
 1

A Brief Essay on Software Testing
Antonia Bertolino, Eda Marchetti

Abstract— Testing is an important and critical part of the software development process, on which the quality and reliability of the
delivered product strictly depend. Testing is not limited to the detection of “bugs” in the software, but also increases confidence in its
proper functioning and assists with the evaluation of functional and nonfunctional properties. Testing related activities encompass
the entire development process and may consume a large part of the effort required for producing software. In this chapter we
provide a comprehensive overview of software testing, from its definition to its organization, from test levels to test techniques, from
test execution to the analysis of test cases effectiveness. Emphasis is more on breadth than depth: due to the vastness of the topic,
in the attempt to be all-embracing, for each covered subject we can only provide a brief description and references useful for further
reading.

Index Terms — D.2.4 Software/Program Verification, D.2.5 Testing and Debugging.

—————————— u ——————————

1. INTRODUCTION

esting is a crucial part of the software life cycle, and
recent trends in software engineering evidence the
importance of this activity all along the development

process. Testing activities have to start already at the re-
quirements specification stage, with ahead planning of test
strategies and procedures, and propagate down, with deri-
vation and refinement of test cases, all along the various
development steps since the code-level stage, at which the
test cases are eventually executed, and even after deploy-
ment, with logging and analysis of operational usage data
and customer’s reported failures.
Testing is a challenging activity that involves several high-
demanding tasks: at the forefront is the task of deriving an
adequate suite of test cases, according to a feasible and cost-
effective test selection technique. However, test selection is
just a starting point, and many other critical tasks face test
practitioners with technical and conceptual difficulties
(which are certainly under-represented in the literature):
the ability to launch the selected tests (in a controlled host
environment, or worse in the tight target environment of an
embedded system); deciding whether the test outcome is
acceptable or not (which is referred to as the test oracle
problem); if not, evaluating the impact of the failure and
finding its direct cause (the fault), and the indirect one (via
Root Cause Analysis); judging whether testing is sufficient
and can be stopped, which in turn would require having at
hand measures of the effectiveness of the tests: one by one,
each of these tasks presents tough challenges to testers, for
which their skill and expertise always remains of topmost
importance.
We provide here a short, yet comprehensive overview of
the testing discipline, spanning over test levels, test tech-
niques and test activities. In an attempt to cover all testing

related issues, we can only briefly expand on each argu-
ment, however plenty of references are also provided
throughout for further reading. The remainder of the chap-
ter is organized as follows: we present some basic concepts
in Section 2, and the different types of test (static and dy-
namic) with the objectives characterizing the testing activity
in Section 3. In Section 4 we focus on the test levels (unit,
integration and system test) and in Section 5 we present the
techniques used for test selection. Going on, test design,
execution, documentation,d management are described in
Sections 6, 7, 8 and 9, respectively. Test measurement issues
are discussed in Section 10 and finally the chapter conclu-
sions are drawn in Section 11.

2. TERMINOLOGY AND BASIC CONCEPTS
Before deepening into testing techniques, we provide here
some introductory notions relative to testing terminology
and basic concepts.

2.1 On the nature of the testing discipline
As we will see in the remainder of this chapter, there exist
many types of testing and many test strategies, however all
of them share a same ultimate purpose: increasing the
software engineer confidence in the proper functioning of
the software.
Towards this general goal, a piece of software can be tested
to achieve various more direct objectives, all meant in fact
to increase confidence, such as exposing potential design
flaws or deviations from user’s requirements, measuring
the operational reliability, evaluating the performance
characteristics, and so on (we further expand on test objec-
tives in Section 3.3); to serve each specific objective, differ-
ent techniques can be adopted.
Generally speaking, test techniques can be divided into two
classes:
• Static analysis techniques (expanded in Section 3.1),

where the term “static” does not refer to the techniques
themselves (they can use automated analysis tools), but

————————————————
• Antonia Bertolino is with the Istituto di Scienza e Tecnologie “A. Faedo”

Area della ricerca CRD di Pisa, Via Moruzzi 1, 56124 Pisa Italy.
E-mail: antonia.bertolino@isti.cnr.it.

• Eda Marchetti is with the Istituto di Scienza e Tecnologie “A. Faedo” Area
della ricerca CRD di Pisa, Via Moruzzi 1, 56124 Pisa Italy.
E-mail: eda.marchetti@isti.cnr.it.

T

2

is used to mean that they do not involve the execution
of the tested system. Static techniques are applicable
throughout the lifecycle to the various developed arti-
facts for different purposes, such as to check the adher-
ence of the implementation to the specifications or to
detect flaws in the code via inspection or review.

• Dynamic analysis techniques (further discussed in Sec-
tion 3.2), which exercise the software in order to expose
possible failures. The behavioral and performance
properties of the program are also observed.

Static and dynamic analyses are complementary techniques
[1]: the former yield generally valid results, but they may
be weak in precision; the latter are efficient and provide
more precise results, but only holding for the examined
executions. The focus of this chapter will be mainly on dy-
namic test techniques, and where not otherwise specified
testing is used as a synonymous for “dynamic testing”.
Unfortunately, there are few mathematical certainties on
which software testing foundations can lay. The firmest
one, as everybody now recognizes, is that, even after suc-
cessful completion of an extensive testing campaign, the
software can still contain faults. As firstly stated by Dijkstra
as early as thirty years ago [22], testing can never prove the
absence of defects, it can only possibly reveal the presence
of faults by provoking malfunctions. In the elapsed dec-
ades, lot of progress has been made both in our knowledge
of how to scrutinize a program’s executions in rigorous and
systematic ways, and in the development of tools and proc-
esses that can support the tester’s tasks.
Yet, the more the discipline progresses, the clearer it be-
comes that it is only by means of rigorous empirical studies
that software testing can increase its maturity level [35].
Testing is in fact an engineering discipline, and as such it
calls for evidences and proven facts, to be collected either
from experience or from controlled experiments, and cur-
rently lacking, based on which testers can make predictions
and take decisions.

2.2 A general definition
Testing can refer to many different activities used to check
a piece of software. As said, we focus primarily on “dy-
namic” software testing presupposing code execution, for
which we re-propose the following general definition in-
troduced in [9]:
Software testing consists of the dynamic verification of the behav-
ior of a program on a finite set of test cases, suitably selected from
the usually infinite executions domain, against the specified ex-
pected behavior.
This short definition attempts to include all essential testing
concerns: the term dynamic means, as said, that testing im-
plies executing the program on (valued) inputs; finite indi-
cates that only a limited number of test cases can be exe-
cuted during the testing phase, chosen from the whole test
set, that can generally be considered infinite; selected refers
to the test techniques adopted for selecting the test cases
(and testers must be aware that different selection criteria
may yield vastly different effectiveness); expected points out
to the decision process adopted for establishing whether

the observed outcomes of program execution are acceptable
or not.

2.3 Fault vs. Failure
To fully understand the facets of software testing, it is im-
portant to clarify the terms “fault”, “error”1 and “failure”:
indeed, although their meanings are strictly related, there
are important distinctions between these three concepts.
A failure is the manifested inability of the program to per-
form the function required, i.e., a system malfunction evi-
denced by incorrect output, abnormal termination or unmet
time and space constraints. The cause of a failure, e.g., a
missing or incorrect piece of code, is a fault. A fault may
remain undetected long time, until some event activates it.
When this happens, it first brings the program into an in-
termediate unstable state, called error, which, if and when
propagates to the output, eventually causes the failure. The
process of failure manifestation can be therefore summed
up into a chain [42]:

Fault→Error→Failure
which can recursively iterate: a fault in turn can be caused
by the failure of some other interacting system.
In any case what testing reveals are the failures and a con-
sequent analysis stage is needed to identify the faults that
caused them.
The notion of a fault however is ambiguous and difficult to
grasp, because no precise criteria exist to definitively de-
termine the cause of an observed failure. It would be pref-
erable to speak about failure-causing inputs, that is, those
sets of inputs that when exercised can result into a failure.

2.4 The notion of software reliability
Indeed, whether few or many, some faults will inevitably
escape testing and debugging. However, a fault can be
more or less disturbing depending on whether, and how
frequently, it will eventually show up to the final user (and
depending of course on the seriousness of its conse-
quences).
So, in the end, one measure which is important in deciding
whether a software product is ready for release is its reli-
ability. Strictly speaking, software reliability is a probabilistic
estimate, and measures the probability that the software
will execute without failure in a given environment for a
given period of time [44]. Thus, the value of software reliabil-
ity depends on how frequently those inputs that cause a
failure will be exercised by the final users.
Estimates of software reliability can be produced via test-
ing. To this purpose, since the notion of reliability is specific
to “a given environment”, the tests must be drawn from an
input distribution that approximates as closely as possible
the future usage in operation, which is called the operational
distribution.

1 Note that we are using the term “error” with the commonly used mean-

ing within the Software Dependability community [42], which is stricter
than its general definition in [28].

 3

3. TYPES OF TESTS
The one term testing actually refers to a full range of test
techniques, even quite different from one other, and em-
braces a variety of aims.

3.1 Static Techniques
As said, a coarse distinction can be made between dynamic
and static techniques, depending on whether the software
is executed or not. Static techniques are based solely on the
(manual or automated) examination of project documenta-
tion, of software models and code, and of other related in-
formation about requirements and design. Thus static tech-
niques can be employed all along development, and their
earlier usage is of course highly desirable. Considering a
generic development process, they can be applied [49]:
• at the requirements stage for checking language syntax,

consistency and completeness as well as the adherence
to established conventions;

• at the design phase for evaluating the implementation
of requirements, and detecting inconsistencies (for in-
stance between the inputs and outputs used by high
level modules and those adopted by sub-modules).

• during the implementation phase for checking that the
form adopted for the implemented products (e.g., code
and related documentation) adheres to the established
standards or conventions, and that interfaces and data
types are correct.

Traditional static techniques include [7], [50]:
• Software inspection: the step-by-step analysis of the

documents (deliverables) produced, against a compiled
checklist of common and historical defects.

• Software reviews: the process by which different aspects
of the work product are presented to project personnel
(managers, users, customer etc) and other interested
stakeholders for comment or approval.

• Code reading: the desktop analysis of the produced code
for discovering typing errors that do not violate style or
syntax.

• Algorithm analysis and tracing: is the process in which
the complexity of algorithms employed and the worst-
case, average-case and probabilistic analysis evalua-
tions can be derived.

The processes implied by the above techniques are heavily
manual, error-prone, and time consuming. To overcome
these problems, researchers have proposed static analysis
techniques relying on the use of formal methods [19]. The
goal is to automate as much as possible the verification of
the properties of the requirements and the design. Towards
this goal, it is necessary to enforce a rigorous and unambi-
guous formal language for specifying the requirements and
the software architecture. In fact, if the language used for
specification has a well-defined semantics, algorithms and
tools can be developed to analyze the statements written in
that language.
The basic idea of using a formal language for modeling re-
quirements or design is now universally recognized as a
foundation for software verification. Formal verification tech-
niques are attracting today quite a lot attention from both

both research institutions and industries and it is foresee-
able that proofs of correctness will be increasingly applied,
especially for the verification of critical systems.
One of the most promising approaches for formal verifica-
tion is model checking [18]. Essentially, a model checking tool
takes in input a model (a description of system functional
requirements or design) and a property that the system is
expected to satisfy.
In the middle between static and dynamic analysis tech-
niques, is symbolic execution [38], which executes a program
by replacing variables with symbolic values.
Quite recently, the automated generation of test data for
coverage testing is again attracting lot of interest, and ad-
vanced tools are being developed based on a similar ap-
proach to symbolic execution exploiting constraint solving
techniques [3]. A flowgraph path to be covered is translated
into a path constraint, whose solution provides the desired
input data.
We conclude this section considering the alternative appli-
cation of static techniques in producing values of interest
for controlling and managing the testing process. Different
estimations can be obtained by observing specific proper-
ties of the present or past products, and/or parameters of
the development process..

3.2 Dynamic Techniques
Dynamic techniques [1] obtain information of interest about
a program by observing some executions. Standard dy-
namic analyses include testing (on which we focus in the
rest of the chapter) and profiling. Essentially a program pro-
file records the number of times some entities of interest
occur during a set of controlled executions. Profiling tools
are increasingly used today to derive measures of coverage,
for instance in order to dynamically identify control flow
invariants, as well as measures of frequency, called spectra,
which are diagrams providing the relative execution fre-
quencies of the monitored entities. In particular, path spectra
refer to the distribution of (loop-free) paths traversed dur-
ing program profiling. Specific dynamic techniques also
include simulation, sizing and timing analysis, and proto-
typing [49].
Testing properly said is based on the execution of the code
on valued inputs. Of course, although the set of input val-
ues can be considered infinite, those that can be run effec-
tively during testing are finite. It is in practice impossible,
due to the limitations of the available budget and time, to
exhaustively exercise every input of a specific set even
when not infinite. In other words, by testing we observe
some samples of the program’s behavior.
A test strategy therefore must be adopted to find a trade-off
between the number of chosen inputs and overall time and
effort dedicated to testing purposes. Different techniques
can be applied depending on the target and the effect that
should be reached. We will describe test selection strategies
in Section 5.
In the case of concurrent, non-deterministic systems, the
results obtained by testing depend not only on the input
provided but also on the state of the system. Therefore,
when speaking about test input values, it is implied that the

4

definition of the parameters and environmental conditions
that characterize a system state must be included when
necessary.
Once the tests are selected and run, another crucial aspect
of this phase is the so-called oracle problem, which means
deciding whether the observed outcomes are acceptable or
not (see Section 7.2).

3.3 Objectives of testing
Software testing can be applied for different purposes, such
as verifying that the functional specifications are imple-
mented correctly, or that the system shows specific non-
functional properties such as performance, reliability, us-
ability. A (certainly non complete) list of relevant testing
objectives includes:
• Acceptance/qualification testing: the final test action

prior to deploying a software product. Its main goal is
to verify that the software respects the customer’s re-
quirement. Generally, it is run by or with the end-users
to perform those functions and tasks the software was
built for [51].

• Installation testing: the system is verified upon instal-
lation in the target environment. Installation testing can
be viewed as system testing conducted once again ac-
cording to hardware configuration requirements. In-
stallation procedures may also be verified [51].

• Alpha testing: before releasing the system, it is de-
ployed to some in-house users for exploring the func-
tions and business tasks. Generally there is no test plan
to follow, but the individual tester determines what to
do [36].

• Beta Testing: the same as alpha testing but the system
is deployed to external users. In this case the amount of
detail, the data, and approach taken are entirely up to
the individual testers. Each tester is responsible for cre-
ating their own environment, selecting their data, and
determining what functions, features, or tasks to ex-
plore. Each tester is also responsible for identifying
their own criteria for whether to accept the system in
its current state or not [36].

• Reliability achievement: as said in Section 2.4, testing
can also be used as a means to improve reliability; in
such a case, the test cases must be randomly generated
according to the operational profile, i.e., they should
sample more densely the most frequently used func-
tionalities [44].

• Conformance Testing/Functional Testing: the test
cases are aimed at validating that the observed behav-
ior conforms to the specifications. In particular it
checks whether the implemented functions are as in-
tended and provide the required services and methods.
This test can be implemented and executed against dif-
ferent tests targets, including units, integrated units,
and systems [50].

• Regression testing: According to [28], regression testing
is the “selective retesting of a system or component to
verify that modifications have not caused unintended
effects and that the syustem or component still com-

plies with its spec ified requirements]”. In practice, the
objective is to show that a system which previously
passed the tests still does [51]. Notice that a trade-off
must be made between the assurance given by regres-
sion testing every time a change is made and the re-
sources required to do that.

• Performance testing: this is specifically aimed at veri-
fying that the system meets the specified performance
requirements, for instance, capacity and response time
[51].

• Usability testing: this important testing activity evalu-
ates the ease of using and learning the system and the
user documentation, as well as the effectiveness of sys-
tem functioning in supporting user tasks, and, finally,
the ability to recover from user errors [51].

• Test-driven development: test-driven development is
not a test technique per se, but promotes the use of test
case specifications as a surrogate for a requirements
document rather than as an independent check that the
software has correctly implemented the requirements
[6].

4. TEST LEVELS
During the development lifecycle of a software product,
testing is performed at different levels and can involve the
whole system or parts of it. Depending on the process
model adopted, then, software testing activities can be ar-
ticulated in different phases, each one addressing specific
needs relative to different portions of a system. Whichever
the process adopted, we can at least distinguish in principle
between unit, integration and system test [7], [51]. These are
the three testing stages of a traditional phased process (such
as the classical waterfall). However, even considering dif-
ferent, more modern, process models, a distinction between
these three test levels remains useful to emphasize three
logically different moments in the verification of a complex
software system.
None of these levels is more relevant than another, and
more importantly a stage cannot supply for another, be-
cause each addresses different typologies of failures.

4.1 Unit Test
A unit is the smallest testable piece of software, which may
consist of hundreds or even just a few lines of source code,
and generally represents the result of the work of one pro-
grammer. The unit test’s purpose is to ensure that the unit
satisfies its functional specification and/or that its imple-
mented structure matches the intended design structure [7],
[51].
Unit tests can also be applied to check interfaces (parame-
ters passed in correct order, number of parameters equal to
number of arguments, parameter and argument matching),
local data structure (improper typing, incorrect variable
name, inconsistent data type) or boundary conditions. A
good reference for unit test is [30].

 5

4.2 Integration Test
Generally speaking, integration is the process by which
software pieces or components are aggregated to create a
larger component. Integration testing is specifically aimed
at exposing the problems that can arise at this stage. Even
though the single units are individually acceptable when
tested in isolation, in fact, they could still result in incorrect
or inconsistent behaviour when combined in order to build
complex systems. For example, there could be an improper
call or return sequence between two or more components
[7]. Integration testing thus is aimed at verifying that each
component interacts according to its specifications as de-
fined during preliminary design. In particular, it mainly
focuses on the communication interfaces among integrated
components.
There are not many formalized approaches to integration
testing in the literature, and practical methodologies rely
essentially on good design sense and the testers’ intuition.
Integration testing of traditional systems was done substan-
tially in either a non-incremental or an incremental ap-
proach. In a non-incremental approach the components are
linked together and tested all at once (“big-bang” testing)
[34]. In the incremental approach, we find the classical
“top-down” strategy, in which the modules are integrated
one at a time, from the main program down to the subordi-
nated ones, or “bottom-up”, in which the tests are con-
structed starting from the modules at the lowest hierarchi-
cal level and then are progressively linked together up-
wards, to construct the whole system. Usually in practice, a
mixed approach is applied, as determined by external pro-
ject factors (e.g., availability of modules, release policy,
availability of testers and so on) [51].
In modern Object Oriented, distributed systems, ap-
proaches such as top-down or bottom-up integration and
their practical derivatives, are no longer usable, as no “clas-
sical” hierarchy between components can be generally
identified. Some other criteria for integration testing imply
integrating the software components based on identified
functional threads[34]. In this case the test is focused on
those classes used in reply to a particular input or system
event (thread-based testing) [34]; or by testing together
those classes that contribute to a particular use of the sys-
tem.
Finally, some authors have used the dependency structure
between classes as a reference structure for guiding integra-
tion testing, i.e., their static dependencies [40], or even the
dynamic relations of inheritance and polymorphism [41].
Such proposals are interesting when the number of classes
is not too big; however, test planning in those approaches
can begin only at a mature stage of design, when the classes
and their relationships are already stable.
A different branch of the literature is testing based on the
Software Architecture: this specifies the high level, formal
specification of a system structure in components and their
connectors, as well as the system dynamics. The way in
which the description of the Software Architecture could be
used to drive the integration test plan is currently under
investigation, e.g., [45].

4.3 System Test
System test involves the whole system embedded in its ac-
tual hardware environment and is mainly aimed at verify-
ing that the system behaves according to the user require-
ments. In particular it attempts to reveal bugs that cannot
be attributed to components as such, to the inconsistencies
between components, or to the planned interactions of
components and other objects (which are the subject of in-
tegration testing). Summarizing the primary goals of sys-
tem testing can be [13]:
• discovering the failures that manifest themselves only

at system level and hence were not detected during
unit or integration testing;

• increasing the confidence that the developed product
correctly implements the required capabilities;

• collecting information useful for deciding the release of
the product.

System testing should therefore ensure that each system
function works as expected, any failures are exposed and
analyzed, and additionally that interfaces for export and
import routines behave as required.
System testing makes available information about the ac-
tual status of development that other verification tech-
niques such as review or inspections on models and code
cannot provide.
Generally system testing includes testing for performance,
security, reliability, stress testing and recovery [34], [51]. In
particular, test and data collected applying system testing
can be used for defining an operational profile necessary to
support a statistical analysis of system reliability [44].
A further test level, called Acceptance Test, is often added to
the above subdivision. This is however more an extension
of system test, rather than a new level. It is in fact a test ses-
sion conducted over the whole system, which mainly fo-
cuses on the usability requirements more than on the com-
pliance of the implementation against some specification.
The intent is hence to verify that the effort required from
end-users to learn to use and fully exploit the system func-
tionalities is acceptable.

4.4 Regression Test
Properly speaking, regression test is not a separate level of
testing (we listed it in fact among test objectives in Section
3.3.), but may refer to the retesting of a unit, a combination
of components or a whole system (see Fig. 1 below) after
modification, in order to ascertain that the change has not
introduced new faults [51].

Fig. 1. Logical schema of software testing levels

System Test
Acceptance Test

UnitTest IntegrationTest

Regression Test

System Test
Acceptance Test

System Test
Acceptance Test

UnitTestUnitTest IntegrationTestIntegrationTest

Regression TestRegression Test

6

As software produced today is constantly in evolution,
driven by market forces and technology advances, regres-
sion testing takes by far the predominant portion of testing
effort in industry.
Since both corrective and evolutive modifications may be
performed quite often, to re-run after each change all pre-
viously executed test cases would be prohibitively expen-
sive. Therefore various types of techniques have been de-
veloped to reduce regression testing costs and to make it
more effective.
Selective regression test techniques [53] help in selecting a
(minimized) subset of the existing test cases by examining
the modifications (for instance at code level, using control
flow and data flow analysis). Other approaches instead
prioritize the test cases according to some specified criterion
(for instance maximizing the fault detection power or the
structural coverage), so that the test cases judged the most
effective with regard to the adopted criterion can be taken
first, up to the available budget.

5. STRATEGIES FOR TEST CASE SELECTION
Effective testing requires strategies to trade-off between the
two opposing needs of amplifying testing thoroughness on
one side (for which a high number of test cases would be
desirable) and reducing times and costs on the other (for
which the fewer the test cases the better). Given that test
resources are limited, how the test cases are selected be-
comes of crucial importance. Indeed, the problem of test
cases selection has been the largely dominating topic in
software testing research to the extent that in the literature
“software testing” is often taken as a synonymous for “test
case selection”.
A decision procedure for selecting the test cases is provided
by a test criterion.
A basic criterion is random testing, according to which the
test inputs are picked purely randomly from the whole in-
put domain according to a specified distribution, i.e., after
assigning to the inputs different “weights” (more properly
probabilities). For instance the uniform distribution does not
make any distinction among the inputs, and any input has
the same probability of being chosen. Under the operational
distribution, instead, inputs are weighted according to their
probability of usage in operation (as we already said in Sec-
tion 2.4).
In contrast with random testing is a broad class of test crite-
ria referred to as partition testing. The underlying idea is
that the program input domain is divided into subdomains
within which it is assumed that the program behaves the
same, i.e., for every point within a subdomain the program
either succeeds or fails: we also call this the “test hypothe-
sis”. Therefore, thanks to this assumption only one or few
points within each subdomain need to be checked, and this
is what allows for getting a finite set of tests out of the infi-
nite domain. Hence a partition testing criterion essentially
provides a way to derive the subdomains.
A test criterion yielding the assumption that all test cases
within a subdomain either succeed or fail is only an ideal,
and would guarantee that any fulfilling test set of test cases

always detect the same failures: in practice, the assumption
is rarely satisfied, and different set of test cases fulfilling a
same criterion may show varying effectiveness depending
on how the test cases are picked within each subdomain.
Many are the factors of relevance when a test selection cri-
terion has to be chosen. An important point to always keep
in mind is that what makes a test a “good” one does not
have a unique answer, but changes depending on the con-
text, on the specific application, and on the goal for testing.
The most common interpretation for “good” would be
“able to detect many failures”; but again precision would
require to specify what kind of failures, as it is well known
and experimentally observed that different test criteria
trigger different types of faults [5], 0. Therefore, it is always
preferable to spend the test budget to apply a combination
of diverse techniques than concentrating it on just one, even
if shown the most effective.
Paradoxically, test case selection seems to be the least inter-
esting problem for test practitioners. A demonstration of
this low interest is the paucity of commercial automated
tools for helping test selection and test input generation, in
comparison with a profusion of support tools (see Section
7.3) for handling test execution and re-execution (or regres-
sion test) and for test documentation. The most practiced
test selection criterion in industry probably is still tester's
intuition, and indeed expert testers may perform as very
good selection “mechanisms” (with the necessary warnings
against exclusively relying on such a subjective strategy).
Empirical investigations [5] showed in fact that tester's skill
is the factor that mostly affect test effectiveness in finding
failures.

5.1 Selection Criteria Based on Code
Code-based testing, also said “structural testing”, or “white
box” testing, has been the dominating trend in software
testing research during the late 70's and the 80's. One rea-
son is certainly that in those years in which formal ap-
proaches to specification were much less mature and pur-
sued than now, the only RM formalized enough to allow
for the automation of test selection or for a quantitative
measurement of thoroughness was the code.
Referring to the fault-error-failure chain described in Sec-
tion 2.3, the motivation to code-based testing is that poten-
tial failures can only be detected if the parts of code related
to the causing faults are executed. Hence, by monitoring
code coverage one tries to exercise thoroughly all “program
elements”: depending on how the program elements to be
covered are identified several test criteria exist.
In structural testing, the program is modelled as a graph,
whose entry-exit paths represent the flow of control, hence
it is called a flowgraph. Finding a set of flowgraph paths
fulfilling a coverage criterion thus becomes a matter of
properly visiting the graph (see for instance [11]). Code
coverage criteria are also referred to as path-based test cri-
teria, because they map each test input to a unique path p
on the flowgraph.
The ideal and yet unreachable target of code-based testing
would be the exhaustive coverage of all possible paths
along the program control-flow. The underlying test hy-

 7

pothesis here is that by executing a path once, potential
faults related to it will be revealed, i.e., it is assumed that
every input executing a same path will either fail or suc-
ceed (which is not necessarily true, of course).
Full path coverage is not applicable, because banally every
program with unbounded loops would yield an infinite
number of paths. Even limiting the number of iterations
within program loops, which is the usually practised tactic
in testing, the number of tests would remain infeasibly
high. Therefore, all the proposed code-based criteria at-
tempt to realize cost/effective approximations to path cov-
erage, by identifying specific (control-flow or data-flow)
elements of a program that are deemed to be relevant for
revealing possible failures, and by requiring that enough
test cases to cover all such elements be executed.
The landmark paper in code-based testing is [52], in which
a family of criteria was introduced, based on both control-
flow and data-flow. A subsumption hierarchy between the
criteria was derived, based on the inclusion relation such
that a test suite satisfying the subsuming criterion is guar-
anteed to also satisfy the (transitively) subsumed criterion.
Statement coverage is the most elementary criterion, requir-
ing that each statement in a program be exercised at least
once. The already mentioned branch coverage criterion in-
stead requires that each branch in a program be exercised
(in other words, for every predicate its evaluation to true
and false should both be tested at least once). Note that
complete statement coverage does not assure that all
branches are exercised (empty branches would be left out).
Branch coverage is also said “decision coverage”, because it
considers the outcome of a decision predicate. When a
predicate is composed by the logical combination of several
conditions, a variation to branch coverage is given by “con-
dition coverage”, which requires instead to test the true and
false outcome of the individual conditions of predicates.
Further criteria consider together coverage of decisions and
conditions under differing assumptions (see, e.g., [25]).
It must be kept in mind, however, that code-based test se-
lection is a tautology: it looks for potential problems in a
program by using the program itself as a reference model.
In this way, for instance, faults of missing functionalities
could never be found.
As a consequence, code-based criteria should be more
properly used as adequacy criteria. In other terms, testers
should take the measures of coverage reached by the exe-
cuted tests and the signaling of uncovered elements as a
warning that the set of test cases are ignoring some parts
(and which ones) of the functionalities or of the design.
Coverage of unexercised elements should hence be taken as
an advice for more thought and not as the compelling test
target.
A sensible approach is to use another artifact as the refer-
ence model from which the test cases are designed and
monitor a measure of coverage while tests are executed, so
to evaluate the thoroughness of the test suite. If some ele-
ments of the code remain uncovered, additional tests to
exercise them should be found, as it can be a signal that the
tests do not address some function that is coded.

A final warning is worth that “exercised” and “tested” are
not synonymous: an element is really tested only when its
execution produces an effect on the output; in view of this
statement, under most existing code-based criteria even
100% coverage could leave some statement untested.

5.2 Selection Criteria Based on Specifications
In specification-based testing, the reference model RM is
derived in general from the documentation relative to pro-
gram specifications. Depending on how the latter are ex-
pressed, largely different techniques are possible [34]. Early
approaches [46] looked at the Input/Output relation of the
program seen as a “black-box” and manually derived:
• equivalence classes: by partitioning the input domain

into subdomains of “equivalent” inputs, in the sense
explained in Section 5 that any input within a subdo-
main can be taken as a representative for the whole
subset. Hence, each input condition must be separately
considered to first identify the equivalence classes. The
second step consists of choosing the test inputs repre-
sentative of each subdomain; it is good practice to take
both valid and invalid equivalence classes for each
conditions. The Category Partition method that we de-
scribe below in this section belongs to this approach.

• boundary conditions: i.e., those combinations of values
that are “close” (actually on, above and beneath) the
borders of the equivalence classes identified both in the
input and the output domains. This test approach is
based on the intuitive fact, also proved by experience,
that faults are more likely to be found at the boundaries
of the input and output subdomains.

• cause-effect graphs: these are combinatorial logic net-
works that can be used to explore in systematic way
the possible combinations of input conditions. By ana-
lysing the specification, the relevant input conditions,
or causes, and the consequent transformations and out-
put conditions, the effects, are identified and modelled
into graphs linking the effects to their causes. A de-
tailed description of this early technique can be found
in [46].

Approaches such as the ones described above all require a
degree of “creativity” [46]. To make testing more repeat-
able, lot of researchers have tried to automatize the deriva-
tion of test cases from formal or semiformal specifications.
Early attempts included algebraic specifications [8], VDM
[21], and Z [26], while a more recent collection of ap-
proaches to formal testing can be found in [27].
Also in specification based testing a graph model is often
derived and some coverage criterion is applied on this
model. A number of methods rely on coverage of specifica-
tions modelled as a Finite State Machine (FSM). A review of
these approaches is given in [14]. Alternatively, confor-
mance testing can be based on Labelled Transition Systems
(LTS) models. LTS-based testing has been the subject of
extensive research [16] and a quite mature theory now ex-
ists. Given the LTS for the specification S and one of its pos-
sible implementations I (the program to be tested), various
test generation algorithms have been proposed to produce
sound test suites, i.e., such that programs passing the test

8

correspond to conformant implementations according to a
defined “conformance relation”. An approach for the
automatic, on-the-fly generation of test cases has been im-
plemented in the Test Generation and Verification (TGV)
[54] tool.
As expectable, specification-based testing nowadays fo-
cuses on testing from UML models. A spectrum of ap-
proaches has been and is being developed, ranging from
strictly formal testing approaches based on UML state-
charts [43], to approaches trying to overcome UML limita-
tions requiring OCL (Object Constraint Language) [55] ad-
ditional annotations [15], to pragmatic approaches using
the design documentation as is and proposing automated
support tools [4]. The recent tool Agedis [24] supports the
model-driven generation and execution of UML-based test
suites, built on the above mentioned TGV technology.

5.3 Other Criteria
Specification-based and code-based test techniques are of-
ten contrasted as functional vs. structural testing. These two
approaches to test selection are not to be seen as alternative,
but rather as complementary; in fact, they use different
sources of information, and have proved to highlight dif-
ferent kinds of problems. They should be used in combina-
tion, depending on budgetary considerations [34]. More-
over, beyond code or specifications, the derivation of test
cases can be done starting from other informative sources.
Some other important strategies for test selection are briefly
overviewed below.

• Based on tester’s intuition and experience
As said, one of the most widely practiced technique based
on the tester intuition and experience is ad-hoc testing [36]
techniques in which tests are derived relying on the tester’s
skill, intuition, and experience with similar programs. Ad
hoc testing might be useful for identifying special tests,
those not easily captured by formalized techniques. An-
other emerging technology is Exploratory testing [37], which
is defined as simultaneous learning, test design, and test
execution; that is, the tests are not defined in advance in an
established test plan, but are dynamically designed, exe-
cuted, and modified. The effectiveness of exploratory test-
ing relies on the tester’s knowledge, which can be derived
from various sources: observed product behavior during
testing, familiarity with the application, the platform, the
failure process, the type of possible bugs, the risk associated
with a particular product, and so on.

• Fault-based
With different degrees of formalization, fault-based testing
techniques devise test cases specifically aimed at revealing
categories of likely or pre-defined faults. In particular it is
possible that the RM is given by expected or hypothesized
faults, such as in error guessing , or mutation testing. Spe-
cifically in error guessing [36] test cases are designed by
testers trying to figure out the most plausible faults in a
given program. A good source of information is the history
of faults discovered in earlier projects, as well as the tester’s
expertise. In Mutation testing [50], a mutant is a slightly

modified version of the program under test, differing from
it by a small, syntactic change. Every test case exercises
both the original and all generated mutants: If a test case is
successful in identifying the difference between the pro-
gram and a mutant, the latter is said to be killed. The un-
derlying assumption of mutation testing, the coupling ef-
fect, is that, by looking for simple syntactic faults, more
complex, but real, faults will be found. For the technique to
be effective, a high number of mutants must be automati-
cally derived in a systematic way.

• Based on operational usage
In testing for reliability evaluation, the test environment
must reproduce the operational environment of the soft-
ware as closely as possible (operational profile) [34], [44],
[51]. The idea is to infer, from the observed test results, the
future reliability of the software when in actual use. To do
this, inputs are assigned a probability distribution, or pro-
file, according to their occurrence in actual operation. In
particular the Software Reliability Engineered Testing
(SRET) [44] is a testing methodology encompassing the
whole development process, whereby testing is “designed
and guided by reliability objectives and expected relative
usage and criticality of different functions in the field.”

6. TEST DESIGN
We have seen that there exist various test objectives, many
test selection strategies and differing stages of the lifecycle
of a product at which testing can be applied. Before actually
commencing any test derivation and execution, all these
aspects must be organized into a coherent framework. In-
deed, software testing itself consists of a compound proc-
ess, for which different models can be adopted.
A traditional test process includes subsequent phases,
namely test planning, test design, test execution and test
results evaluation.
Test planning is the very first phase and outlines the scope
of testing activities, focusing in particular on the objectives,
resources and schedule, i.e., it covers more the managerial
aspects of testing, rather than the detail of techniques and
the specific test cases. A test plan can be already prepared
during the requirements specification phase.
Test design is a crucial phase of software testing, in which
the objectives and the features to be tested and the test
suites associated to each of them are defined [7], [29], [30],
[51]. Also the levels of test are planned. Then, it is decided
what kind of approach will be adopted at each level and for
each feature to be tested. This also includes deciding a
stopping rule for testing. Due to time or budget constraints,
at this point it can be decided that testing will concentrate
on some more critical parts.
An emerging and quite different practice for testing is test
driven development, also called Test-First programming,
which focuses on the derivation of (unit and acceptance)
tests before coding. This approach is a key practice of mod-
ern Agile development approaches such as Extreme Pro-
gramming (XP) and Rapid Application Development
(RAD) [6]. The leading principle of such approaches is to

 9

make development more lightweight by keeping design
simple and reducing as much as possible the rules and the
activities of traditional processes felt by developers as
overwhelming and unproductive, for instance devoted to
documentation, formalized communication, or ahead plan-
ning of rigid milestones. Therefore a traditional test design
phase as described above does no longer exist, but new
tests are continuously created, as opposed to a vision of
designing test suites up front. In the XP way, the leading
principle is to “code a little, test a little, …” so that develop-
ers and customers can get immediate feedbacks.

7. TEST EXECUTION
Executing the test cases specified in test design may entail
various difficulties. Below we discuss the various activities
implied in launching the tests, and deciding the test out-
come. We also hint at tools for automating testing activities.

7.1 Launching the tests
Forcing the execution of the test cases (manually or auto-
matically) derived according to one of the criteria presented
in Section 5 might not be so obvious.
If a code-based criterion is followed, it provides us with
entry-exit paths over the flowgraph that must be taken, and
test inputs that execute the corresponding program paths
need be found. Actually, as already said, code-based should
be better used as an adequacy criterion, hence in principle
we should not look for inputs ad hoc to execute the not
covered entities, but rather use the coverage analysis results
to understand the weaknesses in the executed test cases.
However, in the cycle of testing, monitoring unexecuted
elements, finding additional test cases, often conducted
under pressure, finding those test cases that increase cover-
age can be very difficult.
If a specification-based criterion is adopted, the test cases
correspond to sequences of events, which are specified at
the abstraction level of the specifications; more precisely,
they are labels within the signature of the adopted specifi-
cation language. To derive concrete test cases, these labels
must be translated into corresponding labels at code level
(e.g., method invocations), and eventually into execution
statements to be launched on the User Interface of the used
test tool.

7.2 Test Oracles
An important component of testing is the oracle. Indeed, a
test is meaningful only if it is possible to decide about its
outcome. The difficulties inherent to this task, often over-
simplified, had been early articulated in [57].
Ideally, an oracle is any (human or mechanical) agent that
decides whether the program behaved correctly on a given
test. The oracle is specified to output a reject verdict if it
observes a failure (or even an error, for smarter oracles),
and approve otherwise. Not always the oracle can reach a
decision: in these cases the test output is classified as incon-
clusive.
In a scenario in which a limited number of test cases is exe-
cuted, sometimes even derived manually, the oracle can be

the tester himself/herself, who can either inspect a poste-
rior the test log, or even decide a priori, during test plan-
ning, the conditions that make a test successful and code
these conditions into the employed test driver.
When the tests cases are automatically derived, or also
when their number is quite high, in the order of thousands,
or millions, a manual log inspection or codification is not
thinkable. Automated oracles must then be implemented.
But, of course, if we had available a mechanism that knows
in advance and infallibly the correct results, it would not be
necessary to develop the system under test: we could use
the oracle instead! Hence the need of approximate solu-
tions.
Different approaches can be taken [2]: assertions could be
embedded into the program so to provide run-time check-
ing capability; conditions expressly specified to be used as
test oracles could be developed, in contrast with using the
same specifications (i.e., written to model the system behav-
ior and not for run-time checking); the produced execution
traces could be logged and analyzed.
In some cases, the oracle can be an earlier version of the
system that we are going to replace with the one under test.
A particular instance of this situation is regression testing,
in which the test outcome is compared with earlier version
executions (which however in turn had to be judged passed
or failed). Generally speaking, an oracle is derived from a
specification of the expected behavior. Thus, in principle,
automated derivation of test cases from specifications have
the advantage that by this same task we get an abstract ora-
cle specification as well. However, the gap between the ab-
stract level of specifications and the concrete level of exe-
cuted tests only allows for partial oracles implementations,
i.e., only necessary (but not sufficient) conditions for cor-
rectness can be derived.
In view of these considerations, it should be evident that
the oracle might not always judge correctly. So the notion
of coverage2 of an oracle is introduced to measure its accu-
racy. It could be measured for instance by the probability
that the oracle rejects a test (on an input chosen at random
from a given probability distribution of inputs), given that
it should reject it [12], whereby a perfect oracle exhibits a
100% coverage, while a less than perfect oracle may yield
different measures of accuracy.

7.3 Test Tools
Testing requires fulfilling many labor-intensive tasks, run-
ning numerous executions, and handling a great amount of
information. The usage of appropriate tools can therefore
alleviate the burden of clerical, tedious operations, and
make them less error-prone, while increasing testing effi-
ciency and effectiveness. Reference [33] lists suitable char-
acteristics for testing tools used for verification and valida-
tion. In the following of this section we present a repertoire
of typologies of most commonly used test tools, and refer
to[7], [33], [44], [50], [51] for a more complete survey.

2 It is just an unfortunate coincidence the usage with a quite different mean-
ing of the same term adopted for test criteria.

10

• Test harness (drivers, stubs): provides a controlled envi-
ronment in which tests can be launched and the test
outputs can be logged. In order to execute parts of a
system, drivers and stubs are provided to simulate
caller and called modules, respectively;

• Test generators: provide assistance in the generation of
tests. The generation can be random, pathwise (based
on the flowgraph) or functional (based on the formal
specifications);

• Capture/Replay: this tool automatically re-executes, or
replays, previously run tests, of which it recorded in-
puts and outputs (e.g., screens).

• Oracle/file comparators/assertion checking: these kinds of
tools assist in deciding whether a test outcome is suc-
cessful or faulty;

• Coverage analyzer/Instrumenter: a coverage analyzer as-
sesses which and how many entities of the program
flowgraph have been exercised amongst all those re-
quired by the selected coverage testing criterion. The
analysis can be done thanks to program instrumenters,
that insert probes into the code.

• Tracers: trace the history of execution of a program;
• Reliability evaluation tools: support test results analysis

and graphical visualization in order to assess reliability
related measures according to selected models.

8. TEST DOCUMENTATION
Documentation is an integral part of the formalization of
the test process, which contributes to the coordination and
control of the testing phase. Several types of documents-
may be associated to the testing activities [51], [29]: Test
Plan, Test Design Specification, Test Case Specification, Test
Procedure Specification, Test Log, and Test Incident or
Problem Report. We outline a brief description of each of
them, referring to IEEE Standard for Software Test Docu-
mentation [29] for a complete description of test documents
and of their relationship with one another and with the test-
ing process.
Test Plan: defines test items, features to be or not to be
tested, approach to be followed (activities, techniques and
tool to be used), pass/fail criteria, the delivered documents,
task to be performed during the testing phase, environ-
mental needs, (hardware, communication and software
facilities), people and staff responsible for managing de-
signing, preparing, executing the tasks, staffing needs,
schedule (including milestones, estimation of time required
to do each task, period of use of each testing resources).
Test Design Specification: describes the features to be
tested and their associated test set.
Test Case Specification: defines the input/output required
for executing and a test case as well as any special con-
straints or intercase dependencies. A skeleton is depicted in
Fig. 2.

Fig. 2. Scheme of a possible test case

Test Procedure Specification: specifies the steps and the
special requirements that are necessary for executing a set
of test case.
Test Log: documents the result of a test execution, includ-
ing: the occurred failures (if any); the information needed
for reproducing them and locating and fixing the
corresponding faults; the information necessary for
establishing whether the project is complete; any
anomalous events. See a summary in Fig. 3.
Test Incident or Problem Report: provides a description of
the incidents including inputs, expected and obtained re-
sults, anomalies, date and time, procedure steps, environ-
ment, attempts to repeat the tests, observations and refer-
ence to the test case and procedure specification and test
log.

Fig. 3. Scheme of a possible test log

9. TEST MANAGEMENT
The management processes for software development con-
cern different activities mainly summarized into [32]: initia-
tion and scope definition, planning, execution and control,
review and evaluation, closure. These activities also con-
cern the management of the test process even though with
some specific characterizations.
In the testing phase in fact a very important component of
successful testing is a collaborative attitude towards testing
and quality assurance activities. Managers have a key role
in fostering a generally favorable reception towards failure
discovery during development; for instance, by preventing

Test log ID The unique identifier associated with the test log
Items tested Details of the items tested including environmental attributes

Events the list of the events occurred including:

the start and end date and time of each event
ID of the test procedures executed

personnel who executed the procedures
description of test procedures results

environmental details
Description of the anomalous events occurred

Test Log

Test case ID The unique identifier associated with the test case

Test items and purpose The items and features exercised

Input data The explicit list of the inputs required for
executing the test case (values, files database etc)

Test case behaviour Description of the expected test case behaviour
Output data The list of the outputs admitted for each feature involved

in the test case, possibly associated with tolerance values

Environmental set-up The hardware/software configurations required
Specific procedural reqs The constraints and the special procedures required.

Test cases dependencies The IDs of the test cases that must be executed prior
 this test case

Test Case Specification

 11

a mindset of code ownership among programmers, so that
they will not feel responsible for failures revealed by their
code. Moreover the testing phases could be guided by vari-
ous aims, for example: in risk-based testing, which uses the
product risks to prioritize and focus the test strategy; or in
scenario-based testing, in which test cases are defined
based on spec ified system scenarios.
Test management can be conducted at different levels
therefore it must be organized, together with people, tools,
policies, and measurements, into a well-defined process
which is an integral part to the life cycle3.
In the testing context the main manager’s activities can be
summarized as [[7], [36], [50], [51]:

• Scheduling the timely completion of tasks
• Estimation of the effort and the resources needed to

execute the tasks: An important task in test plan-
ning is the estimation of resources required which
means organizing not only hardware and software
tools but also people. Thus the formalization of the
test process also requires putting together a test
team, which can involve internal as well as external
staff members. The decision will be determined by
consideration of costs, schedule, maturity level of
the involved organization and the criticality of the
application.

• Quantification of the risk associated with the tasks
• Effort/Cost estimation: The testing phase is a criti-

cal step in process development, often responsible
for the high costs and effort required for product
release. The effort can be evaluated for example in
terms of person-days, months or years necessary
for the realization of each project. For cost estima-
tion it is possible to use two kinds of models: static
and dynamic multivariate models. The former use
historical data to derive empirical relationships, the
latter project resource requirements as a function of
time. In particular, these test measures can be re-
lated to the number of tests executed or the number
of tests failed. Finally to carry out testing or main-
tenance in an organized and cost/effective way, the
means used to test each part of the system should
be reused systematically. This repository of test ma-
terials must be configuration-controlled, so that
changes to system requirements or design can be
reflected in changes to the scope of the tests con-
ducted. The test solutions adopted for testing some
application types under certain circumstances, with
the motivations behind the decisions taken, form a
test pattern which can itself be documented for
later reuse in similar projects.

• Quality control measures to be employed: several
measures relative to the resources spent on testing,
as well as to the relative fault-finding effectiveness
of the various test phases, are used by managers to
control and improve the test process. These test

3 In [32], testing is not described as a stand-alone process, but principles
for testing activities are included along with both the five primary life cycle
processes, and the supporting process. In [31], testing is grouped with other
evaluation activities as integral to development throughout the lifecycle.

measures may cover such aspects as: number of test
cases specified, number of test cases executed,
number of test cases passed, and number of test
cases failed, among others. Evaluation of test prob-
lem reports can be combined with root-cause
analysis to evaluate test process effectiveness in
finding faults as early as possible. Such an evalua-
tion could be associated with the analysis of risks.
Moreover, the resources that are worth spending
on testing should be commensurate with the
use/criticality of the application: specifically a de-
cision must be made as to how much testing is
enough and when a test stage can be terminated.
Thoroughness measures, such as achieved code
coverage or functional completeness, as well as es-
timates of fault density or of operational reliability,
provide useful support, but are not sufficient in
themselves. The decision also involves considera-
tions about the costs and risks incurred by potential
for remaining failures, as opposed to the costs im-
plied by continuing to test. We detail better this
topic in the next section.

10. TEST MEASUREMENTS
Measurements are nowadays applied in every scientific
field for quantitatively evaluating parameters of interest,
understanding the effectiveness of techniques or tools, the
productivity of development activities (such as testing or
configuration management), the quality of products, and
more. In particular, in the software engineering context
they are used for generating quantitative descriptions of
key processes and products, and consequently controlling
software behavior and results. But these are not the only
reasons for using measurement; it can permit definition of a
baseline for understanding the nature and impact of pro-
posed changes. Moreover, as seen in the previous section,
measurement allows managers and developers to monitor
the effects of activities and changes on all aspects of devel-
opment. In this way actions to check whether the final out-
come differs significantly from plans can be taken as early
as possible[23].
We have already hinted at useful test measures throughout
the chapter. It can be useful to briefly summarize them al-
together. Considering the testing phase, measurement can
be applied to evaluate the program under test, or the se-
lected test set, or even for monitoring the testing process
itself [9].

10.1 Evaluation of the Program Under Test
For evaluating the program under test the following meas-
urements can be applied:
Program measurement to aid in test planning and design: con-
sidering the program under test, three different categories
of measurement can be applied as reported in [7]:
• Linguistic measures: these are based on proprieties of

the program or of the specification text. This category
includes for instance the measurement of: Sources

12

Lines of Code (LOC), the statements, the number of
unique operands or operators, and the function points.

• Structural measures: these are based on structural rela-
tions between objects in the program and comprise
control flow or data flow complexity. These can include
measurements relative to the structuring of program
modules, e.g., in terms of the frequency with which
modules call each other.

• Hybrid measures: these may result from the combina-
tion of structural and linguistic properties.

Fault density: This is a widely used measure in industrial
contexts and foresees the counting of the discovered faults
and their classification by their type. For each fault class,
fault density is measured by the ratio between the number
of faults found and the size of the program [50]..
Life testing, reliability evaluation: By applying the operational
testing for a specific product it is possible either to evaluate
its reliability and decide if testing can be stopped or to
achieve an established level of reliability. In particular Reli-
ability Growth models can be used for predicting the prod-
uct reliability[44].

10.2 Evaluation of the Test Performed
For evaluating the set of test cases implemented the follow-
ing measures can be applied:
Coverage/thoroughness measure: Some adequacy criteria re-
quire exercising a set of elements identified in the program
or in the specification by testing.
Effectiveness: In general a notion of effectiveness must be as-
sociated with a test case or an entire test suite, but test effec-
tiveness does not yield a universal interpretation.

10.3 Measures for monitoring the testing process
We have already mentioned that one intuitive and diffuse
practice is to count the number of failures or faults de-
tected. The test criterion that found the highest number
could be deemed the most useful. Even this measure has
drawbacks: as tests are gathered and more and more faults
are removed, what can we infer about the resulting quality
of the tested program? for instance, if we continue testing
and no new faults are found for a while, what does this
imply? that the program is “correct”, or that the tests are
ineffective?
It is possible that several different failures are caused by a
single fault, as well as that a same failure is caused by dif-
ferent faults. What should be better estimated then in a pro-
gram, its number of contained “faults” or how many
“failures” it exposed? Either estimate taken alone can be
tricky: if failures are counted it is possible to end up the
testing with a pessimistic estimate of program “integrity”,
as one fault may produce multiple failures. On the other
hand, if faults are considered, we could evaluate at the
same level harmful faults that produce frequent failures,
and inoffensive faults that would remain hidden for years
of operation. It is hence clear that the two estimates are
both important during development and are produced by
different (complementary) types of analysis.
The most objective measure is a statistical one: if the exe-
cuted tests can be taken as a representative sample of pro-

gram behavior, than we can make a statistical prediction of
what would happen for the next tests, should we continue
to use the program in the same way. This reasoning is at the
basis of software reliability.
Documentation and analysis of test results require disc i-
pline and effort, but form an important resource of a com-
pany for product maintenance and for improving future
projects.

11. CONCLUSIONS
We have presented a comprehensive overview of software
testing concepts, techniques and processes. In compiling
the survey we have tried to be comprehensive to the best of
our knowledge, as matured in years of research and study
of this fascinating topic The approaches overviewed in-
clude more traditional techniques, e.g., code-based criteria,
as well as more modern ones, such as model checking or
the recent XP approach.
Two are the main contributions we intended to offer to the
readers: on one side, by putting into a coherent framework
all the many topics and tasks concerning the software test-
ing discipline, we hope to have demonstrated that software
testing is a very complex activity deserving a first-class role
in software development, in terms of both resources and
intellectual requirements. On the other side, by hinting at
relevant issues and open questions, we hope to attract fur-
ther interest from academy and industry in contributing to
evolve the state of the art on the many still remaining open
issues.
In the years, software testing has evolved from an “art” [46]
to an engineering discipline, as the standards, techniques
and tools cited throughout the chapter demonstrate. How-
ever test practice inherently still remains a trial-and-error
methodology. We will never find a test approach that is
guaranteed to deliver a “perfect” product, whichever is the
effort we employ. However, what we can and must pursue
is to transform testing from “trial-and-error” to a system-
atic, cost-effective and predictable engineering discipline.

REFERENCES
[1] T. Ball, “The concept of dynamic analysis”, Proc.of joint 7th

ESEC/7th AC M FSE, Toulouse, France, vol.24, no. 6, October 1999,
pp.: 216 – 234.

[2] L. Baresi, and M. Young, “Test Oracles” Tech. Report CIS-TR-01-
02.http://www.cs.uoregon.edu/~michal/pubs/oracles.html

[3] R. Barták, “On-line Guide to Constraint Programming”, Prague,
http://kti.mff.cuni.cz/~bartak/constraints/, 1998,

[4] F. Basanieri, A.. Bertolino, and E.Marchetti, “The Cow_Suite Ap-
proach to Planning and Deriving Test Suites in UML Projects”,
Proc. 5th Int. Conf. UML 2002, Dresden, Germany, LNCS 2460, pp.
383--397, 2002.

[5] V.R. Basili, and R.W. Selby, R.W. “Comparing the Effectiveness of
Software Testing Strategies”, IEEE Trans. Software Eng . Vol. 13, no.
12, pp. 1278—1296 1987.

[6] K. Beck Test-Driven Development by Example, Addison Wesley,
November 2002

[7] B. Beizer, Software Testing Techniques 2nd Edition, International

 13

Thomson Computer Press, 1990.
[8] G. Bernot, M.C. Gaudel, and B. Marre, “Software Testing Based

On Formal Specifications: a Theory and a Tool”, Software Eng.
Journal, vol. 6, pp. 387—405, 1991.

[9] A. Bertolino, “Knowledge Area Description of Software Testing”,
Chapter 5 of SWEBOK: The Guide to the Software Engineering Body
of Knowledge. Joint IEEE-ACM Software Engineering Coordination
Committee. 2001. http://www.swebok.org/.

[10] A. Bertolino, "Software Testing Research and Practice", 10th Inter-
national Workshop on Abstract State Machines ASM 2003, Taormina,
Italy, , LNCS 2589, pp. 1-21. March 3-7, 2003.

[11] A. Bertolino, and M. Marré “A General Path Generation Algo-
rithm for Coverage Testing” Proc. 10th Int. Soft. Quality Week, San
Francisco, Ca. pap. 2T1, 1997.

[12] A. Bertolino, L. Strigini, “ On the Use of Testability Measures for
Dependability Assessment” IEEE Trans. Software Eng ., vol. 22, no.
2, pp. 97-108, 1996.

[13] R.V. Binder Testing Object-Oriented Systems - Models, Patterns, and
Tools, Addison-Wesley, 1999.

[14] G.V. Bochmann, and A. Petrenko,“Protocol Testing: Review of
Methods and Relevance for Software Testing”, Proc. Int. Symp. on
Soft. Testing and Analysis (ISSTA), Seattle, pp. 109-124, 1994.

[15] L. Briand, and Y. Labiche, “A UML-Based Approach to System
Testing”, Software and Systems Modeling, vol. 1, no. 1, pp. 10-42,
2002.

[16] E. Brinksma, and J. Tretmans,, “Testing Transition Systems: An
Annotated Bibliography”, . Proc. of MOVEP'2k, Nantes pp. 44-50,
2000.

[17] R.H Carver, and K.C Tai,.”Use of Sequencing Constraints for
Specification -Based Testing of Concurrent Programs”. IEEE Trans.
on Soft. Eng, vol.24, no.6, pp. 471—490, 1998.

[18] E.M. Clarke, O. Grumberg, and D. A. Peled, Model checking, MIT
Press Cambridge, MA, USA 2000

[19] E.M. Clarke and J. Wing, “Formal Methods: State of the Art and
Future Directions”, ACM Computing Surveys, vol. 28, no. 4, pp.
626-643, 1996

[20] P.d. Coward, “Symbolic Execution Systems – A Review”, Soft-
ware Eng. J. pp. 229—239, 1988.

[21] J. Dick, and A. Faivre, “Automating The Generation and Se-
quencing of Test Cases From Model-Based Specifications” Proc.
FME'93, LNCS 670, pp. 268—284, 1993.

[22] E.W. Dijkstra,“Notes on Structured Programming” T.H. Rep. 70-
WSK03 1970.
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF

[23] N.E. Fenton, and S.L Pfleeger Software Metrics - A Rigorous and
Practical Approach”. Second ed. London: International Thomson
Computer Press, 1997.

[24] A. Hartman, and K. Nagin “The AGEDIS Tools for Model Based
Testing” International Symposium on Software Testing and Analysis
(ISSTA 2004), Boston, Massachusetts July 11-14, 2004

[25] K.J. Hayhurst, D.S. Veerhusen, J.J. Chikenski, and L.K. Rierson,
“A Practical Tutorial on Modified Condition/Decision Cover-
age”, Nasa/TM-2001-210876, May2001.

[26] R.M. Hierons, ”Testing from a Z Specification” Soft. Testing, Veri-
fication and Reliability, vol. 7, pp. 19-33, 1997.

[27] R. Hierons, J. Derrick, (Eds) ”Special Issue on Specification-based
Testing” Soft. Testing, Verification and Reliability , vol. 10, 2000.

[28] IEEE Standard Glossary of Software Engineering Terminology,
IEEE Std 610.12-1990.

[29] IEEE Standard for Software Test Documentation, IEEE Std 829-

1998.
[30] IEEE Standard for Software Unit Testing IEEE Std. 1008-1987

(R1993).
[31] IEEE Standard: Guide for Developing Software Life Cycle Proc-

esses, IEEE Std 1074-1995
[32] IEEE Standard for Information Technology-Software Life cycle

processes, IEEE/EIA 12207.0-1996.
[33] Information Technology - Guideline for the evaluation and selec-

tion of CASE tools ISO/IEC 14102 1995-E
[34] P. C Jorgensen, Software Testing a Craftsman’s Approach . CRC

Press, 1995.
[35] N. Juristo, A.M. Moreno, and S. Vegas, “Reviewing 25 Years of

Testing Technique Experiments”, Empirical Software. Engineering
Journal, vol. 9, no. ½, March 2004, pp. 7-44.

[36] C. Kaner, J. Falk, and H.Q. Nguyen H.Q. Testing Computer Soft-
ware, 2nd Edition, John Wiley & Sons, April, 1999.

[37] C. Kaner, J. Bach, and B. Pettichord, Lessons Learned in Software
Testing, Wiley Computer Publishing 2001.

[38] J.C. King. “Symbolic execution and program testing”. Communica-
tions of the ACM, vol.19, no. 7, 1976, pp.385–394.

[39] B. Korel, “Automated Software Test Data Generation”, IEEE
Trans. Software Eng., vol. 16, no. 8, pp. 870—879, 1990.

[40] D. Kung, J. Gao, P. Hsia, Y. Toyoshima, C. Chen, Y. Kim, and Y.
Song, ”Developing an Object-Oriented Software Testing and
Maintenance Environment”. Communication of the ACM, vol. 32,
no. 10, 1995, pp.75-87.

[41] Y. Labiche, P. Thévenod-Fosse, H. Waeselynck, and M.H. Durand
“Testing Level for Object-Oriented Software”; Proceeding of ICSE,
Limerick, Ireland, June 2000, pp. 136-145.

[42] J.C. Laprie, “Dependability - Its Attributes, Impairments and-
Means”,Predictably Dependable Computing Systems, B. Randell, J.C.
Laprie, H. Kopetz, B. Littlewood, eds.:, Springer , 1995

[43] D. Latella, and M. Massink “On Testing and Conformance Rela-
tions for UML Statechart Diagrams Behaviours” Symposium on
Soft.Testing and Analysis ISSTA 2002, Roma, Italy July 2002.

[44] M.R Lyu, eds., Handbook of Software Reliability Engineering,
McGraw-Hill, 1996.

[45] H. Muccini, A. Bertolino, P. Inverardi, "Using Software Architec-
ture for Code Testing", IEEE Transactions on Software Engineering,
vol. 30, no. 3, March 2004, pp. 160-170

[46] G.J. Myers, The Art of Software Testing . Wiley 1979.
[47] T.J. Ostrand, and M.J Balcer, M.J, ”The Category-Partition

Method for Specifying and Generating Functional Tests”, ACM
Comm, vol. 31, no. 6, pp. 676—686, 1988.

[48] R. Pargas, M.J. Harrold, and R. Peck,” Test-Data Generation
Using Genetic Algorithms”, J. of Soft. Testing, Verifications, and Re-
liability, vol. 9, pp. 263—282, 1999.

[49] W. W. Peng, and D.R. Wallace, “Software Error Analysis”, NIST
SP 500-209, National Institute of standards and Technology, Gaithers-
burg MD 20899, http://hissa.nist.gov/SWERROR/ December
1993.

[50] W. Perry, Effective Methods for Software Testing , Wiley 1995.
[51] S.L. Pfleeger, Software Engineering Theory and Practice, Prentice

Hall, 2001.
[52] S. Rapps, and E.J. Weyuker, “Selecting Software Test Data Using

Data Flow Information”, IEEE Trans. Software Eng . vol.11, pp.
367—375, 1985.

[53] G. Rothermel. and M.J. Harrold, “Analyzing Regression Test
Selection Techniques”, IEEE Transactions on Software Engineering,
vol. 22, no. 8, pp. 529 – 551, 1996.

[54] TGV--Test Generation from transitions systems using Verification
techniques http://www.inrialpes.fr/vasy/cadp/man/tgv.html

14

[55] J. Warmer, and A. Kleppe Object Constraint Language, The: Getting
Your Models Ready for MDA, Second Edition Addison Wesley,
2003.

[56] E.J. Weyuker, “Translatability and Decidability Questions for
Restricted Classes of Program Schemas” SIAM J. on Computers ,
vol. 8, no. 4, pp. 587—598, 1979.

[57] E.J. Weyuker “ On Testing Non-testable Programs” The Computer
Journal, vol. 25, no.4, pp. 465—470, 1982.

M. Wood, M. Roper, A. Brooks, and J. Miller, “Comparing and Com-
bining Software Defect Detection Techniques: A Replicated Empirical
Study”, Proc. ESEC/FSE, LNCS 1301, 1997.

