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Abstract 1 Introduction

The Global Arrays (GA) library [19] [20] provides a

The Global Arrays (GA) toolkit provides a shared- . i .
memory programming model in which data locality i%hared-memory programming model in which data local-

explicitly managed by the programmer. It inter-operat L 1S explicitly managed by the programmer. - Explicit

with MPI and supports a variety of language binding gnchon calls are used to transfer data between the global

The Disk Resident Arrays (DRA) model extends (riccrcos SPace and local memory. It is similar to dis-

GA programming model to secondary storage. GA aIIIOb . y P 9 P
aqure-release protocol. However, it also acknowledges

i

DRA together provide a convenient programming mod t local data access is faster than remote data access
that encourages locality-aware programming by the usey, ) o
e GA model exposes to the programmer the hierarchi-

while presenting a high-level abstraction. High perfo N ¢ . dern hiah-perf
mance depends on the appropriate distribution of the dg?éll hature of memory In modern ign-periormance com-
Létel’ systems, and by recognizing the communication

in the disk-resident arrays. In this paper, we discuss #

addition of layout transformation support to DRA. Thgverhead_ for remote data transfer, _|t promotes data reuse
nd locality of reference. Its focus is on array data types

implementation of an efficient parallel layout transform& X
tion algorithm is done on top of existing GA/DRA func—.and blocked access patterns. The GA.programm_mg quel
nter-operates with the message passing model; in particu-

tions; thus GA/DRA is itself used in implementing th r, the programmer can use full MPI functionality on both
h DRA functionality. E i | perf X . )
enhanced unctionality. Experimental per ormancéA and non-GA data. The library can be used in C, C++,

data is provided that demonstrates the effectiveness of the .
new layout transformation functionality. ortran 77, Fortran 90 and Python programs. This func-

tionality has proved useful in numerous significant com-
putational chemistry applications, such as NWChem, that

- " wed in vart throudh funding from the U Scomprise over a million lines of code. [21].
*This work was supported in part through funding from the U.S. . .
Department of Energy and the National Science Foundatiomraw 1€ Disk Resident Arrays (DRA) model [18] extends

0121676) the GA programming model to secondary storage (Fig. 1).




It provides a disk-based representation of arrays, a
functions to transfer blocks of data between global

rays and disk resident arrays. The simple interface allo e
programmers to access data located on disk in terms o ey

arrays rather than files. The benefits of GA (in partict
lar, the absence of complex index calculations and the
of optimized array communication) are extended by DR
to programs that operate on arrays that are too large
fit in memory. DRA, along with GA, provides a unified seconday storage (dsk)
programming model for handling different levels of thé
memory hierarchy, in which the user controls the location
of data in the memory hierarchy. This has been shownlg
significantly improve performance while providing a Proy
gramming model that is simpler than message passing.
Implementations of out-of-core computations can use

disk resident arrays to implement user-controlled virtugie disk resident array. The array layout is more dynamic
memory, locating on disk the arrays that are too big to §hd the appropriate parameters can vary at runtime. In
in aggregate physical memory, and transferring sectiafgs paper, we discuss the addition of layout transforma-
of these disk resident arrays into main memory for ugen support to the GA/DRA framework.
in the computation. DRA functions can be used to read awe first describe an approach to efficient sequential
section of a disk resident array into a global array and indjata layout transformation for disk resident arrays. When
vidual processors then use GA functions to transfer glogé investigated the generation of a parallel implemen-
array components to local memory. DRA has been dgtion of the disk layout transformation algorithm, the
signed to support collective transfers of large data blockeded inter-processor communication pattern was found
No attempts are made to optimize performance for smgjl be quite complex. However, it was possible to use
(roughly less than 1MB) requests. existing GA/DRA primitives to greatly simplify the pro-
Performance studies [18, 4] have demonstrated tigggmming of the parallel layout transformation algorithm.
DRA is capable of achieving high performance in a varndenceforth, GA and DRA will be used to refer both to the
ety of situations. However, high performance may depefraries and the arrays used by them - the usage will be
on appropriate choices being made for two classes of k@¥ar from the context.
performance parameters: The paper is organized as follows. Section 2 motivates

« Library configuration parametersihese parametersthe need for layout transformation. The layout transfor-

include the number of I/O nodes used, the 1/0 buﬁgl)ation problem is defined in Section 3. The algorithm

size on each I/O node. the communication mech%@Sign is explained in Section 4. The considerations lead-

nisms used, and the underlying file system used, {89 to the parallel implementation, including load balanc-

gether with the specific file system facilities used!d Of the computation, are discussed in Section 5. Ex-

such as the use of a special file mode, a special ferimental results are presented in Section 6. Section 7
layout, or a particular file system policy. concludes the paper.

Global Mrays

capacity
speed

remote main memory

%ure 1. Role of GA and DRA in managing the memory
ierarchy

e Disk array distribution parameters.These param- . .
eters describe various aspects of the distribution ¢ M otivation

the array data on disks.
Application developers can provide hints that gmdg/lany scientific and engineering appllcatl_or_ls need to op
; . e erate on data sets that are too large to fit in the physical
but do not direct, disk array distribution. DRA uses .
. ! 7 memory of the machine. Due to the extremely large seek
these hints (which can indicate, for example, the : . .
. . 1me relative to the per-word transfer time for disk access,
shape and size of a typical I/O request) as well as i~ . . . .

: ’ . . It is imperative that I/O be done using contiguous blocks
formation about the internal I/O buffer size and f"%f disk resident data. To optimize performance in collec
system characteristics to choose a disk array distfi- . ) P P . .
bution ive 1/0 operations between arrays located on disk and in

distributed main memory of parallel computers [4], I/O li-
The library configuration parameters are specified dioraries like PANDA [22, 9] and DRA [10] use a blocked
ing the compilation of the library or during the creation afepresentation for disk-resident multidimensional asray



instead of the dimension-ordered representation used t#p- ThelL ayout Transfor mation Prob-
ically for the representation of multidimensional arrays i lem
main memory. Thus, the disk-resident multidimensional

array is partitioned into a number of multidimensional . . .

blocyks of“bricks”, and the elements within a brick ar ternally, the data ina DRA is stored in a.blocked fa?h'

linearized using some dimension order. Such a bricked" When a DRA is created, the shqpe/sme of a typpgl
quest, referred to as the request size, can be specified.

representation of disk-resident multidimensional arra, ic is used to determine the shape of the basic lavout
permits efficient access as long as the accessed reg'ﬁogk or “brick’. The sha f thp brick is ch y
mostly contain full bricks. - pe of Ihe brick Is chosen tq
match the specified access shape. The size of the brick
is chosen as a compromise between two competing ob-
jectives: optimizing disk 1/0 bandwidth requires that the
brick size be large enough to amortize the disk seek time;
However, for some disk-resident multidimensional aminimizing the wastage of disk I/0, due to the reading of
rays, the access patterns of successive phases (for exafitional data at the boundaries of DRA regions being
ple, access patterns of the producer and consumer) arees@l/written, requires a small brick size.
different that no choice of brick shape allows for efficient An application might have an access pattern that is very
access. An example is out-of-cozeD FFT, where the gifferent from the organization of the disk-resident array
array is accessed by columns in one phase and by re$s can happen when an application uses the output of
in the other. The multi-dimensional Fast Fourier trangnother program, or when different phases of the same
form (FFT) [1, 2] can be implemented as a series of ongrogram exhibit different access patterns. This can be
dimensional FFTs, one along each dimension. Anoth@indled by creating another copy of the disk resident ar-
example illustrating very different access patterns is figyy to match the new request size and transformed dimen-
lated to simulation data in three and four (including tim&jgns.
dimensions. The data produced by simulation can be toQy,e have implemented a copy routine, referred to as

large to be hgndleq inan in-mgmory fashion. For. exa'NDRACOpy, together with dimension permutation. The
ple, the3-D simulation of the Richtmyer-Meshkov insta-

> routine takes as input the source and target DRA handles
bility [17] generateg048 x 2048 x 1920 data elements peryng the dimension permutation to be performed. Hence-

time step for274 time steps. The production of data 0Cgoyt,  the data in the DRA corresponding to the dimen-
curs one time-step after another. However, examlnatlonsq)(gnS of blocking in the source and target arrays are re-

the time evolution of a plane G¢D block of data requires foreq 1o as the source and target blocks respectively.

a very different access pattern than that by which the data?e disk array layout transformation problem we con-
r

was generated. When the data S0 produced is process§§ is a generalization of the out-of-core matrix transpo
on a pa_rallel system, the data might have to transformsq on problem. Out-of-core matrix transposition has been
into a different blocked form [12]. widely studied in the literature. The algorithms perform
out-of-core transposition by making passes through the
entire array a number of times. During each pass through
the array, each element of the source array is read once
Our primary motivation for addressing the layout transnd each element of the target array is written once. Each
formation problem arises from the domain of electronfmass consists of a series of steps in which a portion of data
structure calculations using ab initio quantum chemistfpom the source array is brought into memory, permuted,
models such as Coupled Cluster models. We are dewaid written to the target out-of-core array. Different step
oping an automatic synthesis system called the Tengsoa pass operate on disjoint sets of data. The block trans-
Contraction Engine (TCE)[24], to generate efficient paposition algorithm is a single-pass algorithm in which a
allel programs from high level expressions, for a class »D tile of data is brought into memory, transposed, and
computations expressible as tensor contractions [3, 6, Syitten to disk. Since the different row segments @fB
15, 16]. Often the tensors (essentially multi-dimensionide are not contiguous on disk, this could be extremely in-
arrays) are too large to fit in memory and must be diskfficient unless the tile size is very large. Eklundh [8] pro-
resident. The input tensors are typically generated by ggwsed a multi-pass algorithm, in which the minimum unit
other chemistry package such as NWChem [21], witho&l/O is a row. The number of passes in the algorithm is
layout quite different from that needed for efficient pragproportional to the array dimensions. Kaushik et al. [11]
cessing by the TCE-generated code. reduced the number of read operations and increased the



read block size compared to Eklundh’s algorithm. Suget bricks are assumed to be of size that is large enough
and Prasanna [23] proposed an algorithm that minimizixat efficient access from/to disk. DRA typically uses a
the total number of I1/O operations, while potentially inbrick size of around 1 Mbyte. Reads from the source disk
creasing the total volume of I/O. Krishnamoorthy et ahrray are assumed to be in units of the source brick, and
[14] formulated these algorithms in a tensor product notarites to the target disk array are done in units of the target
tion and derived a generic algorithm that attempts to mirdrick.

mizes the total execution time by taking into consideration

the 1/0O characteristics of the system, and subsequently ex-

tended it to a multi-processor system, in which each pd-1  Solution Approach

cessor has a local disk [13] .

Most of the above approaches assume the array dimfgasible, a single-pass solution (in which each element
sions and the memory size to be powers-of-2. This ds read and written exactly once) Wom_JId provide the_mlm-
sumption, coupled with the fact that the required tran@Um /O cost. But the memory requirement for a single-
formation is a transposition, allows different steps in tHASS solution might exceed the physical memory avail-
re-blocking process to operate on disjoint sets of data.3f/€: N this case, we either need to choose a multi-pass
each step, the set of data read into memory form an fflution or perform redundant I/O in one pass. In this sub-
tegral number of write blocks, which are written out. ssection, we present the intuition behind the design of our

no data is retained across steps during the transpositJ§Orithm. We begin with a basic single-pass algorithm

When arbitrary blocking, array dimensions, and memoﬂ?d determine its 1/0O and memory cost. We then incre-

sizes are to be handled, it may not be possible to procB¥ntally improve the single-pass algorithm to lower the
and write out all the data read into memory in a giver;qem_ory_req.uwement_and/or the I/O cost. The _mulu-pass
step. Some data either needs to be discarded and re-ré@tion is discussed in a subsequent sub-section.
increasing the 1/0 cost, or needs to be retained, increasingonsider the region< 0 — lem(sy, t1),...,0 —

the memory requirement. The memory cost for retaileM(sn,tn) >, where lcnis;, #;) is the least-common-
ing the data unused from a step depends on the ordefbfitile of s; and¢;. This region contains an integral
traversal of dimensions, and hence is not straight forwaRgmber of source and target blocks along all the dimen-
The out-of-core transposition algorithms involve 1/O g¥ions. Thus the data in the source matrix from this region
blocks of data at specific strides, which is fixed for a pag§@Ps onto complete blocks in the target matrix. This re-
This regularity allows accurate prediction of the 1/0 cos8ion can be processed independent of other such blocks,
The in-memory permutation of data can be modeled without any redundant I/O. We shall rgfer to such regions
a bit-permutation on the linear address space of the d@gdcm-blocks If the amount of physical memory were
stored in disk. This provides a regular structure to th@'ge enough to hold an lcm-block, then a single-pass so-
in-memory computation. In the general case, in-memgdHfion is clearly possible — read in source blocks con-
permutation corresponds to a series of collect operatidatied in an lcm-block into memory, construct the target
for combining portions of different read blocks to creatdocks corresponding to the data in memory, and write
a write block. The simplicity in the cost models for théhem into the target array. The I/O cost is defined as the

power-of-2 transposition problem makes it amenable & required per element of the source array. This algo-
mathematical treatment as done in [14]. rithm has the minimum I/O cost of one read and one write

per element of the source array. Assuming the read and
write operations are equivalent the 1/O cost is two units
4 Algorithm Design per element.
The memory cost is the size of the Icm-block. Since ar-
The disk array layout transformation problem is modeldiitrary re-blocking needs to be supported, the source and
as an 1/O optimization problem. The total I/O cost is ttarget block sizes could have arbitrary dimensions (pro-
be minimized, subject to the amount of physical memowded their total size corresponds to a reasonable block
available. The cost model and the algorithm to obtain teze for I/O on the target system). Hence the Icm-block
multi-pass solution are explained in this section. In the ezan be arbitrarily large and might not fit in the physical
suing discussion, we shall considerragdimensional ma- memory. We can improve the single-pass algorithm to
trix of dimensions< dy, . .., d, >. The matrix is blocked handle this scenario without increasing the 1/0 cost. In-
in brick shape< s1,...,s, >. The target matrix has thestead of reading entire lcm-blocks into memory, the al-
same ordering of dimensions as the source but is blockgtithm reads in a set of blocks of data from the source
using bricks of shape: ¢4,...,t, >. The source and tar-matrix and writes out those target blocks that can be



completely constructed from the data available in membrought into memory, at least g4, ¢;) elements must
ory. Any data in memory that cannot be used to cohe written out, we have

struct a complete target block is retained in memory. Any

source block in an lcm-block contributes to target blocks U; = min(s;, t;) — ged(s;, ;)

within the same Icm-block. Hence no data needs to be re-

tained across Icm-blocks. The algorithm processes all théis can be seen from the above formulas, the sizes of
data in one lcm-block before processing any other Icitfe unused buffers is proportional to the Icm-block dimen-
block. The algorithm requires enough memory to retafions. This could lead to situations in which the memory
unused data and read in additional data for processifgfiuirement still exceeds the available memory. In this
The additional data read into memory for processing m@&se, there are two options to be considered. A multi-pass
be sufficient to write at least one target block to disgolution could be determined, which is discussed later, or
This is referred to as themax-blockand corresponds to@ single-pass solution that performs redundant read of data

< My,..., M, > where can be designed.
We propose a single-pass algorithm that differs from
M; = [(max (si,t;)/si)] * si. the discussion above in one respect. Instead of travers-

. ing an entire lcm-block, a smaller template is chosen. No
The algorithm traverses each lcm-block along each of ),sed data is stored across templates. A template is

dimensions and processes data in units of the max-blogk.integral number of write blocks along all dimensions.
The buffer to store the unused data is partitioned into Ofere s no redundant read within a template. But unlike
buffer per dimension. Unused data from a max-blogkm_pjocks, templates might have source blocks on their
along a dimension needs to be retained until the adjacgglngaries that straddle across two templates. This re-
max-block along that dimension is processed. Thus ¥&¢s in redundant reads across templates, increasing the

amount of unused data to be retained depends on the oj#§1-ost. The memory cost is reduced and is given by:
of traversal of dimensions. Along the dimension traversed

first, only data unused from the last processed max-block memCost = " , bsizg + [];"_, M;

needs to be stored. Other dimensions require more data bsizer, — H;—ll S; '

to be retained. A static memory cost model is used, in templ, if j <

which the sizes of buffers used to store data is determined S; _ Ur T j=i

before the transformation begins. The maximum memory MT]. if j >4

required to perform the transformation is the sum of the ’

size of the max-block and the sizes of the buffers. where templrepresents the size of the template along the
n n i-th dimension.

memCost= Z bsize + H M; For a two-dimensional array, the memory cost due to

i=1 i=1 the unused buffers id/; * Ms + lcm(sy,t1) * Us) if di-

where bsizerepresents the size of buffer to store unus n&ensionl Is traversed first; otherwise, it g/ « M +
e 'p ) . ?cm(SQ, t2) xU7). In ann-dimensional array, the traversal
data along theé-th dimension.

Let< T1.....T, > be the order of traversal of di_order is determined by sorting the dimensions by compar-

. . . ing these expressions.
mensions. The unused data along a dimension Tsay g L P .
. ) . . . . . The minimum template size corresponds to a target
is ann-dimensional region. For a given dimensigrthe

size of this region alona dimensioncan be as much asblock. In this case, the memory requirement is reduced
9 9 on to a max-block. Thus the necessary condition for the ex-

lem(st,, tr,) for j < i, butis bounded above b/, for : S .
i > i. Hence, the size of the buffer to store the unusés&ence of a single-pass solution is that the max-block fit

. o i memory.
data along a dimensidry is bounded by The I/0O cost is multiplicative along the dimensions.
bsize, = H;;l S; When a template d.oes not allig.n with the end of an
lem(sy,, tr,) if j <i lem-block along a dimension, it is guaranteed to share
S; — Ur, if j =i read blocks with the next template along that dimension.
My, if j > Along a give dimension, the factor of re-read is thus pro-

portional to the number of templates within an lcm-block.
whereU; be the maximum unused data that needs to Bach block is read and written at least once, with the fac-
stored along dimension SincelU; must be smaller thantor of re-read increasing the 1/0O cost over the minimum
boths; andt;, and for every; elements along dimensionpossible. The I/O cost of re-blocking using a given tem-



plate is thus given by on the surface separating the feasible and infeasible solu-

tion spaces.
ioCost =2+ [[i_, overhead Our algorithm to determine the template for a single-
lcm; = lem(s;, t;) pass solution involves three phases. The algorithm begins
o (|Cmitemp|i> with the lcm-block as the template and tests for feasibil-
overhead — ltempli ity. If an lcm-block is the feasible solution, it is chosen
cm; as the template. Otherwise, a solution is chosen that is

When Icm is larger than the length of the array alon. st feasible, i.e. , increasing the template size along any
dimensioni, we replace the Icby the array dimension imension violates the memory constraint. This is a solu-

The size of the buffers to hold the unused data. detdfn on the boundary between the feasible and infeasible

mined byU;, is an upper bound on the memory requirE,s_olution spaces and hence is a candidate solution. From
(2]

ment and does not take into account the actual array %}i_s SO'!“?O”' we perform a steepest descent to arrive at_ a
mensions. Even though the choice of a smaller templ!ﬂgal minimum in the search space. Note that other opi-

increases the I/O cost for the single-pass solution, ta tJjization algorithms that can optimize on a surface can be

I/O cost could be reduced due to a decrease in the num'ﬁ%?d' The algorithm used is shown in Fig.2.

of passes.

4.3 Multi-pass Solution Deter mination
4.2 Template Deter mination for Single-pass , . o
When a single-pass solution does not exist or is too expen-

Solution sive, a multi-pass solution is chosen by determining inter-

Both the 1/O cost and the memory cost are affected Bjediate block sizes. An intermediate disk-based array is
the choice of the template. In this section, we discudsed to store the intermediate results. Hence, additional
the algorithm used to determine the template sizes. Tdigk space equal to the size of the arrays is required. The
template is a set of write blocks along all the dimernulti-pass solution proceeds as repeated execution of the
sions. It can range in size from one write block, to a#ingle-pass algorithm, for the source and target bloclssize
lcm-block. For re-blocking am-dimensional array, the determined for that pass. The source block size of the first
template needs to be determined fromradimensional Pass is the block size of the source array. The target block
solution space. A template is a feasible solution if its prgize of the last pass if the block size of the target array.
cessing does not require more memory than available. THe& skew between the source and target block sizes de-
algorithm exploits the characteristics of the solutioncgpacCreases as the multi-pass solution proceeds from one pass
and the optimization function. to the next. The intermediate block size are chosen to ef-

Consider a templatel. An enclosing template is de-fect the maximum re-blocking possible with the available
fined as a template that is at least as large as the gi@@mory.
template in all the dimensions. Lé be an enclosing A simple heuristic is used to determine the intermedi-
template ofA. From the memory cost equations, it cafte block sizes for the multi-pass solution. Two candidate
be seen that the memory required to procdssannot intermediate block sizes are considered. The first candi-
exceed that required to proceBs Conversely, process-date intermediate block size is the geometric mean of the
ing B requires at least as much memory as procesdingsource and target block sizes. This block size is “equidis-
This implies that once a template has been determinedast” from the source and target block sizes. This can be
require more memory than available (an infeasible solR effective intermediate block size of for solutions with
tion), no enclosing templates needs to be considered. Thiseven number of passes. The second intermediate block
relation separates the solution space into a feasible anéie is, in fact, a pair of block sizes. Letandt; be the
infeasible solution space (where the surface of separatiirce and target block sizes along dimensidrhe inter-

approximates a hyperbola when= 2). mediate block sizes chosen afé” « ¢,/ ands/® « /%

The 1/O cost has a similar characterization. The I/This pair of intermediate block sizes can be effective for
cost equation shows that decreasing the template spéutions with an odd number of passes. These two op-
along any dimension increases the 1/0 cost. Thus the iGns allow a more refined search for intermediate block
cost of templated is at least as much as that of templatgizes. Without the second choice, any solution that re-
B. This implies that when searching through the soluti@uires an odd number of passes, each transforming to an
space, no template that is enclosed by a feasible templatermediate block “equidistant” from the previous one,

needs to be considered. Thus the optimal solution resideight be harder to achieve. Higher order intermediates



: : , Ingyt: lock si
were not considered as solutions with a larger number@ity . Somnte sre o Sl soon -

passes seldom occur in practice and can be handled tﬂ}' a ifit exists.
outines:

combination Qf these C_hOICES' . memCost(templ) - Memory cost for processing the
Once the intermediate block(s) are determined, theD. < | ”Ogiven ftemplate _—
. . . . . 1t - t t
multi-pass solution is determined recursively for trans-2'sKcostteme Gven template

forming from source to intermediate, and intermediate tovemExceeded(templ) - retyr?s trgle if templ is
target block sizes. In the case of two intermediate blocks, mieasib’e

the transformation between the intermediate blocks is dé- Initialize template to lcm-block ) _
ined I Th | ith f det . th 2. Reduce template size along along all dimensions
termined as well. € algorithm tor determining € equally in units of write block size, until

multi-pass solution is shown in Fig. 4. it is feasible.
. . . . 3. If no feasible template is found
Consider an instance of the matrix re-blocking problem’” ™ " oiim "No solution exists”

in which the source and target arrays are blocked:as 4 Adittﬁt tthe ttlen:plat_e sizle S0 thatdi_ncrea_sing
. . e template size along an Imension
32,9 > and< 5,16 >, respectively. Let the array dimen- e arwiiverindiabd

sions be much larger than the block sizes. The max-blogk Repeat steps 6 through 8

. . . 6. Among adjacent template sizes choose the
is < 32,16 > and the unused data along each dimension Ong thét has thepmaximum ratio of decrease
is bounded by 4,8 >. The solution to the re-blocking in /O cost to increase in memory cost.

. & From the chosen (infeasible) template,
problem depends on the memory available. An Icm-bloc determine a feasible template that leads
containdcem(sy, t1)xlem(sa, t2)=23040 elements. When to the least increase in disk I/O cost.

. . 8. If the feasible solution found has lesser
enough memory is available to hold an Icm-block, the re- IO cost than the current template,
blocking can be performed by reading in an entire lcm- choose that as the current template.

L. . Otherwise return the current template
block and writing out the target blocks. But if the memory as the solution.

can holdUs « My +lcm(sa, to) * Uy + M7 x Ms=1344 ele- _ ) ] )
ments, it is sufficient to hold all unused data when an Icfhi9Ure 2: Algorithm to determine template size for a

block is processed. The second dimension is traverS¥gle-pass solution.
first in the re-blocking procedure. If the memory avail-

a_blel Is lesser, |S?y enfiﬁghtto h?ktj Ju§t 9082€(:eénentswﬁtten to the output file. Reading a max-block from disk
single-pass soiution with a template size<o %~ involves a sequence of I/O operations one for each brick

elements is used for the re-blocking. When the memayy, o ay piock. If the max-block contains any unused

s?ze is 800, a two-pass solu'Fion with an intermediate { ta corresponding to the current template, it is stored
siz€ of< 12’ 12 > is determined. The template for th.(?n the unused buffers. If the max-block is only partially

first pass is< 96,12 >, and that for the second pass IBresentin the current template (i.e. some of it corresponds
< 60,48 >. to write blocks in another template), the data not relevant
to the current template is discarded. Construction of the
complete write blocks involves determining the regions of

the read blocks to be combined, locating the regions from

A pseudo-code for the sequential implementation, usifitf Puffers, and patching the data onto a temporary buffer.

file 1/0, is shown in Fig. 5. The number of passes ar;r e data in the temporary buffer is then written to disk.

the intermediate block sizes for each pass are first deter-

mined using the multi-pass solution algorithm in Fig. 45 1 I mplementation Choices

The target DRA and an additional temporary file are used

to store the intermediate data. The input file in the firgfe needed a parallel implementation that can handle the
pass is the one corresponding to the source DRA. The diifferent forms of disk arrays, in particular arrays on loca
put and output files for each pass are chosen in such awisks and on a shared file system. Various alternatives
that the output file in the last pass is the file corresponid-obtaining a parallel implementation of the algorithm
ing to the target DRA. The computation proceeds in a seere considered. The alternatives differed in the the level
guence of passes. The buffers to hold the unused data a@hdbstraction utilized and the granularity of parallelism
the max-block are initialized. In each pass, the templagsploited.

are processed one after another. The data correspondinit the coarsest level of parallelism, each template can
to each template is traversed in units of max-block, in the processed independently and hence can be assigned
predetermined order. In each step, a max-block is reada different process. Each process handles the next
into memory, complete write blocks are constructed aaslailable template, which is determined at runtime. This

5 Implementation



Input: Source and target block sizes [s] and [t],

Template size [templ]
Output: Total memory cost [memCost]

Dimension traversal order [T]
1. foreach dimension i
2. L[i] = lem(s[i], t[i])
3. Uli] = min(s[i], t[il) - gcd(sli], t[i])
4. M[i] = ceil(max(sli], t[il)/s[i]) *s[i]
5. Sort dimensions into array T such that

forall i<j =>

UTA  «MITG] + LITA = ULTE]
< U[TH  +MTO+LLTE] *U[T[]

6. memCost=0
7. foreach dimension i
8 pdt=UI[TT[i]]
9. foreach j<i
10. pdt  *= L[T[]]
11 foreach j>i
12 pdt  *= M[T[]]
13 memCost += pdt

Figure 3: Algorithm to determine the memory cost for

given template size

Input:  Source and target block sizes [s] and [t],
Output: Sequence of intermediate block sizes,

Order of traversal of dimensions for each pass,

/0 cost

1. Determine the cost (a) of single-pass solution
2. foreach dimension i

3. B1[i] = floor(sqrt(s[i] *t[i]))

4. B2[i] = (s[i]"(2/3) *1[i]"(1/3))

5. B3[i] = (s[i]"(1/3) *1[i]"(2/3))

6.

Determine cost (b) of multi-pass solutions for

re-blocking from s to B1 and B1 to t recursively.

~

Determine cost (c) of multi-pass solutions for

re-blocking from s to B1l, B1 to B2 and B2 to t

recursively.

8. If no multi-pass solution exists
return "no solution exists"

9. Choose the solution with minimum /O cost from
(a), (b) and (c) and determine the output
appropriately.

Figure 4: Algorithm to determine a multi-pass solution,

large enough to construct complete write blocks so that all
the available 1/0 processes are utilized.

The co-ordination amongst the processes can be
achieved either using MPI and file I/O or using GA/DRA.
Using MPI and file 1/O provides greater flexibility and
predictability to the computation. This could allow tun-
ing the implementation to the specific environment. On
the other hand, GA/DRA abstracts away the complexity
in dealing with file offsets, packing and unpacking of data
and message passing. That GA allows the use of mes-
sage passing, in particular MPI method calls, on both GA
and non-GA data in a GA/DRA program allows for incre-
mental tuning of the implementation. A GA/DRA imple-
mentation can be further tuned using MPI and file I/O if
a . ; .
such tuning can improve performance. When the tuning
does not improve performance, a more maintainable code
is available. The lessons learned from the tuning process
can help in making further improvements to the GA/DRA
model.

To illustrate the incremental tuning in the GA/DRA
model, let us consider two possible optimizations. The
GA/DRA implementation reads data from a disk array
into a global array in memory. The data is processed in
the global array and written back to the disk array. The
data could be read into local memory, copied into a global
array, and then written from the global array to the disk
array. This could reduce the communication overhead by
scheduling the communication in an intelligent manner.
Alternatively, data can be read from the disk array into a
global array and each process can copy the data into its
local memory and write to the block it handles.

One attendant disadvantage of using GA/DRA for the

provides automatic load-balancing. Since the proces@gration is the increased disk space requirement. At
operate on disjoint sets of data, a low-level abstracti@fly point in the computation, space is required for the

is required. GA/DRA requires a collective operation tgource and target arrays of the current pass and the ulti-
perform 1/O on the disk array, which is not suitable fomate source and target arrays of the transformation. The
template-level parallelism. The absence of one-sided #put array is assumed to be read-only. The output array
cess to the data on remote disks necessitates co-ordindgosnused until the last pass, and can potentially be uti-
of the computation amongst the different processes. THh#ed. But accessing the space allocated to the target array
requires a load-balancing mechanism more sophisticavédithe DRA induces a blocking that is usually incompat-
than the process-next-template scheme. ible with the blocking of the intermediate data. Operat-
Another significant drawback of utilizing templatelng at the file I/O level, one can bypass the blocked view
level parallelism is the orchestration of the computatigid directly access the space. A simple extension to the
amongst all the processes can utilize the global mem&¢VDRA framework, in which multiple disk arrays can
for processing. This can potentially reduce the numberte the same file (analogous to the union type in C) could
passes by allowing a greater component of the transfBg provided to allow different blocking views to the same
mation to be done in each pass. It is thus advantaged@t space on disk.
to have all the processes co-operate in transforming eacnother optimization is possible when operating at the
template. Parallelism in the form of distributed ownershijle 1/O level. Instead of operating on the entire array on
of the bricks by the 1/0O processes, those that perform I/@pass before proceeding to the next pass, each template
is exploited. We redefine the max-block in each step to ban be processed through all the passes and written into



Input:  Source and target DRAs [d_s] and [d_t],
Output: d_t contains the data in d_s. [U[ll
1. Determine the multi-pass solution.
2. Create a file as an intermediate. Use
space in d_t as the other intermediate.
3. foreach pass
4., Determine source and target files for this pass
(so that the target in the last pass is d_t)
Allocate memory for unused buffers along
each dimension, the buffer to contain

Max[1]

@

the max-block, and a write block. u[2] Max([2]
6 forea(,;h template t . [ Max block Complete write blocks
7 while max-blocks remain to be processed
8. Read next max-block into memory from source. Il Data patched from unused buffers
9 Construct complete write blocks from

max-block and unused buffers.

10, Write constructed complete write blocks to Figure 6: In-place construction of complete write blocks
target. . in the parallel implementation. The max-block, data
11. If max-block contains unused data .
corresponding to current template, from unused buffers, and the constructed write blocks are
store it into unused buffers. shown. Note that the regions overlap.

12. Delete the temporary file

Figure 5: Pseudo-code for sequential implementationr8Pt'nes'
the layout transformation algorithm

5.3 Load Balancing

the final array before processing the next template. Thusthe parallel implementation, more than one process
additional space for only two templates is required (th®-operates in performing the transformation. The basic
space on the output array is not useful in this case as itiisit of 1/0, the max-block, is increased in size to allow
used during the transformation and might not have enouglhthe processes to actively participate in the transferma
contiguous free space to store the intermediates). With tias. In the algorithm, the max block is defined as the set
GA/DRA model, using this optimization would involveof read blocks that guarantees that at least one complete
creating and using disk arrays the size of atemplate. write block can be written out in each step. Wikhl/O

Thus the GA/DRA model supports incremental devgbrocesses, the max-block is defined to be the set of read
opment and tuning by not precluding the use of lowelsiocks that guarantee th&complete write blocks can be
level programming models. written out in each step.

This set of read blocks can be chosen in a number of
ways. To balance the load among the I/O processed; the
write blocks written out in each step should each be han-
The parallel implementation is similar to the sequentiélled by a different I/O process. This allows for a balanced
implementation, whose pseudo-code is shown in Fig.distribution of the I/O load, with all I/O processes activel
The max-block and the unused buffers are global arrapérforming /0 in each step.

Each max-block is read in directly using the DRA inter- A max-block that results in a load-balanced schedule
face. Asiillustrated in Fig. 6, the global array correspondan be determined by determining an n-dimensional rect-
ing to the max-block is allocated additional space, i.e., dingular region of” write blocks, each handled by a dif-
mension: of the global array is of size (M[i]+UJi]). The ferent I/O process. The read blocks that cover this region
patching of the data from the unused buffers is done in tiggsm the max-block.

additional space allocated in the global array, such thatA max-block that covers” consecutive write blocks
the complete write blocks form an n-dimensional rectaalong the fastest varying dimension form a simple load
gular region. Thus, the construction of the complete writ@lanced schedule. However, such a scheme does not take
blocks is done in-place, eliminating the movement cost aflvantage of the flexibility available in choosing the max-
the data in the intersection between the max-block and theck so as to contribute to a global optimal solution. For
complete write blocks, which do not need to go througixample, the above scheme would not perform well if the
the unused buffers. The complete write blocks are thtget blocking had a very different orientation. A simple
written to disk. The GA/DRA abstraction greatly simpliheuristic would be to choose a max-block that aligns with
fies the implementation by allowing direct translation dhe target block.

most of the algorithm statements into invocation of DRA In the algorithm design, the max-block was defined

5.2 Parallel Implementation



. Input:  Blocking and array dimensions.
first, and other parameters such as memory cost were 8~ ~Tre number of 10 processes P.

fined in terms of the max block. A choice in the maxGutput: Al feasible parallel max-blocks
block determination affects other costs and hence the @psyaxaiocks:

timal solution. 1 D=¢§
. . ., 2. Compute offsets into “offset” array
We discuss an algorithm to enumerate all possible foreach dimension i
load balanced max-blocks. Currently, the implementaéu Iffcé?ffs[gtﬁ ! o
tion chooses any load balanced max-block. Choosing the D =D + {i}

most appropriate load balanced max-block is not dealt GenRecursively(P, factorf], offsetl], D)

with here. GenRecursiver(P, factor[], offset[], D):
The algorithm is shown in Fig. 7. Itis based onthe obz " ¥ 2 2 0 1 c o vaiid paraliel

servation that the round-robin distribution enables parti ~ max-block *+ /

tioning of the entire array into load-balanced max-block§ Pt facterl

of the same size and shape. If a partition results in thee for each dimension i in D
max-block at the origin of the array being load-balanced; " %G, Psefh <2

all the max-blocks in the partition are guaranteed to be if D] >1orf=Pp
9. factor[i] = f
load balanced. 10. GenRecursively(P/f,factor[],offset[],D-{i})

The algorithm can be viewed as a factorizationfofo 11 factorfi] = 1
be assigned to different dimensions. The factor assigned
to a dimension is the number of write blocks along th
dimension to be covered by the max block.

The algorithm represents the array size indirectly us-
ing an offset vector. An offset vector is andimensional  If P has been completely factorized and an invocation
vector, in which the-th element represents the number @ff the routineGenRecursivelfinds P to be one, the fac-
distance between two write blocks along that dimensiesvization in factof] is a load balanced max-block. If not,
in a linearization of the array into write blocks. For exthe routine expands the search along each dimension, by
ample, for al0 x 10 array, blocked using x 3 tiles, the attempting to assign a factor to each dimension and then
offset vector is(1,4). The offset is always one along théyacktracking to determine more possible solutions.
fastest Varying dimension. Along the next dimension, it The possible assignment of a factor to a dimension
is the number of blocks in all lower dimensions, which ig determined byycd(P, offseti]). The gcd determines
four here. In the algorithm the offset is represented moghe number of different 1/O processes that handle blocks
ulo the number of I/O processes. Thus, with two I/O predong that dimension. If the gcd is it means all the 1/0
cesses the offset vector in the above example would ®i@cesses own blocks along that dimension. The number
(1,0). In this form, the offset vector also represents thg 1/0 processes is correspondingly lower for higher ged
I/O processes that handle the blocks adjacent to the blgkues. The number of I/O processes along a dimension
at origin, along each dimension. is given byf = P/gcd(P, offsefi]). Also, along a dimen-

The offset along a dimension can be used to determagien, all I/O processes own a block before any 1/0O process
the number of different I/O processes that handle blocksyns a second block. Hengecan be assigned as a factor
if one traverses the array along that dimension. In tkethat dimension. The algorithm uses these observations
above example, if the blocks are identified using a rowe enumerate the load balanced max-blocks.
column pair, all blocks along the colunf, ) are han-
dled by I/O process zero. In fact, an offset of zero along
a dimension implies that all blocks along that dimensi®®  Experimental Results
are handled by the same 1/O process.

A factor of more than one is assigned to a dimensidine implementation was evaluated on an Itanium 2 cluster
only if the corresponding blocks chosen are handled ht/the Ohio Supercomputer Center (OSC) and the Mpp2
different 1/0O processes. All dimensions with non-zerduster at the Molecular Sciences Computing Facility in
offsets are chosen as candidates and are added to th¢heePacific Northwest National Laboratory (PNNL). The
D. The routinegGenRecursivelis then invoked that recur-configuration of the systems is shown in Table 1. Initially
sively determines all feasible load balanced max-blocitke data is stored in row-major order on disk. We var-
The routine recursively factorizd3and assigns factors toied the data access pattern and measured three costs. The
dimensions along the way. skewed access cosas first measured for each access pat-

?—'ﬁgure 7: Algorithm to enumerate all parallel max-blocks
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tern. The skewed access cost is the cost of accessing all Itanium 2 cluster ~ Mpp2 cluster

the elements in the array using the specified access pat- (0SC) (PNNL)
tern, with the data stored in row-major layout. The skew Processor Dual ltanium 2~ Dual Itanium 2
refers to thamisalignmenbetween the access pattern and (900 MHz) (1.5 GHz)
the layout of data on disk. Memory 4GB 8GB

We then measured the cost of transforming the data lay- Local disk 80GB 430 GB
out to match the access pattern. This is referred to as thelnterconnect Myrinet 2000 Quadrics
conversion cost Finally, the cost of accessing the ele- Messaging GM Elan-4

ments in the transformed array is measured. The access Layer
pattern is now fully aligned with the data layout and this
cost if referred to as the ttadigned access cost

Table 2 shows the costs for32768 x 32768 array of
doubles, on the Itanium 2 cluster. The costs were m
sured on one and two nodes, where one processor was
used per node. The costs for6a536 x 65536 array strated the benefits of the layout transformation primitive
on four nodes is shown in Table 3. The results for 1, 2 The layout transformation implementation illustrated
and 4 processors (one per node) on the Mpp2 cluster fioe convenience and incremental development enabled by
a 65536 x 65536 array is shown in Table 4. Each ronthe GA/DRA framework. The programming model al-
in these tables represents a different access pattern b&mg for quick development using high-level constructs
evaluated. The array is accessed in row-major orderfallowed by tuning depending on the expected gains.
units whose size/shape is specified. Wihprocessors,
each access corresponds to a reaé afuch blocks. The
size of a block for all the access patterns was 1MB, tﬁCknOWIedgmentS

size internally chosen by DRA for a brick. . .
It can be observed that when the access pattern’f§ Would like to thank the Ohio Supercomputer Cen-

closely aligned with the data layout on disk, the skewd@l (OSC) and the Molecular Sciences Computing Facil-
access cost is higher than the aligned access cost, but fdfMSCF) at the Pacific Northwest National Laboratory
high enough to warrant layout transformation. If the tran>NNL) for the use of their computing facilities.

formed array needs to be accessed multiple times, then

the Iayogt transformation cost might be amprtized by ”References

lower aligned access cost. As the skew increases, the

skewed access cost gets so high as to warrant a Iaycm G. L. Anderson. A stepwise approach to computing
transformation even if the array is to be accessed just onCe he multidimensional fast Fourier transform of large

after_the_ trgnsformation. As_ expected, the aligned access arrays.|EEE Transactions on Acoustics and Speech
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tion cost does not vary significantly with the transforma-
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I/O cost does not vary between transformations unless t
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Table 1: Configuration of systems on which the imple-
fnentation was evaluated.
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Access Pattern Access and transformation cost (seconds)
#procs =1 #procs =2
Row Column| Skewed Conv. Aligned Skewed Conv. Aligned
(#els)  (#els) | access cost access access cost access
4 32768 176 359 172 97 241 90
8 16384 179 343 178 88 191 88
16 8192 182 345 175 91 173 91
32 4096 196 357 180 105 188 92
64 2048 249 368 181 129 190 93
128 1024 340 372 179 172 202 94
256 512 517 371 183 266 173 93
512 256 861 372 181 434 165 92
1024 128 1580 377 183 749 163 94
2048 64 2994 384 184 1393 167 93
4096 32 5760 373 180 2697 170 95

Table 2: Access and transformation cost (in seconds) 88788 x 32768 array stored in row-major order, on the
[tanium 2 cluster.

Access Pattern| Access and transformation cost
(seconds) (#procs=4)
Row Column| Skewed Conv. Aligned
(#els)  (#els) | access cost access
8 16384 207 733 212
16 8192 238 644 229
32 4096 300 743 230
64 2048 419 723 230
128 1024 650 623 230
256 512 1110 538 230
512 256 2030 466 230

Table 3: Access and transformation cost (in seconds) f&#586 x 65536 array stored in row-major order, on the
Itanium 2 cluster.

Access Pattern Access and transformation cost (seconds)

#procs =1 #procs =2 #procs =4
Row Column| Skewed Conv. Aligned Skewed Conv. Aligned Skewed Conv. Aligned
(#els)  (#els) | access cost access access cost access access cost access

8 16384 155 370 221 137 249 71 54 186 49
16 8192 209 420 229 177 224 72 83 138 63
32 4096 298 428 292 321 241 69 95 133 54

64 2048 436 423 298 521 265 71 129 116 58
128 1024 734 469 304 973 287 68 194 128 62
256 512 1315 453 307 1938 252 71 322 144 54
512 256 2473 446 316 3648 276 64 579 149 56

Table 4: Access and transformation cost (in seconds) #1586 x 65536 array stored in row-major order, on the
Mpp2 cluster.
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