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Abstract

The accurate modeling of the electronic structure of atoms and moleculesisvery computationally intensive. Many
models of electronic structure, such asthe Coupled Cluster approach, involve collections of tensor contractions. There
are usually alarge number of alternative ways of implementing the tensor contractions, representing different trade-
offs between the space required for temporary intermediates and the total number of arithmetic operations. In this
paper, we present an algorithm that starts with an operation-minimal form of the computation and systematically
explores the possible space-time trade-offs to identify the form with lowest cost that fits within a specified memory
limit. Its utility is demonstrated by applying it to a computation representative of a component in the CCSD(T)
formulation in the NWChem quantum chemistry suite from Pacific Northwest National Laboratory.

*We are grateful to the National Science Foundation for support of this work through the Information Technology Research Program



1 Introduction

The development of high-performance parallel programs for scientific applications is usualy very time consuming.
The time to develop an efficient parallel program for a computational model can be a primary limiting factor in
the rate of progress of the science. Our long term goa is to develop a program synthesis system to facilitate the
development of high-performance parallel programs for a class of scientific computations encountered in quantum
chemistry. The domain of our focus is electronic structure calculations, as exemplified by coupled cluster methods,
where many computationally intensive components are expressible as a set of tensor contractions. We planto developa
synthesis system that can generate efficient parallel codefor anumber of target architecturesfrom an input specification
expressed in a high-level notation.

A critical issueinimplementing electronic structuremodels, e.g. using coupled cluster methods, isthe management
of storage requirements for intermediates. Significant savings in computational cost can be achieved by computing
and storing various intermediate array quantities, that are reused several times in the process of generating the fina
results. However, the space requirementsfor these intermediatesis often extremely large, making it infeasible to store
even on disk. In this case, there is no choice but to discard and recompute some of the intermediates. Therefore the
following optimization problem is of great interest: given a set of computations expressed as a sequence of tensor
contractions (explained later on), and a specified limit on the amount of available storage, re-structure the computation
S0 as to minimize the amount of redundant recomputation required. In this paper, we present a framework that we
have developed to address this problem. The space-time trade-off optimization we consider hereis part of a planned
synthesis system that incorporates a number of optimization modules.

The computational structuresthat we addressin this paper arise in scientific application domainsthat are extremely
compute-intensive and consume significant computer resources at national supercomputer centers. They are present
in computational physics codes modeling electronic properties of semiconductors and metals[1, 7, 16], and in com-
putational chemistry codes such as ACES I, GAMESS, Gaussian, NWChem, PSI, and MOLPRO. In particular, they
comprise the bulk of the computation with the coupled cluster approach to the accurate description of the electronic
structure of atoms and molecules [14, 15]. Computational approaches to modeling the structure and interactions of
mol ecules, the el ectronic and optical properties of molecules, the heats and rates of chemical reactions, etc., are crucia
to the understanding of chemical processesin real-world systems.

The paper is organized as follows. In the next section, we elaborate on the computational context of interest, the
pertinent optimization issues and an overview of the overall synthesis system that is under development. Section 3
elaborates on the problem using a concrete example that is abstracted from a computationally intensive calculationin
the NWChem [6] system. Section 4 providesahigh-level description of the solution approach. Sections5 and 6 present
details of the approach to solve the space-time trade-off problem. Section 7 presents results from the application of
the new algorithm to the example abstracted from NWChem. Conclusions are provided in Section 8.

2 The Computational Context

In the class of computations considered, the final result to be computed can be expressed in terms of tensor con-
tractions, essentialy a collection of multi-dimensional summations of the product of several input arrays. Due to
commutativity, associativity, and distributivity, there are many different ways to compute the final result, and they
could differ widely in the number of floating point operations required. Consider the following expression:

Sabij = Z Aacit X Brest X Cafjk X Deder
cde fkl

If this expressionisdirectly trandated to code (with ten nested loops, for indices a — [), the total number of arithmetic
operationsrequired will be4 x N ' if therange of eachindex a — I is V. Instead, the same expression can be rewritten
by use of associative and distributive laws as the following:

Sabij = Z (Z (Z Byeys X Dcdel> X Cdfjk) X Aacik

ck daf el

This corresponds to the formula sequence shown in Fig. 1(a) and can be directly translated into code as shown in
Fig. 1(b). This form only requires 6 x N ¢ operations. However, additional space is required to store temporary



Tloeqr = Z Byesi X Deger
el
T2pcjr = Zlecdf x Cafjk
df
Savij = ZT2bcjk' X Aacik

ck

(a) Formula sequence

T1=0; T2=0; S=0
for b, c, d, e f, |
[ Tlocdr += Boerl Deder

for b, ¢, d, f, j, k
[ T2bcjk *+= Tlbear Cafjk
for a, b, ¢, i, j, k

[ Sabij += T2bcjk Aacik

(b) Direct implementation
(unfused code)

S=0

for b, c
[ Tif = 0; T2f = 0
for d, f
for e, |
[ T1f += Bpefi Dedel
for j, k
[ T2fj += T1f Curjk
for a, i, j, k
L [Sabij += T2f ik Agcik

(c) Memory-reduced implementation
(fused)

Figure 1: Exampleillustrating use of loop fusion for memory reduction.

arraysT'1 and T'2. Often, the space requirements for the temporary arrays poses a serious problem. For this example,
abstracted from a quantum chemistry model, the array extents along indices a — d are the largest, while the extents
aong indices i — | are the smallest. Therefore, the size of temporary array T'1 would dominate the total memory
requirement.

The operation minimization problem encountered here is a generalization of the well known matrix-chain mul-
tiplication problem, where a linear chain of matrices to be multiplied is given, e.g. ABCD, and the optimal order
of pair-wise multiplications is sought, i.e. ((AB)C)D versus (AB)(CD) etc. In contrast to this, for computations ex-
pressed as sets of matrix contractions, although the final realization of the computation is in terms of a sequence of
matrix-matrix products, there is additional freedom in choosing the pair-wise products. For the above example, in-
stead of forcing a single chain order, e.g. ABCD, other orders are possible, such as the BCDA order shown for the
operation-reduced form above.

We have previously shown that the problem of determining the operator tree with minimal operation count is
NP-complete, and have developed a pruning search procedure [12, 13] that is very efficient in practice. For the
above example, although the latter form is far more economical in terms of the number of arithmetic operations, its
implementation will require the use of temporary intermediate arrays to hold the partia results of the parenthesized
array subexpressions. Sometimes, the sizes of intermediate arrays needed for the “ operation-minimal” form are too
largeto even fit on disk.

A systematic way to explore ways of reducing the memory requirement for the computation isto view it in terms
of potential loop fusions. Loop fusion merges loop nests with common outer loops into larger imperfectly nested
loops. When one loop nest produces an intermediate array which is consumed by another loop nest, fusing the two
loop nests allows the dimension corresponding to the fused |oop to be eliminated in the array. Thisresultsin asmaller
intermediate array and thus reduces the memory requirements. For the example considered, the application of fusion
isillustrated in Fig. 1(c). By use of loop fusion, for this example it can be seen that T'1 can actually be reduced to a
scalar and T2 to a 2-dimensional array, without changing the number of arithmetic operations.

For a computation comprising of a number of nested loops, there will generally be a number of fusion choices,
that are not all mutually compatible. Thisis because different fusion choices could require different loops to be made
the outermost. In prior work, we addressed the problem of finding the choice of fusions for a given operator tree that
minimized the total space required for all arrays after fusion [9, 10, 11].

However, for many of the computational structureswithin the coupled cluster component of the NWChem software
suite, we find instances where the minimal memory required after optimal loop fusion is still too large. In such
situations, in order to create an executable implementation, it is essential to trade space for time, by only storing
lower dimensiona slices of the largest arrays, and recomputing the slices as needed. This is the compiler optimization
problem we address in this paper. We extend the use of a previously proposed concept of a fusion graphand develop
an agorithm that explores a space of aternative space-time trade-offs to determine the bestset of lower-dimensional
arrays that fit within a specified space limit, so that the additional recomputation cost is minimized.

The problem addressed in this paper is one of several optimization issues being addressed in the context of alarger
effort to develop atool for the automatic synthesis of high-performance parallel code from a high-level specification
for aclass of quantum chemistry calculations.
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Figure 2: The Planned Synthesis System

Figure 2 shows the components of the system being developed. A brief description of the componentsfollows:
Algebraic Transformations: It takes high-level input from the user in the form of tensor expressions (essentially
sum-of-products array expressions) and synthesizes an output computation sequence. The Algebraic Transformations
module uses the properties of commutativity and associativity of addition and multiplication and the distributivity of
multiplication over addition. It searchesfor all possible ways of applying these propertiesto an input sum-of-products
expression, and determines a combination that resultsin an equivalent form of the computation with minimal operation
cost.

Memory Minimization: The operation-minimal computation sequence synthesized by the Algebraic Transformation
module might require an excessive amount of memory due to the large temporary intermediate arrays involved. The
Memory Minimization module attempts to perform loop fusion transformations to reduce the memory regquirements.
Thisis done without any change to the number of arithmetic operations.

Space-Time Transformation: If the Memory Minimization module is unable to reduce memory requirements of the
computation sequence below the available disk capacity on the system, the computation will be infeasible unless a
successful space-time trade-off is performed. Thisis the issue we addressin this paper. If no satisfactory transforma-
tion isfound, feedback is provided to the Memory Minimization module, causing it to seek a different solution. If the
Space-Time Transformation module is successful in bringing down the memory requirement below the disk capacity,
the Data L ocality Optimization module isinvoked.

Data L ocality Optimization: If the space requirement exceeds physical memory capacity, portions of the arrays must
be moved between disk and main memory as needed, in away that maximizesreuse of elementsin memory. The same
considerations areinvolved in effectively minimizing cache misses — blocks of data must be moved between physical
memory and the limited space available in the cache. These issues have been addressed elsewhere [3, 4].

Data Distribution and Partitioning: The final step is to determine how best to partition the arrays among the pro-
cessors of a parallel system. We assume a data-parallel model, where each operation in the operation sequence is
distributed across the entire parallel machine. The arrays are to be digointly partitioned between the physical mem-
ories of the processors. This model alows us to decouple (or loosely couple) the paralelization considerations from
the operation minimization and memory considerations.



for a, e, f

for i, ]
Xaecf += Tijae Tiject

f0r c, e b, K array | space | time
[Tlcebk = fi(c, e, b, k) X VT | VTO?
for a, f, b, k T1 V30 | C;V30
[ T2arok = f2(a, f, b, k) T2 | VPO | ¢ivPo
for c, e, a, f Y v V0o
for b, k E 1 vt

[ Yceaf += Tlcebk T2afbk
for c, e, a, f
[ E += Xaect Yceaf

Figure 3: Unfused operation-minimal form.

In the next section we use an example from quantum chemistry to further elaborate on the space-time trade-off
optimization addressed in this paper.

3 Elaboration of the Problem

One of the most computational ly intensive components of many quantum chemistry packagesisthe CCSD(T) scheme.
It isacoupled cluster approximation that includes all single and double excitations from the Hartree-Fock wavefunc-
tion plus a perturbative estimate for the connectedriple excitations. For molecules well described by a Hartree-Fock
wave function, the CCSD(T) method predicts bond energies, ionization potentials, and electron affinities to an accu-
racy of approximately +0.5 kcal/mol, bond lengths accurate to +0.0005 A, and vibrational frequencies accurate to
+5cm . Thislevel of accuracy is adequate to answer many of the questionsthat arise in studies of complex chemical
systems.

As a motivating example for the problem addressed, we discuss a component of the CCSD(T) calculation. The
following representative equation arises in the Laplace factorized expression for linear triples perturbation correction.

1
A3A = 5 ( ce afYae cf + Xae chce af + Xae '»"fYC6 af + Xﬁe chce af + Xae CfYC€ af + Xﬁé c YCéﬁf_)

wherethe X and Y intermediates are of theform X ;. .y = t;‘ftfjf and Y. .r = (cb || ek)(ab || fk), respectively.
Integral swith two vertical bars have been antisymmetrized and may beexpressedas: ({pq || rs) = (pq | rs)—(pq |
sr)), where integrals with one vertical bar are of the form (uv | wA) = [ [dr3ds®¢, ()¢, (S)|r — 5| du ()P (S)
and are quite expensive to compute (requiring on the order of 1000 arlthmetlc operations). Electrons may have either
up or down (or aphal/beta) spin. Down spin is denoted here with an over bar. The indices i, j, k, [, m,n refer to
occupied orbitals), of number O between 30 and 100. Theindicesa, b, ¢, d, e, f refer to unoccupied orbital s of number
V between 1000 and 3000. The integrals are written in the molecular orbital basis, but must be computed in the
underlying atom-centered Gaussian basis, and transformed to the molecular orbital basis. We omit these detailsin our
discussion here.

A3A is one of many contributions to the energy, and among the most expensive, scaling as O(OV °). Here, we
assume that we have already computed the amplitudes ¢, and they must be read as necessary, and contracted to form
ablock of X. Theintegrals{cb || ek) must be recomputed as necessary, contracted to form ablock of Y corresponding
to X, and the two contracted to form the scalar contribution to the energy.

Figure 3 shows pseudo-code for the computation of one of the energy components E for A3A. Temporary arrays
T'1 and T2 are used to store the integrals of form (ab || ek), where the functions f1 and f2 represent the integral
calculations. The intermediate quantities X ,..s are computed by contracting over (i.e., summing over products of)
input array ', while the intermediate quantities Y.,y are obtained by contracting over T'1 and 17'2. Thefinal result is
asingle scalar quantity £, that is obtained by adding together the O(OV ?) pair-wise products X secfYeea -

The cost of computing each integral f1, f2 isrepresented by C';, and in practice is of the order of hundreds or
a few thousand arithmetic operations. The pseudo-code form shown in Fig. 3 is computationally very efficient in
minimizing the number of expensiveintegral function evaluations f1 and f2, and maximizing the reuse of the stored



for a, e, ¢

, f

for a, e, ¢, f

[ for i, j [ for i, |
_[Xaecf += Tijae Tijcf [X+= Tijae Tijct
for a, f for b, k
[ for c, e, b, k T1 = fi(c, e, b, k)
[ Tlcebk = fi(c, e, b, k) T2 = fo(a, f,b, k)
for c, e Y += T1 T2
[for a, f, b, k = | E+= XY
| [ T2arok = fa(a, f, b, k) array | space | time
f_or c, e, a, f X 1 VIO?
for b, k T1 1 | cvoo
L [ Yeeat += Tlcebk T2afbk T2 1 C;V*0
for c, e, a, f Y 1 V50
[ E += Xaect Yceaf E 1 \%

Figure 4. Use of redundant computation to alow full fusion.

for a!, ef, ct, f!

[ for a, e, ¢, f
for i, j
| [ Xaect *+= Tijae Tijet aray | space time
for b, k X B? Vi0?
for c, e TL | B | Gi(%E*VP0
[ Tlce = fl(C,e,b,k) 2 V)B2 3
for a, f T2 B4 Cz(’T5 V20
[TZaf = fa(a, f, b, k) Y B V4O
for c, e, a, f E ! v
L [ Yeeat += Tlce T2af
for ¢, e, a, f
L [ E += Xaect Yceaf

Figure 5: Use of tiling and partia fusion to reduce recomputation cost.

integralsin 7'1 and T2 (each element of T'1 and 7'2 is used O(V %) times). However, it isimpractica due to the huge
memory requirement. With O = 100 and V' = 5000, the size of T'1, T2 is O(10'*) bytes and the size of X, Y is
0O(10'%) bytes. By fusing together pairs of producer-consumer loops in the computation, reductions in the needed

array sizes may be sought, since the fusion of aloop with common index in the pair of loops allows the elimination of

that dimension of the intermediate array. It can be seen that the loop that produces X (withindicesa, e, ¢, f), theloop
that produces Y (with indices ¢, e, a, f) and the loop that consumes X and Y to produce E (with indices ¢, e, a, f)

can all befully fused together, permitting the elimination of all explicit indicesin X and Y to reduce them to scalars.

However, the loops producing 7'1 (with indices ¢, e, b, k) and T'2 (with indices a, f, b, k) cannot also be directly fused
with the other three |oops because their indices do not match.

Figure 4 shows how reduction of space for 7'1 and T2 can be achieved by introduction of redundant loops around
their producer loops — add loops with the missing indices a, f for T'1 and ¢, e for T2. Now all five of the loops have
commonindicesa, e, ¢, f that can be fused, permitting elimination of those indices from all temporaries. Further, by
fusing together the producer loops for 7'1 and 72 with their consumer loop that producesY’, the b, k indices can also
be eliminated from 7'1 and 7°2. Dramatic reduction of memory space is achieved, reducing all temporariesT'1,72, X
and Y to scalars. However, the space savings come at the price of significant increase in computation. Now, no reuse
is achieved of the quantities derived from the expensive integral calculations f1 and f2. Since C'; is of the order of
1000 in practice, the integral calculations now dominate the total compute time, increasing the operation count by
three orders of magnitude over the unfused formin Fig. 3.

A desirable solution would be somewhere in between the unfused structure of Fig. 3 (with maximal memory
requirement and maximal reuse) and thefully fused structure of Fig. 4 (with minima memory requirement and minimal
reuse). ThisisshowninFig. 5, wheretiling and partial fusion of theloopsisemployed. Theloopswithindicesa, e, ¢, f
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Figure 6: Fusion graph for unfused operation-minimal form of loop in Figure 3

aretiled by splitting each of those indicesinto a pair of indices. The indices with a superscript ¢ represent the tiling

loops and the unsuperscripted indices now stand for intra-tile loops with arange of B, the block size used for tiling.

For eachtile (a’, e, ¢, f), blocks of T'1 and T'2 of size B are computed and used to form B* product contributions
to the appropriate components of Y, which are stored in an array of size B *.

Asthetilesize B isincreased, the cost of function computationfor f1, 2 decreases by factor B 2, dueto the reuse
enabled. However, the size of the needed temporary array for Y increases as B * (the space needed for X can actually
be reduced back to a scalar by fusing its producer loop with the loop producing E, but Y’s space requirement cannot
be decreased). When B* becomes larger than the size of physical memory, expensive paging in and out of disk will
be required for Y. Further, there is diminishing returns on reuse of 7'1 and T'2 after B 2 becomes comparable to C';,
since the loop producing Y now becomes the dominant one. So we can expect that as B is increased, performance
will improve and then level off and then deteriorate. The optimum value of B will clearly depend on the cost of access
at the various levels of the memory hierarchy.

The computation considered here is just one component of the A3 A term, which in turnis only one of very many
terms that must be computed. Although developers of quantum chemistry codes naturally recognize and perform
some of these optimizations, a collective analysis of al these computationsto determinetheir optimal implementation
is beyond the scope of manual effort. While recent developments in optimizing compiler research have resulted in
significant strides in datalocality optimization, we are unaware of any existing work that addresses the kind of space-
time trade-off optimization required in the context we consider.

4 Solution Approach: The Fusion Graph

The operation-minimization procedure discussed above usually results in the creation of intermediate temporary ar-
rays. Sometimes these intermediate arrays that help in reducing the number of arithmetic operations create a problem
with the memory capacity required.

For a computation comprising of a number of nested loops, there will generally be a number of fusion choices,
that are not all mutually compatible. Thisis because different fusion choices could require different loops to be made
the outermost. A data structure that we call a fusion graph can be used to facilitate enumeration of al possible
compatible fusion configurationsfor a given computation tree.

Figure 6 shows the fusion graph for the unfused form of the computation from Fig. 3. Corresponding to each
node in a computation tree, the fusion graph has a set of vertices corresponding to the loop indices of the node of the
computation tree. In Fig. 6, we do not show the operator tree corresponding to the computation, but directly illustrate
the fusion graph. The potential for fusion of acommon |oop among a producer-consumer pair of loop nestsisindicated
in the fusion graph through a dashed potential fusion edge connecting the corresponding vertices. Leaf nodes in
the fusion graph correspond to input arrays or primitive function evaluations and do not represent a loop nest. The
edges from the leaves to their parents are shown as dotted edges and do not affect the fusion possibilities. If a pair
of loop nests is fused using one or more common loops, it is captured in the fusion graph by changing the dashed
potential-fusion edges to continuous fusion edges. If more than two loop nests are fused together, a chain of fusion
edges results, called afusion chain The scope of a fusion chaiis the set of nodesit spans. The fusion graph allows us
to characterize the condition for feasibility of a particular combination of fusions: the scope of any two fusion chains
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Figure 7: Fusion graphs showing redundant compution and tiling.

in afusion graph must either be digoint or a subset/superset of each other. Scopes of fusion chains do not partially
overlap because loops do not (i.e., loops must be either separate or nested).

The fusion graph in Fig. 6 can be used to determine the fusion possibilities. On the left side of the graph, the
edges corresponding to (a, e, ¢, f) can al be made fusion edges, suggesting that complete fusion is possible for the
loop nests producing and consuming X, reducing it to a scalar. Similarly, on the right side of the graph, the edges
corresponding to (c, e, a, f) can also be made fusion edges, reducing Y to a scalar. Further, by creating fusion edges
for indices (¢, e), the producer loop for T'1 can be fully fused with the Y loop that consumes it. However, now the
producer loop for T2 cannot be fused since the addition of any fusion edge (say for index a) will result in partially
overlapping fusion chainsfor a and (¢, e).

The fully fused version from Fig. 4 can be represented graphically as shown in Fig. 7(a). Additiona vertices have
been added for indices (¢, ¢) and (a, f) respectively at the nodes corresponding to the producer loopsfor 7'1 and 7°2.
Now, complete fusion chains can be created without any partial overlap in the scopes of the fusion chains. From
the figure, it can be seen that in fact the redundant computation need only be added to one of T'1 or T2 to achieve
complete fusion — for example, removing the additional vertices for (a, f) at 72 does not violate the non-partial-
overlap condition for fusion.

Thefusion graph was used to devel op an algorithm [ 10, 9] to determine the combination of fusionsthat minimizes
the total storage required for al the temporary intermediate arrays. A bottom-up dynamic programming approach
was used, that maintains a set of pareto-optimal fusion configurations at each node, merging solutions from children
nodes to generate the optimal configurationsat a parent. The two metrics used are the total memory required under the
subtree rooted at the node, and the constraintsimposed by a configuration on fusion further up thetree. A configuration
isinferior to another if it is “more or equally constrainirigwith respect to further fusions than the other, and uses no
less memory. At the root of the tree, the configuration with lowest memory requirement is chosen.

Although the complexity of the agorithm is exponentia in the number of index variables and the number of
solutions could in theory grow exponentially with the size of the expression tree, the number of index variables in
practical applications is small enough and there is indication that the pruning is effective in keeping the size of the
solution set at each node small.

The fusion graph framework addresses a memory minimization problem, without changing the operation count. If
we applied it to the fusion graph of Fig. 3, the bottom-up dynamic programming algorithm would evaluate a number
of potential fusion combinations and find that fusion could be used to reduce the sizes of arrays X and Y and convert
them to scalars. It would also be able to reduce the size of one of the two temporary arrays 7'1 or 72, but would
be unable to reduce the other at al. Although three of four temporary arrays would be dramatically reduced in size,
the size of the single remaining temporary array (of size O(V 20)) would make the problem unexecutable on most
systems due to disk storage limits.

An enhancement of the model to capture awider range of space-timetrade-offswas already seenin Fig. 7(a), where
additional vertices were added to the fusion graph to introduce redundant recomputation to the producer loops for T'1
and 72 and thereby enable a greater degree of fusion. As discussed earlier, the fully fused version of the loops results
in excellent memory savings but adds excessive recomputation costs. A combination of fusion and tiling is needed to
achieve a good balance between recomputation and memory usage. Figure 7(b) shows how the possibility of tiling
can beintroduced into the fusion graph. For each loop of aloop nest that is to be tiled, the corresponding vertex in the
fusion graphisreplaced by apair of vertices— oneto represent the outer tiling loop and another to denotethe intra-tile



loop. By a choice of fusion configuration that only involves the tiling loops, a combination of fusion and tiling can
be represented. This framework can be used to explore a range of space-time trade-offs. However, the search space
is significantly larger than that for the memory minimization problem discussed in the previous sub-section, requiring
that selective search strategies be devel oped.

In this paper, we develop atwo-step search strategy for exploration of the space-time trade-off:

e Search among all possible ways of introducing redundant loop indices in the fusion graph to reduce memory
reguirements, and determine the optimal set of lower dimensional intermediate arrays for various total memory
limits. In this step, the use of tiling for partial reduction of array extentsis not considered. However, among all
possible combinations of lower dimensional arrays for intermediates, the combination that minimizes recompu-
tation cost is determined, for a specified memory limit. The range from zero to the actual memory limit is split
into subranges within which the optimal combination of lower dimensional arrays remains the same.

e Becausethefirst step only considers complete fusion of loops, each array dimension is either fully eliminated or
left intact, i.e. partial reduction of array extentsis not performed. The objective of the second step isto allow for
such arrays. Starting from each of the optimal combinations of lower dimensional intermediate arrays derived
inthefirst step, possible ways of using tiling to partially expand arrays aong previously compressed dimensions
are explored. The godl is to further reduce recomputation cost by partially expanding arraysto fully utilize the
available memory

5 Dimension Reduction for Intermediate Arrays

In thefirst step of the space-time trade-off algorithm we search among all possible combinations of redundant compu-
tations and loop fusions. The search is structured as a dynamic programming a gorithm with pruning.

Theinput to this algorithmis an expression tree representing the operation-minimal computational structure of the
input formula. Expression tree nodes are of four types:

e array referencesa[ i] with index vector i,

e functioncalls f( i) with argument vector 7,

e summation quantifierssunt 4, t) with summation indicesi and subtree ¢, and
e binary operatorsbi n( o, [, r) with operator o (+, -, or *) and subtrees/ and .

For each tree node v, let indices(v)be the set of loop indices needed for evaluating v, and let fusible(v)be the set of
indices that can be fused with the parent (indices other than summation indices). Anindex i is aredundant index for
node v if 7 isnot an index of v but of some ancestor node of v. E.g., inFig. 6 indicesa and f are redundant indices for
T'1. Let redundant(vpe the set of redundant indices for v.

Introducing a redundant loop index i to a node v can alow additional fusion between v and its parent, which
reduces the dimension of the intermediate array holding the result of v, in exchange for recomputing v in every
iteration of the i loop. The space-time trade-off algorithm computes for every combination of redundant indices the
loop fusion structure that results in the least amount of total memory.

In a bottom-up traversal, we compute a set of solutions for each node v. Each solution consists of a nestingof the
loops at v, the memory cost me, the recomputation cost rc, and pointers to the solutions of the subtrees from which
this solution was obtained. A nesting is a sequence of index sets that represents constraints on the loop structure for
computing v. E.g., the nesting (ij, k) indicates that the loops i and j can be arbitrarily permuted, while & must be
nested inside of ¢ and j. A solution s’ is inferior to solution s if its nesting is more constraining than that of s (e.g.,
(1, j, k) ismore constraining than (37, k)), and if its memory cost and recomputation cost are both higher than those of
s. The set of solutions for anodeis recursively computed as follows:

e Supposew isan array reference of theforma[ ] . The set of possible loops around the array nodeis fusible(t)u
powerset(redundant(t) with no constraints on the order of the loops. For the purpose of space-time trade-offs,
we do not model the cost of reading arrays from disk. Therefore, we form a solution for each of these nestings
with zero memory and recomputation costs.



e Suppose v is of the form f(4) . Similar as for array references, we form a set of solutions for al possible
nestings. For each nesting /, we initialize the memory cost to the storage needed for holding the result of f( )
if al theindicesin h are fused with the parent. The recomputation cost is initialized to the number of times f
must be recomputed for al redundant indicesin h times the cost of afunction call.

e Suppose v is of the form sun{ ¢, t) . For each solution s for subtree ¢, we initialize a solution s’ for the
summation node by adding one to the memory cost (for the scalar holding the result of the summation assuming
full fusion with the parent) and by adding the recomputation cost for the summation node to that of the subtree.
We then remove the summation indices ¢ from the nesting in s’. All indices that are constrained to be nested
inside the summation indices must be removed as well since they cannot be fused with the parent anymore.
Removing a non-summationindex j from the nesting results in an increase in memory since the 5 dimension of
the resulting array must be stored. Finally, inferior solutions are pruned from the set of solutionsfor .

e Supposew isof theformbi n( o, I, r) . Since the subtrees and » might not have all theindices of v (indices(v)
isthe union of indices(l)and indices(r), wefirst need to compute all the possible waysin which the solutionsfor
[ and r might be fused with v. For each solution s for a subtree, we compute the set of all prefixes of the nesting
of s (e.g., for the nesting (ij, k), the prefix (i) represents the loop structure in which only i is fused with v).
For all the nestings obtained in this way we construct new solutions for the subtrees by increasing the memory
cost by the array dimensions that now need to be stored. Then, for al pairs of solutions s; and s,. for [ and r,
respectively, we merge the constraints on the loop structure from the nestings of s; and s,.. If s; and s, have
compatible nestings, we obtain a merged nesting for v. E.g., for the nestings (i, k{) and (i, j k) for the subtrees,
we would obtain the nesting (i, 7, k, [} for v. Finally, we construct solutions for v out of the merged nestings by
adding the memory and recomputation costs for v to the costs for the subtrees and then prune inferior solutions.

Theresult of the above algorithm is a set of solution trees for the original expression tree. A solution tree contains
a nesting and memory and recomputation costs for each tree node of the expression tree. For each node v, the nesting
for v only reflects constraints on the loop structure for the subtree rooted at v. From a solution tree we compute
afusion tree by propagating constraints on loop nestings from the top of the tree down to the leaves. The resulting
fusiontreeisthen trandated into an abstract syntax tree by constructing acomputation order for the tree nodes. A node
v is computed after its subtrees. For a binary node, the subtree with the most loops fused is computed just before the
parent. After the computation order is determined, the loops areinserted to form an abstract syntax tree representation
of the code. For example, for the expression tree corresponding to the formula sequence in Fig. 1(a) this algorithm
constructs the pseudo-codein Fig. 8 as the solution with the minimal recomputation cost that stays below 10 '2 words.

6 Partial Expansion of Reduced I ntermediates

Once a set of optimal solutionsis determined by the first step of the space-time trade-off agorithm, we resort to array
expansion for the second step. The second step operates on the abstract syntax tree generated by the first step of the
algorithm. In thistree, an interior node represents a loop nest, while aleaf represents the computation of a node from
the expression tree. A parent-child pair of nodes denotes an outer-inner loop pair, whereas nodes with the same parent
represent adjacent loops. For an example, the abstract syntax tree corresponding to the pseudo-codein Fig. 8is shown
inFig. 9.

The total number of operations needed to compute the final result is the sum over the number of operations for
the leaves of the abstract syntax tree. For each leaf, the number of operationsis obtained by multiplying the cost of
the operation (one for multiplications or additions, a higher cost for function evaluations) by the loop ranges of all
its ancestors in the abstract syntax tree. For example, the number of operations required to compute X in Fig. 9 is
2N.N,N¢N.N;N; = 20%V* operations (the factor of 2 comes from one multiplication and one addition). Likewise,
the number of operations necessary to compute 7'2 is 1000N .N,N¢ N, N, = 10000V* operations, assuming 1000
floating point operations are needed for each evaluation of f2. In the case of X the number of operations cannot be
further reduced. There is no redundant cost in computing X. In contrast, 72 is repeatedly computed N . = V' times,
since ¢ is a redundant loop for 72. For the pseudo-code presented in Fig. 8 and the corresponding abstract syntax
tree in Fig. 9, the recomputation cost is 1000(N. — 1)N,N¢ NN, = 10000V3(V — 1), coming entirely from the
evaluation of 7'2.
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E=0
for c
for b,e k
Ti[b,e, k] = f1(c,e, b, k)
for a,f
for e
Y[e] =0
for b,k
T2 = f2(a,f, b, k)
for e
Y[e] += T2 * T1[ b, e, K]
for e
X=0
for i,j
X += T[i,j,a,e] * Ti,j,c,f]
E += Y[e] * X
return E

Figure 8: Pseudo-code for the solution with the lowest recomputation cost after the first step of the algorithm, subject

to amemory limit of 10'? words. The array sizesare N; = N; = N, = O = 100and N, = N, = N, = N, =
Ny =V = 3000. Theredundant evaluation of f2(a, f,b, k) is performed N. = V' = 3000 times.

T1 - 1 T2t v . TI*T2 X i TT E4= Xty
Figure 9: Abstract syntax tree for the fused loop structure shown in Fig. 8. A nodein the tree represents a loop nest;

a parent-child pair represents an outer loop (parent node), and an inner loop (child node). The leaves of the tree are
multiplication and addition computations or function evaluations.
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E=0
for c_t
for c_i
cC =c_i +c_t * NB
for b,e k
Tl[c_i,b,e, k] = f1l(c,e, b, k)
for a,f
for e, c_i
Y[c_i,e] =0
for b,k
T2 = f2(a,f, b, k)
for e, c_i
Y[c_i,e] += T2 * Ti[c_i, b, e, K]
for c_i
c =c_i +c_t* NB
for e
X[c_i] =0
for i,j
Xc_i] +=T[i,j,a,e] * Tli,j,c,f]
E += Y[c_i,e] * Xc_i]
return E

Figure 10: Pseudo-code for the solution with the lowest recomputation cost after the second step of the algorithm,
subject to amemory limit of 102 words. The ¢ loop is split into the tiling and intra-tile loops ¢; and ¢;. The ranges of
these loops are N and B, respectively. B isthe block size, and N 5 is the number of blocks. Their product is equal
totheoriginal range N. = V = 3000 of the ¢ loop. ThearraysT'1, Y and X are partially expanded from size one to
size B aong the ¢ dimension. The evaluation of f2(a, f,b, k) is performed N 5 times.

In practice, the intermediate arrays do not have to be fully down-sized to a lower number of dimensions. For
example, the solution in Fig. 8 uses only 9.0 x 108 words, much |ess than the memory limit of 102 words. We can
therefore increase the sizes of some intermediate arrays in order to reduce the recomputation cost. In our algorithm,
each redundant node in the tree is split into a parent-child pair, corresponding to a tiling loop node, and an intra-tile
loop node. Figures 10 and 11 present the pseudo-code and abstract syntax tree for the same computation, this time
performed with loop tiling. In this example, the root of the abstract syntax tree ¢ is the only redundant loop, but in
general the number of redundant loops could be as large as the number of nodes in the abstract syntax tree. Herethe ¢
loop is split into the tiling and intra-tile loops ¢; and ¢;. The ranges of these loops are NV g (the number of blocks) and
B (theblock size), respectively, such that their product isequal totheoriginal range: Bx N g = N. = V = 3000. The
arraysT'1,Y and X are partialy expanded from size oneto size B along the ¢ dimension. The redundant computation
of 72 is now only performed N g times instead of V.. times, resulting in alower recomputation cost. The maximum
value for the block size B is determined by the total amount of memory available in the system.

Our agorithm for determining the best choice for array expansion (the one that minimizes recomputation cost,
and still stays within the total amount of memory available) proceeds as follows:. for a given untiled abstract syntax
tree generated in the first step (Fig. 9), all its redundant nodes are first split into tiling/intra-tile pairs. Subsequently,
the resulting abstract syntax tree is transformed by intra-tile loop permutation and fission into an equivalent abstract
syntax tree with the property that each intra-tile loop is either redundant or non-redundant with respect to al of its
descendant leaves. At this point those intra-tile loops which are redundant with respect to their descendant leaves are
removed.

Figures 10 and 11 show the pseudo-code and abstract syntax tree after such atransformation. The ¢ ; loop is split
into three loops along different branches of thetree. It is present as an ancestor of al the leaves except for the one that
produces 72, whereit has been removed to reduce the recomputation cost. After thistree transformation the algorithm
proceeds by choosing numerical values for the tile sizes, thus fixing the loop ranges for all the nodes in the abstract
syntax tree. If the original range of aloop is N ., choosing a block size B for the intra-tile loop aso fixes the range
Np = N./B of thetiling loop.

We thus obtain a new abstract syntax tree with well-defined loop ranges. Using the loop ranges, we can determine
the recomputation cost for the entire abstract syntax tree by adding the number of redundant operations for each leaf
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Tl;fl T2=12 Y+¥T1*T2 X +=THT E+=X*Y

Figure 11: Abstract syntax tree for the fused and tiled loop structure shown in Fig. 10. The ¢ loop is redundant for
the leaf evaluating f2(a, f, b, k), resulting in a large recomputation cost. To improve upon that, the redundant loop ¢
is split into atiling/intractile pair of loops (c; and ¢;, respectively). The intra-tile loops ¢; are then moved by fission
and permutation operations toward the bottom of the tree. The ¢; loop is finally discarded for the leaf computing
f2(a, f,b, k). Theremaining ¢; loops are indicated by empty circles.

of the tree. With this approach, we arrive at a total recomputation cost for the abstract syntax tree for given tile sizes.
We repeat the cal culation of the recomputation cost for different sets of tile sizes. We define our tile size search space
in the following way: if N; is the loop range of a recomputation loop, we use atile size starting from B = 1 (no
tiling), and successively increasing B by doubling it until it reaches IV;. This ensures a slow (logarithmic) growth of
the search space for increasing values of V;. If N; is small enough, an exhaustive search can instead be performed.

Thistiling procedure and search for the optimal tile sizesis repeated for all solutions produced by the first step of
the algorithm. We finally choose the solution with the minimal recomputation cost.

7 Results

In this section we present the results of our two step space-time trade-off algorithm for the NWChem exampl e intro-
duced in Section 3. We choose input parameters relevant to the addressed problem: N; = N; = N = O = 100,
No =Ny =N, =N, =Ny =V = 3000, functionevaluation cost C'; = 1000 floating point operations and available
memory of M = 10'2 words.

Figure 5 shows the pseudo-codefor the solution that was manually optimized by adomain expert.  Theaq, ¢, e, and
f loopsare splitinto tiling and intra-tile loops of size N g and B, respectively. They obey the constraint Bx Ng = V.
The largest intermediate array is Y, which is a four-dimensional block of size B*. The recomputation cost of this
solution is 2C;0V3(V?2/B? — 1). Requiring that the total memory usage is less than M = 102 words, and using
the values for O, V and C; provided in the previous paragraph, we arrive at a recomputation cost of ~ 5.1 x 106
operations. The recomputation cost is due to the redundant evaluation of the functions f1 and f2 N ?, times.

The optimal solution is obtained using the two step space-time trade-off algorithm presented in Sections 5 and 6.
The first step produces six solutions. All other possible loop fusion structures have both higher memory usage and
higher recomputation cost than one or more of these solutions. Figure 12 shows the six solutions ranging in memory
usage from three wordsto 2.7 x 1015 words, and in recomputation cost from zero operationsto 4.9 x 10 22 operations.
The memory limit in our example is marked by the solid horizontal line. Solution number 1 istrivial, and represents
the memory optimal solution with no redundant computation. Such a solution always exists for any operator tree.
If its memory usage is below the memory limit, then the second step of the algorithm is no longer necessary, and
this becomes the optimal final solution. Otherwise, it is discarded, along with all the other solutions that are above
the memory limit (in this case, only number 1). The rest of the solutions (2 through 6 in this example) are then
passed through the second step of the algorithm. Figure 8 shows the pseudo-codefor solution 2, which has the lowest
recomputation cost (=~ 8.1 x 10'® floating point operations) after the first step of the algorithm.

1The NWChem code also contains code for transforming integrals from the atomic basis into the molecular basis. This transformation is
encapsulated in the function calls.
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Figure 12: Relationship between memory usage and recomputation cost. Solid triangles represent the 6 different

solutions produced by the first step of the space-time trade-off algorithm. The horizontal line shows the hard memory

limit of M = 10'2 words used for this example. Except for solution 1, which uses more memory than the 10 *2 words
limit, al the other solutions are analyzed by the second step of the algorithm.

The array expansion step brings significant further reduction of the recomputation cost for all the remaining 5
solutions. Their recomputation costs, ranging from 8.1 x 1018 to 4.9 x 10%*2 operations after step 1, are reduced to
between 5.4 x 10 and 5.1 x 1016 operations. The pseudo-codefor thefinal optimal solutionis presentedin Fig. 10. It
happensto be the tiled form of solution 2, which was the best solution before the array expansion step. However, this
isjust a coincidence, due in part to the very small operator tree considered for this example, which in turn generates
a very limited number of solutions. In general, any of the solutions obtained in step one could become the optimal
solution after tiling.

We notethat thefinal solutionisnot trivial, infact it has arather complex structure. We also observethat, although
their cost issimilar, all the solutions (thetiled versions of 2 through 6) have abstract syntax treesthat are quite different.
Indeed, even for arelatively simple formula, like the one used in this example, the collection of solutionsis rather rich
and non-trivial. Manual optimization is unlikely to find and test all possibilities, especially for larger trees. It is
also interesting to note that one of the solutions produced by the algorithm (the tiled version of 6) isidentical to the
manually optimized pseudo-code presented in Fig. 5. Its recomputation cost of 5.1 x 10 ¢ operationsis roughly one
order of magnitude higher than the cost of the optimal solution.

We investigate the recomputation cost of the optimal code in comparison with that of the manually generated code
for various values of the input parameters O, V', and M, consistent with their physical meaning. We find, as expected,
that the structure of the optimal code may change from one set of input parametersto another. The improvement factor
over the manual code presented in Fig. 5 ranges from 1 (when the manual code is optimal) to 20, depending on O, V,
and M.

8 Conclusion

This paper describes a project on developing a program synthesis system to facilitate the development of high-
performance parallel programsfor aclass of computations encountered in computational chemistry and computational
physics. These computations are expressible as a set of tensor contractions and arise in electronic structure calcula
tions. The paper provides an overview of the planned synthesis system and presents a new optimization approach that
can serve as the basis for a key component of the system for performing space-time trade-off optimizations.

The approach undertaken in this project bears similarities to some projects in other domains, such as the SPIRAL
project which is aimed at the design of a system to generate efficient libraries for digital signal processing algorithms
[19]. SPIRAL generates efficient implementations of algorithms expressed in a domain-specific language called SPL
by a systematic search through the space of possible implementations. Several factors such as the lack of a need to
perform space-time trade-offs renders the task faced by efforts such as SPIRAL and FFTW [5] less complex than what
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computational chemists face. Other effortsin automatically generating efficient implementations of programsinclude
the telescoping languages project [8], the ATLAS[18] project for deriving efficient implementation of BLAS routines,
and the PHIPAC [2] and TUNE [17] projects.

The paper describes a two step algorithm for the space-time trade-off optimization problem, and presents the
results of applying it to a test case from the quantum chemistry code NWChem. The solution derived using our
implementation of the algorithm reduces the recomputation cost of the coupled cluster calculation by a factor of 10
for typical problem sizes.
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