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Abstract

The Global Arrays (GA) toolkit provides a shared-
memory programming model in which data locality is
explicitly managed by the programmer. It inter-operates
with MPI and supports a variety of language bindings.
The Disk Resident Arrays (DRA) model extends the
GA programming model to secondary storage. GA and
DRA together provide a convenient programming model
that encourages locality-aware programming by the user,
while presenting a high-level abstraction. High perfor-
mance depends on the appropriate distribution of the data
in the disk-resident arrays. In this paper, we discuss the
addition of layout transformation support to DRA. The
implementation of an efficient parallel layout transforma-
tion algorithm is done on top of existing GA/DRA func-
tions; thus GA/DRA is itself used in implementing the
enhanced DRA functionality. Experimental performance
data is provided that demonstrates the effectiveness of the
new layout transformation functionality.

∗This work was supported in part through funding from the U.S.
Department of Energy and the National Science Foundation (award
0121676)

1 Introduction

The Global Arrays (GA) library [19] [20] provides a
shared-memory programming model in which data local-
ity is explicitly managed by the programmer. Explicit
function calls are used to transfer data between the global
address space and local memory. It is similar to dis-
tributed shared-memory models in providing an explicit
acquire-release protocol. However, it also acknowledges
that local data access is faster than remote data access.
The GA model exposes to the programmer the hierarchi-
cal nature of memory in modern high-performance com-
puter systems, and by recognizing the communication
overhead for remote data transfer, it promotes data reuse
and locality of reference. Its focus is on array data types
and blocked access patterns. The GA programming model
inter-operates with the message passing model; in particu-
lar, the programmer can use full MPI functionality on both
GA and non-GA data. The library can be used in C, C++,
Fortran 77, Fortran 90 and Python programs. This func-
tionality has proved useful in numerous significant com-
putational chemistry applications, such as NWChem, that
comprise over a million lines of code. [21].

The Disk Resident Arrays (DRA) model [18] extends
the GA programming model to secondary storage (Fig. 1).
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It provides a disk-based representation of arrays, and
functions to transfer blocks of data between global ar-
rays and disk resident arrays. The simple interface allows
programmers to access data located on disk in terms of
arrays rather than files. The benefits of GA (in particu-
lar, the absence of complex index calculations and the use
of optimized array communication) are extended by DRA
to programs that operate on arrays that are too large to
fit in memory. DRA, along with GA, provides a unified
programming model for handling different levels of the
memory hierarchy, in which the user controls the location
of data in the memory hierarchy. This has been shown to
significantly improve performance while providing a pro-
gramming model that is simpler than message passing.

Implementations of out-of-core computations can use
disk resident arrays to implement user-controlled virtual
memory, locating on disk the arrays that are too big to fit
in aggregate physical memory, and transferring sections
of these disk resident arrays into main memory for use
in the computation. DRA functions can be used to read a
section of a disk resident array into a global array and indi-
vidual processors then use GA functions to transfer global
array components to local memory. DRA has been de-
signed to support collective transfers of large data blocks.
No attempts are made to optimize performance for small
(roughly less than 1MB) requests.

Performance studies [18, 4] have demonstrated that
DRA is capable of achieving high performance in a vari-
ety of situations. However, high performance may depend
on appropriate choices being made for two classes of key
performance parameters:

• Library configuration parameters.These parameters
include the number of I/O nodes used, the I/O buffer
size on each I/O node, the communication mecha-
nisms used, and the underlying file system used, to-
gether with the specific file system facilities used,
such as the use of a special file mode, a special file
layout, or a particular file system policy.

• Disk array distribution parameters.These param-
eters describe various aspects of the distribution of
the array data on disks.

Application developers can provide hints that guide,
but do not direct, disk array distribution. DRA uses
these hints (which can indicate, for example, the
shape and size of a typical I/O request) as well as in-
formation about the internal I/O buffer size and file
system characteristics to choose a disk array distri-
bution.

The library configuration parameters are specified dur-
ing the compilation of the library or during the creation of

Figure 1: Role of GA and DRA in managing the memory
hierarchy

the disk resident array. The array layout is more dynamic
and the appropriate parameters can vary at runtime. In
this paper, we discuss the addition of layout transforma-
tion support to the GA/DRA framework.

We first describe an approach to efficient sequential
data layout transformation for disk resident arrays. When
we investigated the generation of a parallel implemen-
tation of the disk layout transformation algorithm, the
needed inter-processor communication pattern was found
to be quite complex. However, it was possible to use
existing GA/DRA primitives to greatly simplify the pro-
gramming of the parallel layout transformation algorithm.
Henceforth, GA and DRA will be used to refer both to the
libraries and the arrays used by them - the usage will be
clear from the context.

The paper is organized as follows. Section 2 motivates
the need for layout transformation. The layout transfor-
mation problem is defined in Section 3. The algorithm
design is explained in Section 4. The considerations lead-
ing to the parallel implementation, including load balanc-
ing of the computation, are discussed in Section 5. Ex-
perimental results are presented in Section 6. Section 7
concludes the paper.

2 Motivation

Many scientific and engineering applications need to op-
erate on data sets that are too large to fit in the physical
memory of the machine. Due to the extremely large seek
time relative to the per-word transfer time for disk access,
it is imperative that I/O be done using contiguous blocks
of disk resident data. To optimize performance in collec-
tive I/O operations between arrays located on disk and in
distributed main memory of parallel computers [4], I/O li-
braries like PANDA [22, 9] and DRA [10] use a blocked
representation for disk-resident multidimensional arrays
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instead of the dimension-ordered representation used typ-
ically for the representation of multidimensional arrays in
main memory. Thus, the disk-resident multidimensional
array is partitioned into a number of multidimensional
blocks or “bricks”, and the elements within a brick are
linearized using some dimension order. Such a bricked
representation of disk-resident multidimensional arrays
permits efficient access as long as the accessed regions
mostly contain full bricks.

However, for some disk-resident multidimensional ar-
rays, the access patterns of successive phases (for exam-
ple, access patterns of the producer and consumer) are so
different that no choice of brick shape allows for efficient
access. An example is out-of-core2-D FFT, where the
array is accessed by columns in one phase and by rows
in the other. The multi-dimensional Fast Fourier trans-
form (FFT) [1, 2] can be implemented as a series of one-
dimensional FFTs, one along each dimension. Another
example illustrating very different access patterns is re-
lated to simulation data in three and four (including time)
dimensions. The data produced by simulation can be too
large to be handled in an in-memory fashion. For exam-
ple, the3-D simulation of the Richtmyer-Meshkov insta-
bility [17] generates2048×2048×1920 data elements per
time step for274 time steps. The production of data oc-
curs one time-step after another. However, examination of
the time evolution of a plane or3-D block of data requires
a very different access pattern than that by which the data
was generated. When the data so produced is processed
on a parallel system, the data might have to transformed
into a different blocked form [12].

Our primary motivation for addressing the layout trans-
formation problem arises from the domain of electronic
structure calculations using ab initio quantum chemistry
models such as Coupled Cluster models. We are devel-
oping an automatic synthesis system called the Tensor
Contraction Engine (TCE)[24], to generate efficient par-
allel programs from high level expressions, for a class of
computations expressible as tensor contractions [3, 6, 5, 7,
15, 16]. Often the tensors (essentially multi-dimensional
arrays) are too large to fit in memory and must be disk-
resident. The input tensors are typically generated by an-
other chemistry package such as NWChem [21], with a
layout quite different from that needed for efficient pro-
cessing by the TCE-generated code.

3 The Layout Transformation Prob-
lem

Internally, the data in a DRA is stored in a blocked fash-
ion. When a DRA is created, the shape/size of a typical
request, referred to as the request size, can be specified.
This is used to determine the shape of the basic layout
block or “brick”. The shape of the brick is chosen to
match the specified access shape. The size of the brick
is chosen as a compromise between two competing ob-
jectives: optimizing disk I/O bandwidth requires that the
brick size be large enough to amortize the disk seek time;
minimizing the wastage of disk I/O, due to the reading of
additional data at the boundaries of DRA regions being
read/written, requires a small brick size.

An application might have an access pattern that is very
different from the organization of the disk-resident array.
This can happen when an application uses the output of
another program, or when different phases of the same
program exhibit different access patterns. This can be
handled by creating another copy of the disk resident ar-
ray to match the new request size and transformed dimen-
sions.

We have implemented a copy routine, referred to as
NDRACopy, together with dimension permutation. The
routine takes as input the source and target DRA handles
and the dimension permutation to be performed. Hence-
forth, the data in the DRA corresponding to the dimen-
sions of blocking in the source and target arrays are re-
ferred to as the source and target blocks respectively.

The disk array layout transformation problem we con-
sider is a generalization of the out-of-core matrix transpo-
sition problem. Out-of-core matrix transposition has been
widely studied in the literature. The algorithms perform
out-of-core transposition by making passes through the
entire array a number of times. During each pass through
the array, each element of the source array is read once
and each element of the target array is written once. Each
pass consists of a series of steps in which a portion of data
from the source array is brought into memory, permuted,
and written to the target out-of-core array. Different steps
in a pass operate on disjoint sets of data. The block trans-
position algorithm is a single-pass algorithm in which a
2-D tile of data is brought into memory, transposed, and
written to disk. Since the different row segments of a2-D
tile are not contiguous on disk, this could be extremely in-
efficient unless the tile size is very large. Eklundh [8] pro-
posed a multi-pass algorithm, in which the minimum unit
of I/O is a row. The number of passes in the algorithm is
proportional to the array dimensions. Kaushik et al. [11]
reduced the number of read operations and increased the
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read block size compared to Eklundh’s algorithm. Sun
and Prasanna [23] proposed an algorithm that minimized
the total number of I/O operations, while potentially in-
creasing the total volume of I/O. Krishnamoorthy et al.
[14] formulated these algorithms in a tensor product nota-
tion and derived a generic algorithm that attempts to mini-
mizes the total execution time by taking into consideration
the I/O characteristics of the system, and subsequently ex-
tended it to a multi-processor system, in which each pro-
cessor has a local disk [13] .

Most of the above approaches assume the array dimen-
sions and the memory size to be powers-of-2. This as-
sumption, coupled with the fact that the required trans-
formation is a transposition, allows different steps in the
re-blocking process to operate on disjoint sets of data. In
each step, the set of data read into memory form an in-
tegral number of write blocks, which are written out. So
no data is retained across steps during the transposition.
When arbitrary blocking, array dimensions, and memory
sizes are to be handled, it may not be possible to process
and write out all the data read into memory in a given
step. Some data either needs to be discarded and re-read,
increasing the I/O cost, or needs to be retained, increasing
the memory requirement. The memory cost for retain-
ing the data unused from a step depends on the order of
traversal of dimensions, and hence is not straight forward.
The out-of-core transposition algorithms involve I/O of
blocks of data at specific strides, which is fixed for a pass.
This regularity allows accurate prediction of the I/O cost.
The in-memory permutation of data can be modeled as
a bit-permutation on the linear address space of the data
stored in disk. This provides a regular structure to the
in-memory computation. In the general case, in-memory
permutation corresponds to a series of collect operations
for combining portions of different read blocks to create
a write block. The simplicity in the cost models for the
power-of-2 transposition problem makes it amenable to
mathematical treatment as done in [14].

4 Algorithm Design

The disk array layout transformation problem is modeled
as an I/O optimization problem. The total I/O cost is to
be minimized, subject to the amount of physical memory
available. The cost model and the algorithm to obtain the
multi-pass solution are explained in this section. In the en-
suing discussion, we shall consider ann-dimensional ma-
trix of dimensions< d1, . . . , dn >. The matrix is blocked
in brick shape< s1, . . . , sn >. The target matrix has the
same ordering of dimensions as the source but is blocked
using bricks of shape< t1, . . . , tn >. The source and tar-

get bricks are assumed to be of size that is large enough
for efficient access from/to disk. DRA typically uses a
brick size of around 1 Mbyte. Reads from the source disk
array are assumed to be in units of the source brick, and
writes to the target disk array are done in units of the target
brick.

4.1 Solution Approach

If feasible, a single-pass solution (in which each element
is read and written exactly once) would provide the mini-
mum I/O cost. But the memory requirement for a single-
pass solution might exceed the physical memory avail-
able. In this case, we either need to choose a multi-pass
solution or perform redundant I/O in one pass. In this sub-
section, we present the intuition behind the design of our
algorithm. We begin with a basic single-pass algorithm
and determine its I/O and memory cost. We then incre-
mentally improve the single-pass algorithm to lower the
memory requirement and/or the I/O cost. The multi-pass
solution is discussed in a subsequent sub-section.

Consider the region< 0 − lcm(s1, t1), . . . , 0 −
lcm(sn, tn) >, where lcm(si, ti) is the least-common-
multiple of si and ti. This region contains an integral
number of source and target blocks along all the dimen-
sions. Thus the data in the source matrix from this region
maps onto complete blocks in the target matrix. This re-
gion can be processed independent of other such blocks,
without any redundant I/O. We shall refer to such regions
as lcm-blocks. If the amount of physical memory were
large enough to hold an lcm-block, then a single-pass so-
lution is clearly possible — read in source blocks con-
tained in an lcm-block into memory, construct the target
blocks corresponding to the data in memory, and write
them into the target array. The I/O cost is defined as the
I/O required per element of the source array. This algo-
rithm has the minimum I/O cost of one read and one write
per element of the source array. Assuming the read and
write operations are equivalent the I/O cost is two units
per element.

The memory cost is the size of the lcm-block. Since ar-
bitrary re-blocking needs to be supported, the source and
target block sizes could have arbitrary dimensions (pro-
vided their total size corresponds to a reasonable block
size for I/O on the target system). Hence the lcm-block
can be arbitrarily large and might not fit in the physical
memory. We can improve the single-pass algorithm to
handle this scenario without increasing the I/O cost. In-
stead of reading entire lcm-blocks into memory, the al-
gorithm reads in a set of blocks of data from the source
matrix and writes out those target blocks that can be
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completely constructed from the data available in mem-
ory. Any data in memory that cannot be used to con-
struct a complete target block is retained in memory. Any
source block in an lcm-block contributes to target blocks
within the same lcm-block. Hence no data needs to be re-
tained across lcm-blocks. The algorithm processes all the
data in one lcm-block before processing any other lcm-
block. The algorithm requires enough memory to retain
unused data and read in additional data for processing.
The additional data read into memory for processing must
be sufficient to write at least one target block to disk.
This is referred to as themax-blockand corresponds to
< M1, . . . ,Mn > where

Mi = ⌈(max (si, ti)/si)⌉ ∗ si.

The algorithm traverses each lcm-block along each of the
dimensions and processes data in units of the max-block.
The buffer to store the unused data is partitioned into one
buffer per dimension. Unused data from a max-block
along a dimension needs to be retained until the adjacent
max-block along that dimension is processed. Thus the
amount of unused data to be retained depends on the order
of traversal of dimensions. Along the dimension traversed
first, only data unused from the last processed max-block
needs to be stored. Other dimensions require more data
to be retained. A static memory cost model is used, in
which the sizes of buffers used to store data is determined
before the transformation begins. The maximum memory
required to perform the transformation is the sum of the
size of the max-block and the sizes of the buffers.

memCost=
n

∑

i=1

bsizei +

n
∏

i=1

Mi

where bsizei represents the size of buffer to store unused
data along thei-th dimension.

Let < T1, . . . , Tn > be the order of traversal of di-
mensions. The unused data along a dimension (sayTi)
is ann-dimensional region. For a given dimensioni, the
size of this region along dimensionj can be as much as
lcm(sTj

, tTj
) for j < i, but is bounded above byMTj

for
j > i. Hence, the size of the buffer to store the unused
data along a dimensionTi is bounded by

bsizeTi
=

∏n
j=1

Sj

Sj =







lcm(sTj
, tTj

) if j < i
UTj

if j = i
MTj

if j > i

whereUi be the maximum unused data that needs to be
stored along dimensioni. SinceUi must be smaller than
bothsi andti, and for everysi elements along dimension

i brought into memory, at least gcd(si, ti) elements must
be written out, we have

Ui = min(si, ti) − gcd(si, ti)

As can be seen from the above formulas, the sizes of
the unused buffers is proportional to the lcm-block dimen-
sions. This could lead to situations in which the memory
requirement still exceeds the available memory. In this
case, there are two options to be considered. A multi-pass
solution could be determined, which is discussed later, or
a single-pass solution that performs redundant read of data
can be designed.

We propose a single-pass algorithm that differs from
the discussion above in one respect. Instead of travers-
ing an entire lcm-block, a smaller template is chosen. No
unused data is stored across templates. A template is
an integral number of write blocks along all dimensions.
There is no redundant read within a template. But unlike
lcm-blocks, templates might have source blocks on their
boundaries that straddle across two templates. This re-
sults in redundant reads across templates, increasing the
I/O cost. The memory cost is reduced and is given by:

memCost =
∑n

i=1
bsizei +

∏n
i=1

Mi

bsizeTi
=

∏n
j=1

Sj

Sj =







templTj
if j < i

UTj
if j = i

MTj
if j > i

where templi represents the size of the template along the
i-th dimension.

For a two-dimensional array, the memory cost due to
the unused buffers is(U1 ∗ M2 + lcm(s1, t1) ∗ U2) if di-
mension1 is traversed first; otherwise, it is(U2 ∗ M1 +
lcm(s2, t2) ∗U1). In ann-dimensional array, the traversal
order is determined by sorting the dimensions by compar-
ing these expressions.

The minimum template size corresponds to a target
block. In this case, the memory requirement is reduced
to a max-block. Thus the necessary condition for the ex-
istence of a single-pass solution is that the max-block fit
in memory.

The I/O cost is multiplicative along the dimensions.
When a template does not align with the end of an
lcm-block along a dimension, it is guaranteed to share
read blocks with the next template along that dimension.
Along a give dimension, the factor of re-read is thus pro-
portional to the number of templates within an lcm-block.
Each block is read and written at least once, with the fac-
tor of re-read increasing the I/O cost over the minimum
possible. The I/O cost of re-blocking using a given tem-
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plate is thus given by

ioCost = 2 +
∏n

i=1
overheadi

lcmi = lcm(si, ti)

overheadi =

si∗

(

lcmi−templ
i

templ
i

)

lcmi

When lcmi is larger than the length of the array along
dimensioni, we replace the lcmi by the array dimension.
The size of the buffers to hold the unused data, deter-
mined byUi, is an upper bound on the memory require-
ment and does not take into account the actual array di-
mensions. Even though the choice of a smaller template
increases the I/O cost for the single-pass solution, the total
I/O cost could be reduced due to a decrease in the number
of passes.

4.2 Template Determination for Single-pass
Solution

Both the I/O cost and the memory cost are affected by
the choice of the template. In this section, we discuss
the algorithm used to determine the template sizes. The
template is a set of write blocks along all the dimen-
sions. It can range in size from one write block, to an
lcm-block. For re-blocking ann-dimensional array, the
template needs to be determined from ann-dimensional
solution space. A template is a feasible solution if its pro-
cessing does not require more memory than available. The
algorithm exploits the characteristics of the solution space
and the optimization function.

Consider a templateA. An enclosing template is de-
fined as a template that is at least as large as the given
template in all the dimensions. LetB be an enclosing
template ofA. From the memory cost equations, it can
be seen that the memory required to processA cannot
exceed that required to processB. Conversely, process-
ing B requires at least as much memory as processingA.
This implies that once a template has been determined to
require more memory than available (an infeasible solu-
tion), no enclosing templates needs to be considered. This
relation separates the solution space into a feasible and an
infeasible solution space (where the surface of separation
approximates a hyperbola whenn = 2).

The I/O cost has a similar characterization. The I/O
cost equation shows that decreasing the template size
along any dimension increases the I/O cost. Thus the I/O
cost of templateA is at least as much as that of template
B. This implies that when searching through the solution
space, no template that is enclosed by a feasible template
needs to be considered. Thus the optimal solution resides

on the surface separating the feasible and infeasible solu-
tion spaces.

Our algorithm to determine the template for a single-
pass solution involves three phases. The algorithm begins
with the lcm-block as the template and tests for feasibil-
ity. If an lcm-block is the feasible solution, it is chosen
as the template. Otherwise, a solution is chosen that is
just feasible, i.e. , increasing the template size along any
dimension violates the memory constraint. This is a solu-
tion on the boundary between the feasible and infeasible
solution spaces and hence is a candidate solution. From
this solution, we perform a steepest descent to arrive at a
local minimum in the search space. Note that other opti-
mization algorithms that can optimize on a surface can be
used. The algorithm used is shown in Fig.2.

4.3 Multi-pass Solution Determination

When a single-pass solution does not exist or is too expen-
sive, a multi-pass solution is chosen by determining inter-
mediate block sizes. An intermediate disk-based array is
used to store the intermediate results. Hence, additional
disk space equal to the size of the arrays is required. The
multi-pass solution proceeds as repeated execution of the
single-pass algorithm, for the source and target block sizes
determined for that pass. The source block size of the first
pass is the block size of the source array. The target block
size of the last pass if the block size of the target array.
The skew between the source and target block sizes de-
creases as the multi-pass solution proceeds from one pass
to the next. The intermediate block size are chosen to ef-
fect the maximum re-blocking possible with the available
memory.

A simple heuristic is used to determine the intermedi-
ate block sizes for the multi-pass solution. Two candidate
intermediate block sizes are considered. The first candi-
date intermediate block size is the geometric mean of the
source and target block sizes. This block size is “equidis-
tant” from the source and target block sizes. This can be
an effective intermediate block size of for solutions with
an even number of passes. The second intermediate block
size is, in fact, a pair of block sizes. Letsi andti be the
source and target block sizes along dimensioni. The inter-
mediate block sizes chosen ares

2/3

i ∗ t
1/3

i ands
1/3

i ∗ t
2/3

i .
This pair of intermediate block sizes can be effective for
solutions with an odd number of passes. These two op-
tions allow a more refined search for intermediate block
sizes. Without the second choice, any solution that re-
quires an odd number of passes, each transforming to an
intermediate block “equidistant” from the previous one,
might be harder to achieve. Higher order intermediates
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were not considered as solutions with a larger number of
passes seldom occur in practice and can be handled by a
combination of these choices.

Once the intermediate block(s) are determined, the
multi-pass solution is determined recursively for trans-
forming from source to intermediate, and intermediate to
target block sizes. In the case of two intermediate blocks,
the transformation between the intermediate blocks is de-
termined as well. The algorithm for determining the
multi-pass solution is shown in Fig. 4.

Consider an instance of the matrix re-blocking problem
in which the source and target arrays are blocked as<
32, 9 > and< 5, 16 >, respectively. Let the array dimen-
sions be much larger than the block sizes. The max-block
is < 32, 16 > and the unused data along each dimension
is bounded by< 4, 8 >. The solution to the re-blocking
problem depends on the memory available. An lcm-block
containslcm(s1, t1)∗lcm(s2, t2)=23040 elements. When
enough memory is available to hold an lcm-block, the re-
blocking can be performed by reading in an entire lcm-
block and writing out the target blocks. But if the memory
can holdU2 ∗M1 + lcm(s2, t2)∗U1 +M1 ∗M2=1344 ele-
ments, it is sufficient to hold all unused data when an lcm-
block is processed. The second dimension is traversed
first in the re-blocking procedure. If the memory avail-
able is lesser, say enough to hold just 900 elements, a
single-pass solution with a template size of< 120, 6 >
elements is used for the re-blocking. When the memory
size is 800, a two-pass solution with an intermediate tile
size of< 12, 12 > is determined. The template for the
first pass is< 96, 12 >, and that for the second pass is
< 60, 48 >.

5 Implementation

A pseudo-code for the sequential implementation, using
file I/O, is shown in Fig. 5. The number of passes and
the intermediate block sizes for each pass are first deter-
mined using the multi-pass solution algorithm in Fig. 4.
The target DRA and an additional temporary file are used
to store the intermediate data. The input file in the first
pass is the one corresponding to the source DRA. The in-
put and output files for each pass are chosen in such a way
that the output file in the last pass is the file correspond-
ing to the target DRA. The computation proceeds in a se-
quence of passes. The buffers to hold the unused data and
the max-block are initialized. In each pass, the templates
are processed one after another. The data corresponding
to each template is traversed in units of max-block, in the
predetermined order. In each step, a max-block is read
into memory, complete write blocks are constructed and

Input: Source and target block sizes [s] and [t]
Output: Template size for single-pass solution

if it exists.
Routines:

memCost(templ) - Memory cost for processing the
given template

DiskCost(templ) - I/O cost for processing the
given template

MemExceeded(templ) - returns true if templ is
infeasible

1. Initialize template to lcm-block
2. Reduce template size along along all dimensions

equally in units of write block size, until
it is feasible.

3. If no feasible template is found
return "No solution exists"

4. Adjust the template size so that increasing
the template size along any dimension
makes it infeasible.

5. Repeat steps 6 through 8
6. Among adjacent template sizes choose the

one that has the maximum ratio of decrease
in I/O cost to increase in memory cost.

7. From the chosen (infeasible) template,
determine a feasible template that leads
to the least increase in disk I/O cost.

8. If the feasible solution found has lesser
I/O cost than the current template,
choose that as the current template.
Otherwise return the current template
as the solution.

Figure 2: Algorithm to determine template size for a
single-pass solution.

written to the output file. Reading a max-block from disk
involves a sequence of I/O operations one for each brick
in the max-block. If the max-block contains any unused
data corresponding to the current template, it is stored
in the unused buffers. If the max-block is only partially
present in the current template (i.e. some of it corresponds
to write blocks in another template), the data not relevant
to the current template is discarded. Construction of the
complete write blocks involves determining the regions of
the read blocks to be combined, locating the regions from
the buffers, and patching the data onto a temporary buffer.
The data in the temporary buffer is then written to disk.

5.1 Implementation Choices

We needed a parallel implementation that can handle the
different forms of disk arrays, in particular arrays on local
disks and on a shared file system. Various alternatives
in obtaining a parallel implementation of the algorithm
were considered. The alternatives differed in the the level
of abstraction utilized and the granularity of parallelism
exploited.

At the coarsest level of parallelism, each template can
be processed independently and hence can be assigned
to a different process. Each process handles the next
available template, which is determined at runtime. This
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Input: Source and target block sizes [s] and [t],
Template size [templ]

Output: Total memory cost [memCost]
Dimension traversal order [T]

1. foreach dimension i
2. L[i] = lcm(s[i], t[i])
3. U[i] = min(s[i], t[i]) - gcd(s[i], t[i])
4. M[i] = ceil(max(s[i], t[i])/s[i]) * s[i]
5. Sort dimensions into array T such that

forall i<j =>
U[T[i]] * M[T[j]] + L[T[i]] * U[T[j]]
< U[T[j]] * M[T[i]]+L[T[j]] * U[T[i]]

6. memCost=0
7. foreach dimension i
8. pdt=U[T[i]]
9. foreach j<i

10. pdt * = L[T[j]]
11. foreach j>i
12. pdt * = M[T[j]]
13. memCost += pdt

Figure 3: Algorithm to determine the memory cost for a
given template size

Input: Source and target block sizes [s] and [t],
Output: Sequence of intermediate block sizes,

Order of traversal of dimensions for each pass,
I/O cost

1. Determine the cost (a) of single-pass solution
2. foreach dimension i
3. B1[i] = floor(sqrt(s[i] * t[i]))
4. B2[i] = (s[i]ˆ(2/3) * t[i]ˆ(1/3))
5. B3[i] = (s[i]ˆ(1/3) * t[i]ˆ(2/3))
6. Determine cost (b) of multi-pass solutions for

re-blocking from s to B1 and B1 to t recursively.
7. Determine cost (c) of multi-pass solutions for

re-blocking from s to B1, B1 to B2 and B2 to t
recursively.

8. If no multi-pass solution exists
return "no solution exists"

9. Choose the solution with minimum I/O cost from
(a), (b) and (c) and determine the output
appropriately.

Figure 4: Algorithm to determine a multi-pass solution

provides automatic load-balancing. Since the processes
operate on disjoint sets of data, a low-level abstraction
is required. GA/DRA requires a collective operation to
perform I/O on the disk array, which is not suitable for
template-level parallelism. The absence of one-sided ac-
cess to the data on remote disks necessitates co-ordination
of the computation amongst the different processes. This
requires a load-balancing mechanism more sophisticated
than the process-next-template scheme.

Another significant drawback of utilizing template-
level parallelism is the orchestration of the computation
amongst all the processes can utilize the global memory
for processing. This can potentially reduce the number of
passes by allowing a greater component of the transfor-
mation to be done in each pass. It is thus advantageous
to have all the processes co-operate in transforming each
template. Parallelism in the form of distributed ownership
of the bricks by the I/O processes, those that perform I/O,
is exploited. We redefine the max-block in each step to be

large enough to construct complete write blocks so that all
the available I/O processes are utilized.

The co-ordination amongst the processes can be
achieved either using MPI and file I/O or using GA/DRA.
Using MPI and file I/O provides greater flexibility and
predictability to the computation. This could allow tun-
ing the implementation to the specific environment. On
the other hand, GA/DRA abstracts away the complexity
in dealing with file offsets, packing and unpacking of data
and message passing. That GA allows the use of mes-
sage passing, in particular MPI method calls, on both GA
and non-GA data in a GA/DRA program allows for incre-
mental tuning of the implementation. A GA/DRA imple-
mentation can be further tuned using MPI and file I/O if
such tuning can improve performance. When the tuning
does not improve performance, a more maintainable code
is available. The lessons learned from the tuning process
can help in making further improvements to the GA/DRA
model.

To illustrate the incremental tuning in the GA/DRA
model, let us consider two possible optimizations. The
GA/DRA implementation reads data from a disk array
into a global array in memory. The data is processed in
the global array and written back to the disk array. The
data could be read into local memory, copied into a global
array, and then written from the global array to the disk
array. This could reduce the communication overhead by
scheduling the communication in an intelligent manner.
Alternatively, data can be read from the disk array into a
global array and each process can copy the data into its
local memory and write to the block it handles.

One attendant disadvantage of using GA/DRA for the
operation is the increased disk space requirement. At
any point in the computation, space is required for the
source and target arrays of the current pass and the ulti-
mate source and target arrays of the transformation. The
input array is assumed to be read-only. The output array
is unused until the last pass, and can potentially be uti-
lized. But accessing the space allocated to the target array
via the DRA induces a blocking that is usually incompat-
ible with the blocking of the intermediate data. Operat-
ing at the file I/O level, one can bypass the blocked view
and directly access the space. A simple extension to the
GA/DRA framework, in which multiple disk arrays can
use the same file (analogous to the union type in C) could
be provided to allow different blocking views to the same
data space on disk.

Another optimization is possible when operating at the
file I/O level. Instead of operating on the entire array on
a pass before proceeding to the next pass, each template
can be processed through all the passes and written into
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Input: Source and target DRAs [d_s] and [d_t],
Output: d_t contains the data in d_s.

1. Determine the multi-pass solution.
2. Create a file as an intermediate. Use

space in d_t as the other intermediate.
3. foreach pass
4. Determine source and target files for this pass

(so that the target in the last pass is d_t)
5. Allocate memory for unused buffers along

each dimension, the buffer to contain
the max-block, and a write block.

6. foreach template t
7. while max-blocks remain to be processed
8. Read next max-block into memory from source.
9. Construct complete write blocks from

max-block and unused buffers.
10. Write constructed complete write blocks to

target.
11. If max-block contains unused data

corresponding to current template,
store it into unused buffers.

12. Delete the temporary file

Figure 5: Pseudo-code for sequential implementation of
the layout transformation algorithm

the final array before processing the next template. Thus
additional space for only two templates is required (the
space on the output array is not useful in this case as it is
used during the transformation and might not have enough
contiguous free space to store the intermediates). With the
GA/DRA model, using this optimization would involve
creating and using disk arrays the size of a template.

Thus the GA/DRA model supports incremental devel-
opment and tuning by not precluding the use of lower-
level programming models.

5.2 Parallel Implementation

The parallel implementation is similar to the sequential
implementation, whose pseudo-code is shown in Fig. 5.
The max-block and the unused buffers are global arrays.
Each max-block is read in directly using the DRA inter-
face. As illustrated in Fig. 6, the global array correspond-
ing to the max-block is allocated additional space, i.e., di-
mensioni of the global array is of size (M[i]+U[i]). The
patching of the data from the unused buffers is done in the
additional space allocated in the global array, such that
the complete write blocks form an n-dimensional rectan-
gular region. Thus, the construction of the complete write
blocks is done in-place, eliminating the movement cost of
the data in the intersection between the max-block and the
complete write blocks, which do not need to go through
the unused buffers. The complete write blocks are then
written to disk. The GA/DRA abstraction greatly simpli-
fies the implementation by allowing direct translation of
most of the algorithm statements into invocation of DRA

Complete write blocksMax block

Max[2]U[2]

Max[1]

U[1]

Data patched from unused buffers
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Figure 6: In-place construction of complete write blocks
in the parallel implementation. The max-block, data
from unused buffers, and the constructed write blocks are
shown. Note that the regions overlap.

routines.

5.3 Load Balancing

In the parallel implementation, more than one process
co-operates in performing the transformation. The basic
unit of I/O, the max-block, is increased in size to allow
all the processes to actively participate in the transforma-
tion. In the algorithm, the max block is defined as the set
of read blocks that guarantees that at least one complete
write block can be written out in each step. WithP I/O
processes, the max-block is defined to be the set of read
blocks that guarantee thatP complete write blocks can be
written out in each step.

This set of read blocks can be chosen in a number of
ways. To balance the load among the I/O processes, theP
write blocks written out in each step should each be han-
dled by a different I/O process. This allows for a balanced
distribution of the I/O load, with all I/O processes actively
performing I/O in each step.

A max-block that results in a load-balanced schedule
can be determined by determining an n-dimensional rect-
angular region ofP write blocks, each handled by a dif-
ferent I/O process. The read blocks that cover this region
form the max-block.

A max-block that coversP consecutive write blocks
along the fastest varying dimension form a simple load
balanced schedule. However, such a scheme does not take
advantage of the flexibility available in choosing the max-
block so as to contribute to a global optimal solution. For
example, the above scheme would not perform well if the
target blocking had a very different orientation. A simple
heuristic would be to choose a max-block that aligns with
the target block.

In the algorithm design, the max-block was defined
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first, and other parameters such as memory cost were de-
fined in terms of the max block. A choice in the max-
block determination affects other costs and hence the op-
timal solution.

We discuss an algorithm to enumerate all possible
load balanced max-blocks. Currently, the implementa-
tion chooses any load balanced max-block. Choosing the
most appropriate load balanced max-block is not dealt
with here.

The algorithm is shown in Fig. 7. It is based on the ob-
servation that the round-robin distribution enables parti-
tioning of the entire array into load-balanced max-blocks
of the same size and shape. If a partition results in the
max-block at the origin of the array being load-balanced,
all the max-blocks in the partition are guaranteed to be
load balanced.

The algorithm can be viewed as a factorization ofP to
be assigned to different dimensions. The factor assigned
to a dimension is the number of write blocks along that
dimension to be covered by the max block.

The algorithm represents the array size indirectly us-
ing an offset vector. An offset vector is ann-dimensional
vector, in which thei-th element represents the number of
distance between two write blocks along that dimension
in a linearization of the array into write blocks. For ex-
ample, for a10 × 10 array, blocked using3 × 3 tiles, the
offset vector is(1, 4). The offset is always one along the
fastest varying dimension. Along the next dimension, it
is the number of blocks in all lower dimensions, which is
four here. In the algorithm the offset is represented mod-
ulo the number of I/O processes. Thus, with two I/O pro-
cesses the offset vector in the above example would be
(1, 0). In this form, the offset vector also represents the
I/O processes that handle the blocks adjacent to the block
at origin, along each dimension.

The offset along a dimension can be used to determine
the number of different I/O processes that handle blocks,
if one traverses the array along that dimension. In the
above example, if the blocks are identified using a row-
column pair, all blocks along the column(0, ∗) are han-
dled by I/O process zero. In fact, an offset of zero along
a dimension implies that all blocks along that dimension
are handled by the same I/O process.

A factor of more than one is assigned to a dimension
only if the corresponding blocks chosen are handled by
different I/O processes. All dimensions with non-zero
offsets are chosen as candidates and are added to the set
D. The routineGenRecursivelyis then invoked that recur-
sively determines all feasible load balanced max-blocks.
The routine recursively factorizesP and assigns factors to
dimensions along the way.

Input: Blocking and array dimensions.
The number of I/O processes P.

Output: All feasible parallel max-blocks

GenMaxBlocks:
1. D = {}
2. Compute offsets into ‘‘offset’’ array
3. foreach dimension i
4. factor[i] = 1
5. if offset[i] > 0
6. D = D + {i}
7. GenRecursively(P, factor[], offset[], D)

GenRecursively(P, factor[], offset[], D):
1. if P = 1
2. / ** factor[] has a valid parallel

max-block ** /
3. print factor[]
4. return
5. for each dimension i in D
6. if gcd(P, offset[i]) < P
7. f = P / gcd(P, offset[i])
8. if |D| > 1 or f = P
9. factor[i] = f

10. GenRecursively(P/f,factor[],offset[],D-{i})
11. factor[i] = 1

Figure 7: Algorithm to enumerate all parallel max-blocks

If P has been completely factorized and an invocation
of the routineGenRecursivelyfindsP to be one, the fac-
torization in factor[] is a load balanced max-block. If not,
the routine expands the search along each dimension, by
attempting to assign a factor to each dimension and then
backtracking to determine more possible solutions.

The possible assignment of a factor to a dimension
is determined bygcd(P, offset[i]). The gcd determines
the number of different I/O processes that handle blocks
along that dimension. If the gcd is1, it means all the I/O
processes own blocks along that dimension. The number
of I/O processes is correspondingly lower for higher gcd
values. The number of I/O processes along a dimensioni
is given byf = P/gcd(P, offset[i]). Also, along a dimen-
sion, all I/O processes own a block before any I/O process
owns a second block. Hencef can be assigned as a factor
to that dimension. The algorithm uses these observations
to enumerate the load balanced max-blocks.

6 Experimental Results

The implementation was evaluated on an Itanium 2 cluster
at the Ohio Supercomputer Center (OSC) and the Mpp2
cluster at the Molecular Sciences Computing Facility in
the Pacific Northwest National Laboratory (PNNL). The
configuration of the systems is shown in Table 1. Initially
the data is stored in row-major order on disk. We var-
ied the data access pattern and measured three costs. The
skewed access costwas first measured for each access pat-
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tern. The skewed access cost is the cost of accessing all
the elements in the array using the specified access pat-
tern, with the data stored in row-major layout. The skew
refers to themisalignmentbetween the access pattern and
the layout of data on disk.

We then measured the cost of transforming the data lay-
out to match the access pattern. This is referred to as the
conversion cost. Finally, the cost of accessing the ele-
ments in the transformed array is measured. The access
pattern is now fully aligned with the data layout and this
cost if referred to as the thealigned access cost.

Table 2 shows the costs for a32768 × 32768 array of
doubles, on the Itanium 2 cluster. The costs were mea-
sured on one and two nodes, where one processor was
used per node. The costs for a65536 × 65536 array
on four nodes is shown in Table 3. The results for 1, 2
and 4 processors (one per node) on the Mpp2 cluster for
a 65536 × 65536 array is shown in Table 4. Each row
in these tables represents a different access pattern being
evaluated. The array is accessed in row-major order in
units whose size/shape is specified. WithP processors,
each access corresponds to a read ofP such blocks. The
size of a block for all the access patterns was 1MB, the
size internally chosen by DRA for a brick.

It can be observed that when the access pattern is
closely aligned with the data layout on disk, the skewed
access cost is higher than the aligned access cost, but not
high enough to warrant layout transformation. If the trans-
formed array needs to be accessed multiple times, then
the layout transformation cost might be amortized by the
lower aligned access cost. As the skew increases, the
skewed access cost gets so high as to warrant a layout
transformation even if the array is to be accessed just once
after the transformation. As expected, the aligned access
cost is similar for all block sizes. The layout transforma-
tion cost does not vary significantly with the transforma-
tion performed. This is because I/O is performed in units
of an efficient block size determined by DRA. Thus the
I/O cost does not vary between transformations unless the
number of passes varies. We observed that all the trans-
formations were performed in one pass.

7 Conclusions

In this paper we presented a new approach to efficiently
transform the blocked layout of multidimensional disk-
resident arrays. The number of passes in the layout trans-
formation is determined based on the specific transforma-
tion, such that the overall I/O cost is minimized. The pro-
posed approach was implemented as a new copy primitive
within the DRA I/O library. Experimental results demon-

Itanium 2 cluster Mpp2 cluster
(OSC) (PNNL)

Processor Dual Itanium 2 Dual Itanium 2
(900 MHz) (1.5 GHz)

Memory 4GB 8GB
Local disk 80GB 430 GB

Interconnect Myrinet 2000 Quadrics
Messaging GM Elan-4

Layer

Table 1: Configuration of systems on which the imple-
mentation was evaluated.

strated the benefits of the layout transformation primitive.
The layout transformation implementation illustrated

the convenience and incremental development enabled by
the GA/DRA framework. The programming model al-
lows for quick development using high-level constructs
followed by tuning depending on the expected gains.
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