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Abstract

Complex tensor contraction expressions arise in accurate electronic structure models in

quantum chemistry, such as the coupled cluster method. Thispaper addresses two complemen-

tary aspects of performance optimization of such tensor contraction expressions. Transforma-

tions using algebraic properties of commutativity and associativity can be used to significantly

decrease the number of arithmetic operations required for evaluation of these expressions. The

identification of common subexpressions among a set of tensor contraction expressions can

result in a reduction of the total number of operations required to evaluate the tensor contrac-

tions. The first part of the paper describes an effective algorithm for operation minimization
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with common subexpression identification and demonstratesits effectiveness on tensor con-

traction expressions for coupled cluster equations. The second part of the paper highlights

the importance of data layout transformation in the optimization of tensor contraction com-

putations on modern processors. A number of considerationssuch as minimization of cache

misses and utilization of multimedia vector instructions are discussed. A library for efficient

index permutation of multi-dimensional tensors is described and experimental performance

data is provided that demonstrates its effectiveness.

Introduction

Users of current and emerging high-performance parallel computers face major challenges to both

performance and productivity in the development of their scientific applications. The manual de-

velopment of accurate quantum chemistry models typically can take an expert months to years of

tedious effort to develop and debug a high-performance implementation. One approach to alle-

viate the burden on application developers is the use of automatic code generation techniques to

synthesize efficient parallel programs from high-level specification of computations expressed in a

domain-specific language. The Tensor Contraction Engine (TCE)1–3 effort resulted from a collab-

oration between computer scientists and quantum chemists to develop a framework for automated

optimization of tensor contraction expressions, which form the basis of many-body and coupled

cluster methods.4–7 In this paper, we describe two complementary optimization approaches that

were developed for the TCE, but are available as independentsoftware components for use by

developers of other computational chemistry suites.

The first step in the TCE’s code synthesis process is the transformation of input tensor con-

traction expressions into an equivalent form with minimal operation count. Input equations rep-

resenting a collection of tensor contraction expressions typically involve the summation of tens to

hundreds of terms, each involving the contraction of two or more tensors. Given a single-term ex-

pression with several tensors to be contracted, instead of asingle nested loop structure to compute

the result, it is often much more efficient to use a sequence ofpairwise contractions of tensors,
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with explicit creation of temporary intermediate tensors.This optimization problem can be viewed

as a generalization of the matrix chain multiplication problem. However, while the matrix-chain

optimization problem has a polynomial time solution, the multi-tensor contraction problem has

been shown to beNP-hard8 — a combinatorial number of possibilities for pairwise two-tensor

contractions must be considered. With tensor contraction expressions involving the summation

of tens to hundreds of terms, there are opportunities for further reduction in computational cost

by recognizing common subexpressions in the sequence of pairwise two-tensor contractions for

computing the multi-tensor contraction terms. Quantum chemists have addressed the operation

optimization problem for specific models,7,9 but to the best of our knowledge a general approach

to optimization of arbitrary tensor contraction expressions was not addressed prior to the TCE ef-

fort. In the first part of the paper, we discuss a generalized treatment of the operation minimization

problem for tensor contraction expressions.

The second part of the paper addresses an important issue pertaining to achieving a high frac-

tion of processor peak performance when computing operation-minimized tensor contraction ex-

pressions. Achieving high performance on current and emerging processors requires the genera-

tion of highly optimized code that exploits the vector instruction set of the machine (e.g., SSE,

AVX, etc.), minimizes data movement costs between memory and cache, and minimizes the num-

ber of register loads/stores in loops. The current state-of-the-art in compiler technology is unable

to achieve anywhere close to machine peak in compiling loop-level code representing a multi-

dimensional tensor contraction. Hence the approach taken in quantum chemistry codes is to morph

a tensor contraction problem into a matrix multiplication problem and then use highly tuned matrix

multiplication libraries available for nearly all systems. In general, this requires a layout transfor-

mation of the tensors into a form where all contracted indices of the tensors are grouped together in

the transformed view. Theoretically, the computational complexity of the data layout transforma-

tion step is linear in the number of elements in the tensor, while the computational complexity of

the subsequent matrix multiplication has a higher computational complexity. However, in practice

the use of a straightforward loop code to perform the layout transformation results in significant
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overhead. In the second part of the paper we discuss the development of an efficient tensor layout

transformation library.

The rest of the paper is organized as follows. The next section elaborates on the operation

minimization problem, followed by a section that describesthe algorithmic approach to operation

minimization. Experimental results that demonstrate its effectiveness are presented in the section

after that. The following section describes the layout transformation problem, summarizing an

approach (described in detail elsewhere10) to efficient transposition of 2D arrays, and the gener-

alization of the 2D transposition routines to multi-dimensional tensor layout transformation along

with experimental results from incorporation of the layouttransformation routines into NWChem.

We then discuss related work in the section following that, leading to the conclusion section.

Operation Minimization of Tensor Contraction Expressions

A tensor contraction expression comprises a sum of a number of terms, where each term represents

the contraction of two or more tensors. We first illustrate the issue of operation minimization

for a single term, before addressing the issue of optimizingacross multiple terms. Consider the

following tensor contraction expression involving three tensorst, f and s, with indicesx and z

that have rangeV , and indicesi andk that have rangeO. Distinct ranges for different indices is

a characteristic of the quantum chemical methods of interest, whereO andV correspond to the

number of occupied and virtual orbitals in the representation of the molecule (typicallyV ≫ O).

Computed as a single nested loop computation, the number of arithmetic operations needed would

be 2O2V 2.

rx
i = ∑z,k tz

i f k
z sx

k (cost=2O2V 2)

However, by performing a two-step computation with an intermediateI, it is possible to com-

pute the result using 4OV 2 operations:

Ix
z = ∑k f k

z sx
k (cost=2OV 2); rx

i = ∑z tz
i Ix

z (cost=2OV 2)

Another possibility using 4O2V computations, which is more efficient whenV > O (as is usu-
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ally the case in quantum chemistry calculations), is shown below:

Ik
i = ∑z tz

i f k
z (cost=2O2V ); rx

i = ∑k Ik
i sx

k (cost=2O2V )

The above example illustrates the problem of single-term optimization, also called strength

reduction: find an operation-minimal sequence of two-tensor contractions to achieve a multi-tensor

contraction. Different orders of contraction can result invery different operation costs; for the

above example, if the ratio ofV/O were 10, there is an order of magnitude difference in the

number of arithmetic operations for the two choices.

With complex tensor contraction expressions involving a large number of terms, if multiple

occurrences of the same subexpression can be identified, it need only be computed once, stored

in an intermediate tensor and used multiple times. Thus, common subexpressions can be stored

as intermediate results that are used more than once in the overall computation. Manual formu-

lations of computational chemistry models often involve the use of such intermediates. The class

of quantum chemical methods of interest, which include the coupled cluster singles and doubles

(CCSD) method,7,9 are most commonly formulated using the molecular orbital basis (MO) inte-

gral tensors. However the MO integrals are intermediates, derived from the more fundamental

atomic orbital basis (AO) integral tensors. Alternate “AO-based” formulations of CCSD have been

developed in which the more fundamental AO integrals are used directly, without fully forming the

MO integrals.11 However it is very difficult to manually explore all possibleformulations of this

type to find the one with minimal operation count, especiallysince it can depend strongly on the

characteristics of the particular molecule being studied.

The challenge in identifying cost-effective common subexpressions (also referred to as com-

mon subexpression elimination, or CSE) is the combinatorial explosion of the search space, since

single-term optimization of different product terms must be treated in a coupled manner. The

following simple example illustrates the problem.

Suppose we have two MO-basis tensors,v andw, which can be expressed as a transformation

of the AO-basis tensor,a, in two steps. Using single-term optimization to form tensor v, we

consider two possible sequences of binary contractions as shown below, which both have the same
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(minimal) operation cost. Extending the notation above, indices p andq represent AO indices,

which have rangeM = O+V .

Seq. 1: f i
q = ∑p ap

qci
p (cost=2OM2); vi

j = ∑p f i
pd p

j (cost=2O2M)

Seq. 2: gp
i = ∑q ap

qdq
i (cost=2OM2); vi

j = ∑p gp
j ci

p (cost=2O2M)

To generate tensorw, suppose that there is only one cost-optimal sequence:

f i
q = ∑p ap

qci
p (cost=2OM2); wi

x = ∑p f i
pep

x (cost=2OVM)

Note that the first step in the formation ofw uses the same intermediate tensorf that appears in

sequence 1 forv. Considering just the formation ofv, either of the two sequences is equivalent in

cost. But one form uses a common subexpression that is usefulin computing the second MO-basis

tensor, while the other form does not. If sequence 1 is chosenfor v, the total cost of computing

bothv andw is 2OM2 +2O2M +2OV M. On the other hand, the total cost is higher if sequence 2

is chosen (4OM2+2O2M +2OV M). The 2OM2 cost difference is significant whenM is large.

When a large number of terms exist in a tensor contraction expression, there is a combinatorial

explosion in the search space if all possible equivalent-cost forms for each product term must be

compared with each other.

In the first part of the paper, we address the following question: by developing an automatic op-

eration minimization procedure that is effective in identifying suitable common subexpressions in

tensor contraction expressions, can we automatically find more efficient computational forms? For

example, with the coupled cluster equations, can we automatically find AO-based forms by sim-

ply executing the operation minimization procedure on the standard MO-based CCSD equations,

where occurrences of the MO integral terms are explicitly expanded out in terms of AO integrals

and integral transformations?
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Algorithms for Operation Minimization with Common Subex-

pression Elimination

In this section, we describe the algorithm used to perform operation minimization, by employing

single-term optimization together with CSE. The exponentially large space of possible single-term

optimizations, together with CSE, makes an exhaustive search approach prohibitively expensive.

So we use a two-step approach to apply single-term optimization and CSE in tandem.

The algorithm is shown in Figure 2. It uses the single-term optimization algorithm, which is

broadly illustrated in Figure 1 and described in greater detail in our earlier work.12 It takes as

input a sequence of tensor contraction statements. Each statement defines a tensor in terms of a

sum of tensor contraction expressions. The output is an optimized sequence of tensor contrac-

tion statements involving only binary tensor contractions. All intermediate tensors are explicitly

defined.

The key idea is to determine the “binarization” (determination of optimal sequence of two-

tensor contractions) of more expensive terms before the less expensive terms. The most expensive

terms contribute heavily to the overall operation cost, andpotentially contain expensive subex-

pressions. Early identification of these expensive subexpressions can facilitate their reuse in the

computation of other expressions, reducing the overall operation count.

The algorithm begins with theterm set to be optimized as the set of all the terms of the tensor

contraction expressions on the right hand side of each statement. The set of intermediates is ini-

tially empty. In each step of the iterative procedure, the binarization for one term is determined.

Single-term optimization is applied to each term in the termset using the current set of interme-

diates and the most expensive term is chosen to be “binarized” first. Among the set of optimal

binarizations for the chosen term, the one that maximally reduces the cost of the remaining terms

is chosen. Once the term and its binarizations are decided upon, the set of intermediates is up-

dated and the corresponding statements for the new intermediates are generated. The procedure

continues until the term set is empty.
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SINGLE-TERM-OPT-CSE(E, is)
1 if E is a single-tensor expression
2 then return {〈E, /0〉}
3 else \* E is a multiple-tensor contraction expression (i.e.,E1∗ . . . ∗En) * \
4 {〈p1, is1〉,〈p2, is2〉, . . .} ←
5 set of pairs of optimal binarizations ofE and its corresponding intermediate set
6 (the given intermediate setis is used to find effective common subexpressions)
7 return {〈p1, is1〉,〈p2, is2〉, . . .}

Figure 1: Single-term optimization algorithm with common subexpression elimination

Evaluation of Operation Minimization

In order to illustrate the use of the automatic operation minimization algorithm, we consider the

tensor expressions for a closed shell CCSD T2 computation. Figure 3 shows the CCSD T2 equa-

tion, including the computation of the MO integrals (denoted v) and the expression for the double-

excitation residual. We compare the optimized forms generated in two different ways: 1) with the

conventional “separated” approach of first explicitly forming the MO integrals from AO integrals

and then using the MO integrals for the CCSD T2 term, and 2) using an “integrated” form where

significant MO integrals in the CCSD T2 equation are replacedby the expressions that produce

them. Although some MO integrals may appear more than once inthe T2 expression, the multiple

expansion of such terms does not result in any unnecessary duplication of computation because of

common subexpression elimination with the operation minimization algorithm.

We study two scenarios for evaluation of the CCSD T2 expression: 1) the typical mode, where

iterations of the residual calculation are performed with the t-amplitudes changing every itera-

tion, but without change to the MO integrals (because the transformation matrices to convert AO

integrals to MO integrals do not change), and 2) an orbital optimization (Brueckner basis) sce-

nario where the AO-to-MO transformation matrices change from iteration to iteration, i.e., the MO

integrals (if explicitly formed) must be recalculated for every iteration.

Since the operation minimization algorithm uses specific values for the number of occupied

orbitalsO and the number of virtual orbitalsV , the optimized expressions that are generated could

be different for differentO andV values. The values forO andV depend on the molecule and
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OPTIMIZE(stmts)
1 MSET ← set of all terms obtained from RHS expressions ofstmts
2 is← /0 \* the set of intermediates * \
3 while MSET 6= /0
4 do Mheaviest ← the heaviest term inMSET
5 (searched by applying SINGLE-TERM-OPT-CSE(Mi, is) on each termMi ∈MSET)
6 PSET ← SINGLE-TERM-OPT-CSE(Mheaviest , is)
7 〈pbest , isbest〉 ← NIL

8 pro f it ← 0
9 for each 〈pi, isi〉 ∈ PSET

10 do cur_pro f it ← 0
11 for each Mi ∈ (MSET −{Mheaviest})
12 do base_cost← op-cost of optimal binarization in SINGLE-TERM-OPT-CSE(Mi, is)
13 opt_cost ← op-cost of optimal binarization in SINGLE-TERM-OPT-CSE(Mi, is∪ isi)
14 cur_pro f it ← cur_pro f it +(base_cost−opt_cost)
15 if (〈pbest , isbest〉= NIL )∨ (cur_pro f it > pro f it)
16 then 〈pbest , isbest〉 ← 〈pi, isi〉
17 pro f it ← cur_pro f it
18 stmts← replace the termMheaviest in stmts with pbest

19 MSET ←MSET −{Mheaviest}
20 is← is∪ isbest

21 return stmts

Figure 2: Global operation minimization algorithm

quality of the simulation, but a typical range is 1≤V/O≤ 100. To provide concrete comparisons,

O was set to 10 andV values of 100, 500 and 1000 were used. Additional runs forO set to 100

andV values of 1000, 5000 and 10000 were also evaluated but the overall trends were similar and

so that data is not presented here.

The standard CCSD computation proceeds through a number of iterations in which the MO

integrals remain unchanged. At convergence, the amplitudes attain values such that the residual

is equal to zero and this typically takes 10–50 iterations. In some variants of CCSD, such as

Brueckner basis orbital optimization, the MO integrals also change at each iteration, requiring

the AO-to-MO transformation to be repeated. The optimized tensor expressions for these two

scenarios can be very different. With the operation minimization system, all input terms can be

tagged as either stable (i.e., unchanging from iteration toiteration) or volatile (i.e., changing every

iteration). In addition, an expected number of iterations can be provided to the optimizer. The
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Figure 3: Unoptimized input expressions for CCSD T2 and AO-to-MO transform

operation minimization algorithm seeks to find a transformed form of the input tensor expression

that minimizes the total arithmetic cost for the expected number of iterations.
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Figure 4: Integrated optimization of CCSD T2 with AO-to-MO transforms

Figure 4 shows the output generated by the integrated optimization of the AO-to-MO transform

and the the CCSD T2 expression (for an expected number of iterationsT of 10). Seventeen new

intermediates are generated - labeled using capital letters A throughQ. Only seven of the original

twelvev integrals are explicitly computed in the optimized form, while the expressions using the
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otherv integrals has been transformed to use other intermediates to reduce total operation cost.

Table 1 provides detailed information about the computational complexity of the optimized

expressions for the different cases considered, showing the coefficients for the various higher order

polynomial terms for the arithmetic cost (counting each floating point addition or multiplication as

one operation; we note that this is different from the convention used in previous publications such

as9 where a multiply-add pair is counted as one operation ratherthan two).

The first six columns in Table 1 correspond to the standard CCSD model while the last six

columns correspond to optimization for the Brueckner CCSD model. Alternate columns, labeled

“sep” and “int”, provide the coefficients of cost terms for the resulting expressions using separated

and integrated optimization, respectively. Considering the first two columns (for V = 500), it

is clear that the optimized expressions are very different.Some table entries have constant values

while others are scaled byT - a constant value implies that the corresponding term is only evaluated

once (for example, the MO integrals in the expressions derived by separated optimization), while

the entries scaled byT are executed repeatedly during every CCSD iteration. Sincea single table is

used for displaying the polynomial complexity terms for different expressions, we also have some

zero entries when terms do not apply to a particular optimized expression.

With separated optimization, the optimized form has several contractions with computational

complexity in the fifth power ofV /M (for V >> O, M is very close toV ), arising from the explicit

computation of the MO integrals. In contrast, integrated optimization produces optimized expres-

sions without any terms involving the fifth power ofV /M, instead trading them for anO(OM4)

term that is computedT times (once every CCSD iteration). WhenO×T is less thanV , such a

term has lower cost despite being recomputed every iteration than the one-time explicit computa-

tion of the MO integrals. The last row of the table shows the ratio of total arithmetic operation

count using the separated versus integrated optimization.ForV = 100, both optimized expressions

essentially have the same cost. But for the higher values ofV , it can be seen that the integrated

optimization produces a much more efficient form than integrated optimization, with the benefit

increasing asV increases.
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Table 1: Coefficients of leading terms of symbolic cost function; O = 10, M = V + O; ("sep"
denotes separated optimization of CCSD T2 expression and AO-to-MO transform; "int" denotes
integrated optimization of CCSD T2 and AO-to-MO transform;T denotes the number of CCSD
iterations).
Leading terms Standard iteration Brueckner basis
of symbolic V = 100 V = 500 V = 1000 V = 100 V = 500 V = 1000
cost function sep int sep int sep int sep int sep int sep int

V M4 2 0 2 0 2 0 2T 0 2T 0 2T 0
V 2M3 2 0 2 0 2 0 2T 0 2T 0 2T 0
V 3M2 2 0 2 0 2 0 2T 0 2T 0 2T 0
V 4M 2 0 2 0 2 0 2T 0 2T 0 2T 0
O2M4 0 2T 0 2T 0 2T 0 2T 0 2T 0 2T
O2V 4 2T 0 2T 0 2T 0 2T 0 2T 0 2T 0
OM4 2 2T+4 2 2T +4 2 2T+4 2T 6T 2T 6T 2T 6T

OV M3 2 2 2 0 2 0 2T 0 2T 0 2T 0
OV 2M2 4 0 2 0 2 0 2T 0 2T 0 2T 0
OV 3M 4 0 4 0 4 0 4T 0 4T 0 4T 0
O3V 3 20T 16T 20T 16T 20T 16T 22T 18T 22T 18T 22T 18T

O3V 2M 0 0 0 0 0 0 0 0 0 2T 0 2T
OV 4 2T 0 2T 0 2T 0 2T 0 2T 0 2T 0

O2M3 4 6T+6 4 8T +8 4 8T+8 4T 14T 4T 14T 4T 14T
O2V M2 6 12T +8 6 12T +8 6 12T +8 6T 18T 6T 18T 6T 18T
O2V 2M 8 8T+8 8 8T +8 8 8T+8 8T 16T 8T 16T 8T 16T
O2V 3 10T 4T 10T 4T 10T 4T 14T 4T 14T 4T 14T 4T

Reduction
1 2.46 4.24 2.51 13.75 28.86

factor

The right half of Table 1 shows the computational complexityterms for the optimized expres-

sions for the Brueckner CCSD model, where the AO integral transformation must be performed

for every CCSD iteration. For both the separated approach and the integrated approach, each term

is therefore scaled byT . Again, the optimized forms are clearly very different for separated versus

integrated optimization. Relative to the standard CCSD scenario, for the Brueckner CCSD mode

the benefit of integrated optimization over separated optimization is significantly higher.

So far the comparisons of different optimized forms have allbeen generated by the automated

operation minimization algorithm. But how effective is theautomatic optimization when compared

with manually optimized formulations? In order to answer this question, we generated an opti-

mized version of just the CCSD T2 equations and compared the complexity of the generated terms

with a highly optimized closed-shell CCSD T2 form developedby Scuseria et al.9 The optimized
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form produced by the automatic minimizer is shown in Figure 5. The computational complexity of

the most significant terms is 2O2V 4+20O3V 3 +10O4V 2 operations (counting each floating-point

addition or multiplication as a separate operation). The manually optimized implementation from

Scuseria et al.9 is 1
2O2V 4 + 8O3V 3 + 2O4V 2 A close examination of the optimized forms shows

that the difference is mainly due to two reasons. First, our compiler generated expressions exploit

antisymmetry but not another form of symmetry (“vertex” symmetry) that is used in the optimized

form from Scuseria et al. –Aab
i j = Aba

ji . The most significant contraction causing theO(O2V 4)

complexity is essentially the same contraction in both optimized forms, but is implemented by

Scuseria et al. with one fourth the operation count due to maximal exploitation of such symmetry.

Secondly, a close examination of the form of optimized equations in Scuseria et al.9 demonstrate

the need for more sophisticated intermediate steps (e.g., one that involves adding and subtracting

a term to an intermediate term that significantly enhances overall possibility of reduction in oper-

ation count). We are in the process of incorporating vertex symmetry and enhancing the operation

count minimization capability of our compiler using more sophisticated steps.
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Figure 5: CCSD T2 expression optimized separately from AO-to-MO transform
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Implementing Tensor Contractions using Tuned Matrix Multi-

plication

Consider the following tensor contraction expression.

E[i, j,k] = ∑
a,b,c

A[a,b,c]B[a, i]C[b, j]D[c,k]

where all indices range overN anda, b, andc are contraction indices. The direct way to compute

this would requireO(N6) arithmetic operations. However, as discussed in the first part of the paper,

algebraic transformations can be used to reduce the number of operations toO(N4).

T 1[a,b,k] = ∑
c

A[a,b,c]D[c,k]

T2[a, j,k] = ∑
b

T1[a,b,k]C[b, j]

E[i, j,k] = ∑
a

T2[a, j,k]B[a, i]

Each of the three contractions for the operation-optimizedform is essentially a generalized matrix

multiplication. Since highly tuned library Generalized Matrix Multiplication (GEMM) routines

exist, it is attractive to translate the computation for each 2-tensor contraction node into a call to

GEMM if possible. For the above 3-contraction example, the first contraction can be implemented

directly as a call to GEMM withA viewed as anN2×N rectangular matrix andD as anN ×

N matrix. The second contraction, however, cannot be directly implemented as a GEMM call

because the contraction indexb is the middle index ofT1. GEMM can only be directly used when

summation indices and non-summation indices in the contraction can be collected into two separate

contiguous groups. However,T1 can first be “reshaped" via explicit layout transformation, e.g.,

T1[a,b,k]→ T1r[a,k,b]. GEMM can then be invoked with the first operandT1r viewed as an

N2×N array and the second input operandC as anN×N array. The result, which has the index

order[a,k, j], would also have to be reshaped to formT2[a, j,k]. Considering the last contraction,
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it might seem that some reshaping would be necessary in orderto use GEMM. However, GEMM

allows one or both of its input operands to be transposed. Thus, the contraction can be achieved

by invoking GEMM withB as the first operand in transposed form, andT2[a, j,k] as the second

operand, with shapeN×N2.

In general, a sequence of multi-dimensional tensor contractions can be implemented using a

sequence of GEMM calls, possibly with some additional arrayreordering operations interspersed.

Since the multiplication of twoN ×N matrices requiresO(N3) operations and reordering of a

P×Q matrix only requiresO(PQ) data moves, it might seem that the overhead of the layout

transformation steps would be negligible relative to the time for matrix multiplication. However,

as shown in the next section, a simple nested loop structure to perform the layout transposition

can result in significant overhead. The remaining sections of this paper address the development

of an efficient index permutation library for tensors. The problem of efficient transposition of 2D

matrices is first addressed, and is then used as the core function in implementing generalized tensor

layout transformation.

Index Permutation Library for Tensors

In this section, we first present an overview of the problem ofefficient 2D matrix transposition (dis-

cussed in detail elsewhere10) and then discuss its use in optimizing arbitrary index permutations

of multi-dimensional arrays. Consider the simple double-nested loop in Figure 6. While trans-

position might seem such a straightforward operation, existing compilers are unable to generate

efficient code. For example, the program in Figure 6 was compiled using the Intel C compiler with

“-O3” option. On an Intel Pentium 4 with a 533MHz front side bus, it achieved an average data

transfer bandwidth of 90.3MB/s, for single-precision arrays, with each dimension ranging from

3800 to 4200. This is only 4.4% of the sustained copy bandwidth achieved on the machine by the

STREAM memory benchmark.13

On modern architectures, the cache hierarchy, the memory subsystem, and SIMD vector in-
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for i = 0 to N1-1
for j = 0 to N2-1
B[i][j] = A[j][i]

Figure 6: A simple implementation of matrix transposition

structions (like SSE) are key factors to performance of matrix transpose and there is interplay

amongst them. Cache provides fast data and instruction buffers to on-chip computation resources

and is often organized into multiple levels including level1 (L1) cache, level 2 (L2) cache and so

on. A cache is organized as a set of cache blocks (lines) whosetypical sizes range from 16 bytes

to 128 bytes. If a data element has multiple accesses during its stay in cache,temporal locality

is exploited. If different elements within a cache line are accessed,spatial locality is exploited.

Translation lookaside buffer (TLB) is a special CPU cache that memory management hardware

uses to improve virtual address translation speed. Matrix transposition lacks temporal locality and

has a large cache footprint. The data access pattern for the code in Figure 6 involves row-wise

access ofB but column-wise access ofA in the inner loop. This results in poor spatial locality for

A. If the loops are interchanged, excellent spatial localitycan be obtained forA but arrayB will

now have poor spatial locality. The strided access pattern for column-wise access can potentially

result in a large number of conflict misses in cache and TLB misses.

Processors have adopted multimedia extensions characterized as Single Instruction Multiple

Data (SIMD) units operating on packed short vectors. Examples of these SIMD extensions in-

clude SSE/SSE2/SSE3/SSE4 for Intel processors and VMX/AltiVec for PowerPC processors. The

effective use of SIMD support can provide performance enhancement for matrix transposition in

several ways.

To illustrate the potential benefits of employing SIMD extensions in memory bandwidth-bound

computations, Figure 7 shows the performance difference for memory copy using scalar versus

SIMD instruction sets on an Intel Pentium 4 and a PowerPC G5.

The reader is referred to a prior publication10 for details on the issues to be addressed for ef-

ficient implementation of the matrix transposition operation through explicit attention to various
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Figure 7: Improvement from using SIMD in memory copy

architectural factors. A combination of offline analysis and empirical search are used to determine

the best choice of optimization parameters. The empirical search is performed once at library in-

stallation time, and is similar to the ATLAS approach to generating an efficient BLAS library.14,15

The code generator takes as input the architectural parameters and generates multiple versions of

code optimized for different categories of problem instances; at library invocation time, a dynamic

search tree is traversed to determine which version of the code is actually executed.

The matrix transposition approach (presented elsewhere10) can be used to optimize arbitrary

index permutations of multi-dimensional arrays. When going from 2D matrix transposition to

higher dimensions, several issues must be considered:

1. It is important to reduce the number of generated code versions while optimizing for dif-

ferent permutations. Instead of havingn! code versions for all possible permutations of

n-dimensional arrays, we only generaten versions. By always accessing the source array

or the destination array in a fixed order, we calculate the access stride of each loop into the

other array. In such a way one code version handles(n−1)! permutations.

2. The decrease in dimension sizes with the increasing dimensionality impairs the benefits from

optimizations such as loop tiling. Due to the limited benefitof second-level tiling and TLB
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tiling with reduced dimensions, we only have one level of tiling when dimensionalityn is

larger than 3.

3. The index calculation overhead must be effectively controlled to achieve high performance.

Instead of relying on compiler-generated code, we identifyloop invariants and generate effi-

cient indexing code by strength reduction.16

Following the optimization procedure with the above changes, we have developed a highly op-

timized index permutation library for both PowerPC and x86 architectures. We demonstrate the

effectiveness of optimized index permutation operations by employing them in NWChem,17 a

widely used computational chemistry suite.

In NWChem, two variants of index permutation operations areused: without and with accu-

mulation: i) A′ = permute(A, p), whereA is transformed toA′ using index permutationp, and

A′ = A′+ c× permute(A, p), whereA is permuted, scaled by factorc and accumulated intoA′.

Two representative computations are used in our evaluation: (1) the triples correction in the

CCSD(T) computation and (2) theCCSDT computation. The experiments were conducted using

NWChem version 4.7 on the same Pentium 4 platform used in the previous section. By replacing

the original index permutation code in NWChem with the optimized version, significant perfor-

mance improvements are obtained, as shown in Figure 8 and Figure 9. We make the following

observations.

1. The computation complexity of triples correction isO(O3V 4), while the index permutation

cost of triples correction isO(O3V 3), which is mainly for symmetrization operations. How-

ever, the index permutation was found to dominate the computation of the triples correction.

Our implementation offers overall speedups of 2.27 and 2.58for the triples correction, re-

spectively, for the two tested molecules. This improvementessentially comes from the index

permutation speedups of 3.35 and 3.53, respectively.

2. The computation complexity of CCSDT isO(O3V 5) while its index permutation cost is only

O(O3V 3). The theoretical order complexity might suggest that the index permutation cost
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would be negligible. However this is not the case, as seen from the experimental results:

overall speedups of 2.02 and 1.74, respectively, are achieved for the two inputs.
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Related Work

Common subexpression elimination is frequently used in traditional optimizing compilers.16 Clas-

sical CSE techniques are focused on identifying the opportunities for value reuse; in most cases,

such opportunities are rather limited, and they exist only for scalars. In contrast, the CSE problem

in our work considers more complicated arithmetic structures, and requires search for profitable

alternatives in a large space of possible choices for value reuse. Algebraic properties (e.g., asso-

ciativity) play a central role in our approach, while they are typically ignored in CSE techniques

used in optimizing compilers.

Quantum chemists have proposed domain-specific heuristicsfor strength reduction and factor-

ization for specific forms of tensor contraction expressions (e.g., for electronic structure methods

such as the coupled cluster methods7,9,18). For example, Scuseria et al.9 and Janssen and Schae-

fer18 developed a very highly optimized formulation for closed shell CCSD equations. Common

subexpression elimination is frequently employed in the manual formulation of quantum chemical

methods. However, due to the complexity of the equations, itis prohibitively time-consuming to

explore manually the large set of alternative formulations. With the help of the automated search

techniques proposed here, it becomes feasible to explore a much larger space of possible formu-

lations for operation minimization. Janssen and Schaefer18 describe a common subexpression

elimination algorithm for tensor contractions but do not present any experimental results.

Theoretical study and empirical evaluation of optimizing matrix transposition with cache per-

formance considerations were conducted by Carter and Gatlin.19,20 The authors conclude that,

assuming conflict misses are unavoidable, it is impossible to be both cache efficient and register

efficient, and employ an in-cache buffer. Other memory characteristics are not taken into account.

Zhang et al.21 focus on how to write an efficient bit-reversal program with loop tiling and data

padding. Different implementations of matrix transposition were investigated by Chatterjee et al.,

22 with the conclusion that hierarchical non-linear layouts are inherently superior to the standard

layouts for the matrix transposition problem. We do not consider data padding or non-canonical

layouts as an option since we focus on generation of library routines that can be used with the
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standard data layouts used by quantum chemistry software suites such as NWChem.

Several studies focus on how to generate or optimize intra-register permutations. The gener-

ation of register-level permutations is addressed by Kudriavtsev and Kogge23 for optimizing data

permutations at the instruction level, with a focus on SSE instructions. Ren et al.24 present an

optimization framework to eliminate and merge SIMD data permutation operations with a high-

level abstraction. Both studies propagate data organization along data-flow graphs and focus on

reducing intra-register permutations. We manually generate various versions of micro-kernels and

empirically choose the best one. However the manual processneed only be repeated once for ev-

ery vector instruction set. The limited number of vector instruction sets allows this process to be

applicable across a wide range of processor architectures.

Empirical search employed in library generators such as ATLAS14,15,25has drawn great interest

because of the complexity of analytical modeling of optimalparameters for modern architectures.

However, empirical global search is often too expensive to apply. Yotov et al.26 present a strategy

employing both model-driven analysis and empirical searchto decide optimization parameters in

matrix multiplication. Chen et al.27 also present an approach to combining compiler models and

empirical search, using matrix multiplication and Jacobi relaxation as two examples. Our work

is similar in spirit but is applied to a computation that is bandwidth-limited and has no temporal

locality. Matrix transposition is similar to the level 1 BLAS kernels optimized by Whaley and

Whalley28 using an empirical search-based approach. But the presenceof strided memory access

in matrix transposition makes it harder to exploit spatial locality.

Conclusions

This paper has addressed two complementary aspects of performance optimization for tensor con-

traction expressions that arise in many body methods in quantum chemistry: 1) algebraic transfor-

mations to optimize the number of arithmetic operations, and 2) efficient multi-dimensional tensor

permutation to facilitate effective use of tuned matrix multiplication libraries to perform tensor
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contractions. The effectiveness of the developed optimization approaches has been demonstrated

using examples from coupled cluster models.
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