality. In Proc. of ACM SIGPLAN PLDI, 1999.

10


