
A Cache-conscious Profitability Model for

Empirical Tuning of Loop Fusion

Apan Qasem Ken Kennedy

Department of Computer Science
Rice University
Houston, TX

{qasem,ken}@cs.rice.edu

Abstract. Loop fusion is recognized as an effective program transfor-
mation for improving memory hierarchy performance. However, uncon-
strained loop fusion can lead to poor performance because of increased
register pressure and cache conflict misses. The complex interaction be-
tween different levels of the memory hierarchy with the input program
makes it very difficult to always make the right choice in fusing loops. In
this paper, we present a cache-conscious analytical model for profitable
loop fusion to be used with a constrained weighted fusion algorithm.
We then extend the model to show its effectiveness in the context of an
empirical tuning framework. A preliminary evaluation of the model is
presented using hand experiments on four applications.

1 Introduction

Loop fusion is recognized as an effective program transformation for improving
memory hierarchy performance of applications. Fusion improves data locality by
merging loops that access the same data. Although fusion is a useful transforma-
tion it is not always profitable. Previous research has shown that unconstrained
application of fusion may sometime lead to performance loss [4, 10].

Consider the code in Fig 1. In the first loop nest we compute values for array
b. These same values are then used in the second loop nest. We can exploit
this locality in array b by performing a two-level fusion operation. In the fused
loop nest shown in Fig 1(b) the two references to array b are close enough to
be put into a register. Thus as a result of fusion we can potentially save NM
memory operations. However, there is also an outer loop reuse in array a for the
references to a(i,j-1) and a(i,j-2) in loop nest L1 that we need to consider.
In the unfused version the same memory locations in array a are touched in every
iteration of the outer loop. In the fused version, although we do touch the same
locations in array a, the amount of data that we bring into cache between reuses
has increased. In the fused version, we will be accessing locations in arrays b, c
and d before we get to the reused reference of a. If the intermediate data between
reuses is larger than the cache capacity then we will incur 2NM cache misses
due to the references to a. Moreover, by bringing in data from different arrays
between reuses we also increase the likelihood of conflict misses. The occurrence



L1: do j = 1, N

do i = 1, M

b(i,j) = a(i,j)+a(i,j-1)+a(i,j-2)

enddo

enddo

L2: do j = 1, N

do i = 1, M

c(i,j) = b(i,j) + d(i,j)

enddo

enddo

outer loop reuse in a()

loop-crossing reuse in b()

L12: do j = 1, N

do i = 1, M

b(i,j) = a(i,j)+a(i,j-1)+a(i,j-2)

c(i,j) = b(i,j) + d(i,j)

enddo

enddo

(a) code before fusion

(b) code after 2-level fusion

lost reuse in a()

saved loads for b()

Fig. 1. Example of nonprofitable fusion

of conflict misses in the loop nest can be even more damaging to performance
because it can lead to lost spatial locality in both arrays c and d. Thus for the
code in Fig 1 fusion will not yield an overall profit. (Many readers will observe
that these issues can be ameliorated by tiling the loop that results after fusion.
Although we do not analyze the interaction of tiling with fusion in the body of
this paper, we discuss the subject in the final section.)

Fusion can also degrade memory performance by increasing register pressure
for the innermost loop. When fusing loops at the innermost level the register
requirements may increase to the point where a large number of register spills
occur. The cost of these spills may offset any benefits gained by improved locality
in the fused loop. The possibility of exceeding the instruction cache capacity is
also a concern when fusing loops with large instruction counts in the innermost
loop bodies.

The problem of finding the optimal fusion solution has been shown to be
NP-complete [2]. For large applications with many fusible loops finding a good
fusion solution involves using good heuristics. In this paper, we present a strategy
that combines an architecture sensitive cost model with empirical tuning to
perform profitable loop fusion. Our cost model considers the size, associativity



and latency of various levels of the cache in determining if it is profitable to
fuse a pair of loops. We incorporate this cost model into a constraint-based
fusion algorithm. We formulate two constraints for the fusion algorithm to ensure
that performance does not degrade as a result of increased pressure on system
resources due to fusion. Finally, we use empirical tuning to tune a set of fusion
parameters which cannot be measured accurately through static analysis.

In the sections that follow we discuss related work, present our analytical
model, demonstrate how it can be used in an empirical tuning system, present
a preliminary evaluation of the model and finally discuss our conclusions and
future work.

2 Related Work

Fusion has been studied in the literature both as a tool for improving data
locality and increasing the granularity of parallelism [8]. In this paper we look
at fusion in the context of improving data locality only.

In its general form the task of finding the optimal fusion has been shown to
be NP-complete [2]. Several algorithms have been described that use heuristics
to find good fusion solutions in reasonable time. Lim and Lam use affine trans-
formations to apply fusion [9]. Gao et. al. use a max-flow-min-cut algorithm to
partition loop nests into fusible clusters [5]. Kennedy describes a fast-greedy
weighted fusion algorithm that runs in polynomial time [7]. In our work we do
not look at algorithms for performing loop fusion but rather focus on establishing
suitable profitability constraints for legally fusible loops.

Many researchers have proposed models for performing loop fusion to im-
prove memory performance. Ding and Kennedy have looked at reducing effec-
tive bandwidth through loop fusion [4]. Verdoolaege et. al. [14] describe a greedy
fusion algorithm for incremental loop fusion at multiple levels. However, their
locality models do not consider input dependences or the costs associated with
cache misses. Song et. al. [13] present a model that combines loop fusion, loop
alignment and array contraction. In their model, the primary profitability con-
sideration is reducing bandwidth through reduced-sized arrays. Although they
apply conditions to check for excessive register pressure and cache capacity they
do not address the issue of conflict misses.

There are two main differences between our approach and the previous work
done in this area. Firstly, unlike previous models our approach uses machine
specific information (e.g. cache line size, latency) in combination with reuse
distances in determining if fusion is profitable for a pair of loops. Secondly, we
extend our model to be used in the context of an empirical framework. To our
knowledge fusion has not been applied in this setting.



3 Profitability Model

3.1 Quantifying Reuse in Fusible Loops

Capturing inter-loop nest reuse: To determine if it is profitable to fuse a
pair of loops we first need to compute the amount of reuse that is exploited
as a result of fusion. Fusion improves locality by merging loops that access the
same data. Thus any memory location that is accessed in the first loop nest and
then re-accessed in the second loop nest is a candidate for potential reuse. This
inter-loop reuse can be captured in a dependence graph through the use of loop-
crossing dependence edges. A loop-crossing dependence is defined as follows:

Definition 1 Let L1 and L2 be two fusible loop nests where reference r1 accesses
location M in some iteration i in L1 and reference r2 accesses location M ′ in
some iteration j in L2. Then there is a loop-crossing dependence from r1 to r2 if
M = M ′.

To quantify reuse in fusible loops we start with the dependence graph for
single loop nests. Then for each pair of adjacent loop nests we add loop-crossing
dependence edges between the two dependence graphs.

Pruning the dependence graph: The extended dependence graph de-
scribed above is able to identify points of potential reuse in fusible loops. How-
ever, in cases where there are multiple inter loop dependences with overlapping
thresholds the graph might overestimate the amount of reuse exploited by fu-
sion. To account for such situations we need to prune the graph so that the sink
of each loop-crossing dependence represents a potential savings in memory oper-
ations. We note that if there are multiple loop-crossing dependences emanating
from the same source reference then all but one of the loop-crossing dependence
edges can be eliminated. The edge that remains is the one that points to the
sink reference that has no incoming dependence edge from within the loop nest.
Similarly, if there are multiple loop-crossing dependences that have a single ref-
erence as their sink we can eliminate all but one of the edges. In this case, the
edge that remains is the one that has a source with no dependence edges flowing
into it from within the loop nest.

In addition to handling the loop-crossing dependences we also need to prune
the dependence graph for each loop nest so that the pruned graph has at most
one predecessor for each reference and that predecessor refers to the most recent
use of the sink. This pruning is essential for our cost model which assumes one
predecessor per sink in order to avoid double counting of cost on particular
references. We adopt strategies described by Carr [1] to perform this pruning.
The strategy involves eliminating all killed dependences from the graph and in
cases of group temporal reuse keeping only those edges that have the smallest
dependence threshold.

Hierarchical classification of reuse: Once, we have the pruned depen-
dence graph we need to augment it to include information about reuse distances
and memory hierarchy levels. The effects of fusion may not be beneficial across
all levels of the memory hierarchy. Fusing a pair of loops may improve locality



at some level of cache but actually hurt locality at other levels. Hence, to im-
prove overall memory performance we need to be able to quantify reuse that is
exploited at each level of the memory hierarchy.

When considering multiple levels of the memory hierarchy, the reuse classi-
fication described in [15] is somewhat inadequate. We introduce a new classifi-
cation of temporal reuse based on the level at which locality is exploited. We
associate with each sink node in the dependence graph a value that expresses
the level at which the reuse is exploited. This term is called the reuse level of a
reference and we define this formally as follows:

Definition 2 Let Li refer to the memory at level i. Then the reuse level of a
reference r involved in temporal reuse is the smallest k such that

ReuseDistance(r) ≤ Capacity(Lk)

3.2 Accounting for Conflict Misses

Conflict misses can be a big concern for profitable fusion. When fusing loops
we often bring accesses to a number of different arrays within the iterations of
a single loop nest. If the array locations overlap in cache then we would have
to pay the penalty of increased conflict misses. To account for conflict misses
we extend the cache associativity model described by Mark and Hill in [6]. We
compute the probability of a cache line being evicted before it is reused based
on the size and associativity of the cache and the reuse distance.

Let,

r1 and r2 = references to the same cache line
m = reuse distance between r1 and r2

s = number of sets in cache
a = associativity

If we assume, each line from m is equally likely to be mapped to any of the
sets then (this assumption is revisited in Section 5)

Pr[a lines landing in line occupied by r1] = Pr[conflict miss on r1]

=
m

∑

i=a

(

m

i

) [

1

s

]i [

s − 1

s

]m−i

= 1 −
a−1
∑

i=0

(

m

i

) [

1

s

]i [

s − 1

s

]m−i

Now, we introduce a tolerance term T that expresses how high a probability of
a conflict miss we are willing to accept. We then have,

T ≥ Pr[conflict miss on r1] = 1 −

a−1
∑

i=0

(

m

i

) [

1

s

]i [

s − 1

s

]m−i



From this inequality we can derive an upper bound on m for a given value of T .

m ≤ E(a, s, T )

Here, E(a, s, T ) is the maximum integral m such that Pr[conflict miss on r1] ≤
T .

Now, given a tolerance term T and the size and associativity of a cache at
level k we can express our formula for effective cache capacity (ECC) in the
following manner:

ECC(Lk) = E(ak, sk, T ) (1)

where, sk and ak refer to the size and associativity of the cache at level k.
Based on this model of effective cache capacity we now have a new definition

for the reuse level of a reference.

Definition 3 Let Li refer to the memory at level i. Then the reuse level of a
reference r involved in temporal reuse is the smallest k such that

ReuseDistance(r) ≤ ECC(Lk)

3.3 Estimating Profitability

With reuse information and the heuristics for conflict miss in place we are now
able to estimate the profitability of fusing a pair of loops. For each loop-crossing
dependence in the pruned graph we want to determine how many memory op-
erations are saved as a result of placing the source and the sink within the same
iteration of the fused loop.

Let,

l1 and l2 = candidate loops for fusion that have the same nesting depth
D = set of loop-crossing true and input dependences between l1 and l2
C = set of dependences carried by either l1 or l2
ReuseLevel{pre,post}(d) = reuse level for d before and after fusion

Lk = cache at the kth level where 0 ≤ k ≤ L, L0 refers to the register level
and LL refers to main memory
cost(Lk) = cost of a miss access to Lk

Then for each d ∈ D we assign a weight w based on the following condition:
if ReuseLevelpre(d) > ReuseLevelpost(d)
then

w(d) =

ReuseLevelpre(d)−1
∑

i=ReuseLevelpost(d)

cost(Li)

else

w(d) = 0

Then total weight is just
∑

d∈D

w(d)



Computing the number of memory operations saved from loop-crossing de-
pendences is not enough to determine if fusion is profitable. As illustrated in the
example in Fig 1 in some cases fusion may destroy locality within loop nests.
When fusing two loops the reuse distance of any carried dependence increases if
that reuse is also not involved in a loop-crossing dependence. We need to account
for all such cases where fusion might lead to loss of potential reuse.

For each c ∈ C we need to compute the cost based on the following condition:

if ReuseLevelpre(c) < ReuseLevelpost(c)
then

w(c) =

ReuseLevelpost(c)−1
∑

i=ReuseLevelpre (c)

cost(Li)

else

w(c) = 0

Then total cost is
∑

c∈C

w(c)

Hence, the final formula for computing the weight between two fusible loops
is:

W (l1l2) =
∑

d∈D

w(d) −
∑

c∈C

w(c)

3.4 Resource Constraints

A detailed analysis of the savings in memory operations does not guarantee
beneficial fusion. There are several factors that can affect fusion that are not
captured by the model we presented for computing weights. Most of these factors
have to do with the resource requirements of the fused loop. If the requirements
for a particular resource is higher than what is available to the program then the
benefits of improved locality through fusion may not be realized. In this section,
we establish a set of constraints that need to be considered by a constrained
weighted fusion algorithm [3].

(i) Register Pressure: If the number of required registers for the fused loop
body is more than what is available then we have to pay the price for spill
costs. To account for register pressure we enforce the following constraint:

Register Pressure(Loopfused) ≤ Register Set Size

We use the methods presented in [1] to estimate register pressure in a loop
body. Information about the number of registers available to the program is
collected before compilation.



(ii) Instruction Cache Capacity: If the number of instructions in the fused
body is large enough to blow out of the instruction cache then we have
to pay the penalty of fetching those instructions from memory. Again, this
phenomenon should be considered when fusing two loops.

Instructions(Loopfused) ≤ Capacity(I-Cache)

It should be noted that although data cache capacity is another critical re-
source requirement for a program we do not include it as a constraint here.
When using our cost model with a weighted fusion algorithm the weights of the
individual edges account for the data cache miss costs. For this reason we do not
consider the total data requirements of the fused loop as a separate constraint.

3.5 Using the Model with a Greedy Fusion Algorithm

The fusion model and the resource constraints that we formulated can be incor-
porated into a constrained weighted fusion algorithm. We choose the pair-wise
greedy fusion algorithm as described by Kennedy and Ding in [3]. In this algo-
rithm fusion is formulated as a graph clustering problem in which the vertices
represent loops in the program and the weights represent the amount of benefit
obtained by fusing the endpoints. At each step the algorithm picks the heaviest
prime edge in the graph and fuses its endpoints. After each fusion operation
weights are recomputed and the graph is updated with new successor, predeces-
sor and prime edge information.

The chief issue that needs to be considered in incorporating our model with
the greedy algorithm is the cost associated with recomputing the weights at
every step. Since, we perform a detailed analysis in calculating the benefits of
fusing two loops we need to annotate the graph with more information to make
the reweighing process more efficient.

We construct the pruned dependence graph with reuse information as de-
scribed previously. We then group the references within each loop nest and label
the subgraphs as supernodes. We compute the weights between each pair of
fusible loops according to the procedure described in section 3.3 We connect
each pair of supernodes using these weights. Hence, each pair of supernodes has
only one node connecting them that represents the net gain from fusing the two
loops.

Now, the pair-wise fusion algorithm can proceed normally on the supernodes
and the edges between them. After fusing a pair of loops, edge weights between
supernodes have to be updated and the loop-crossing dependence edges adjusted.
For this step, we need to examine each loop-crossing dependence coming into
and out of the fused loop nest. The edges within the supernodes representing
outer loop reuse also have to be examined. We note however, that the number
of edges in both cases is bounded above by the number of arrays in the loop.
Hence, the complexity of a reweighing operation will be O(A) where A is the
number of arrays in the program. Having the complexity of the update operation
bounded by the number of arrays ensures that the fast greedy algorithm will be



able to maintain its original asymptotic time bound inspite of the more detailed
profitability analysis.

3.6 Parameterizing the Model

Even the most detailed analytical models may not produce the optimal fusion
solution. Profitable fusion depends on a number of architectural features and it
is often difficult to determine a priori how these features will interact with the
fusion choices. For example, using the model presented in 3.3 we may be able to
make a prediction about the possibility of conflict misses but we cannot say how
good our prediction is until the program is actually run on the target machine.
Similar uncertainties remain in measuring register pressure and cache footprints.
Our approach to dealing with these uncertainties is the use of empirical tuning.
In this section, we show how the analytical model that we have presented in this
paper can be parameterized and used in an empirical tuning framework.

The basic idea behind our algorithm for empirically tuning fusion parame-
ters is this: we identify system resources (e.g. available registers) that impose
constraints on fusion choices. We then introduce a tolerance factor T which
determines how much of a given resource we can use in each tuning step. The
relationship between the tolerance factor for a given resource R and the available
resource R′ can be expressed as

R′ = f(T, R) s.t. R′ ≤ R

For example, in the instance of tuning the register pressure parameter, the func-
tion f() is a multiplication of the tolerance factor T with the register set size
followed by a ceiling operation on the product. We start off conservatively with
a low tolerance factor and increase the value of T at each subsequent iteration.
We stop the iterative process either when performance degrades or when we have
reached the availability threshold of a particular resource.

Since, at each step we only relax some fusion constraint, it is easy to show that
the set of fused loops grows monotonically during the tuning process. Because of
this property we chose a search strategy that is sequential and orthogonal. For n

resources we have an n-dimensional search space where the size of each dimen-
sion is the range of tolerance factors for a particular resource. For each dimension
we perform a sequential search. When searching in a particular dimension we
use reference values for all other dimensions.

Our current search model includes three resources: data cache capacity, in-
struction cache capacity and register pressure. Although, these three resources
are somewhat similar they interact with fusion choices in different ways and
hence constitute individual search dimensions. We discuss the tolerance factors
and feedback parameters for each of these resources next.

Effective Cache Capacity: We compute the effective cache capacity using
Eq. 1. Intuitively, Eq. 1 tells us what fraction of the cache we can use so that
there is T% probability of a conflict miss between two accesses to the same
memory location. So, in this case we have

Effective D-Cache Capacity = E(a, s, T )



Table 1. Performance results for advect3d (large) for different fusion strategies

Fusion Cycles L1D Misses L2 Misses L1 I Misses Loads Speedup
Strategy (×108) (×107) (×106) (×105) (×108) over no-fuse

ccfm 8.41 4.48 5.13 6.14 3.66 1.17
simple 12.30 3.78 5.08 4.31 4.26 0.80
mips-pro 9.86 3.76 9.18 6.16 3.06 1.00
no-fuse 9.87 3.76 9.19 6.26 3.06 1.00

Table 2. Performance results for advect3d (small) for different fusion strategies

Fusion Cycle L1D Misses L2 Misses L1 I Misses Loads Speedup
Strategy (×108) (×107) (×106) (×105) (×108) over no-fuse

ccfm 4.22 1.38 2.29 6.98 1.19 1.08
simple 5.70 1.68 2.79 7.80 1.61 0.80
mips-pro 5.73 1.68 2.80 7.80 1.61 0.80
no-fuse 4.58 1.46 2.49 6.98 1.30 1.00

where E(a, s, T ) is obtained from Eq. 1.
We start of with a low value for T (T < 0.02) and at each step we increment

T by 0.05 and measure the number of data cache misses at different levels. We
stop the search in this dimension when we reach a T for which the number of
cache misses increases.

Register Pressure: For the register pressure constraint we have the follow-
ing equation for T :

Effective Registers = ⌈T × Register Set Size⌉ where 0 ≤ T ≤ 1

Feedback parameters we use here are total loads and cycle count. Both param-
eters serve as good indicators about the occurrence of register spills.

Instruction Cache Capacity: The instruction cache constraint is dealt
separately since we do not compute reuse distances for instruction and we are
mainly concerned with capacity misses. So, in this case we have:

Effective I-Cache Capacity = ⌈T × Capacity(I-Cache)⌉ where 0 ≤ T ≤ 1

For feedback we measure instruction cache misses directly.

4 Preliminary Evaluation

We are currently in the process of implementing our profitability model in
a performance-based empirical tuning framework[12]. The system includes a
source-to-source code transformer (LoopTool) that is capable of performing a
collection of loop optimizations including multi-level fusion. In this section, we
present an evaluation of our model using the empirical tuning framework.



Table 3. Performance results for erlebacher for different fusion strategies

Fusion Cycle L1D Misses L2 Misses L1 I Misses Loads Speedup
Strategy (×109) (×108) (×107) (×104) (×108) over no-fuse

ccfm 5.23 2.00 2.72 6.57 4.02 1.08
simple 5.68 1.85 3.09 6.77 3.90 0.99
mips-pro 5.23 1.70 2.74 9.85 4.52 1.08
no-fuse 5.65 2.34 2.92 5.95 4.34 1.00

Table 4. Performance results for liv18 for different fusion strategies

Fusion Cycle L1D Misses L2 Misses L1 I Misses Loads Speedup
Strategy (×109) (×108) (×107) (×104) (×109) over no-fuse

ccfm 3.77 2.14 2.33 4.52 1.55 1.46
simple 3.77 2.14 2.33 4.52 1.55 1.46
mips-pro 5.06 2.32 3.33 5.54 0.98 1.09
no-fuse 5.51 2.62 4.08 5.13 1.18 1.00

We applied our model by hand to a set of benchmarks. We then annotated
the source with directives to tell LoopTool which loops to fuse. The transformed
code was then compiled using the native compiler on the target platform.1 In or-
der to avoid conflicts with the fusion strategies of the native compiler, programs
transformed by LoopTool were compiled with the fusion option turned off. All
experiments were performed on an SGI R12K machine with a two-level cache
hierarchy. Experiments were run on four different programs: advect3d an ad-
vection kernel for weather modeling, erlebacher a differential equation solver,
liv18 a hydrodynamics kernel from Livermore loops and mgrid, a multi grid
solver from SPEC 2000. We compare results from applying our strategy (ccfm)
with three different strategies: the simple strategy always fuses loops that share
some common data, mips-pro is the fusion strategy chosen by the MIPSPro 7.3
compiler and no-fuse is the option of applying no fusion at all.

Results from advect3d using a 256×256×256 data set is presented in Table 1.
The results show that our strategy is able to achieve a 17% speedup over both
mips-pro and no-fuse. Performance improvement of ccfm over simple is even
more dramatic (46%). For advect3d, ccfm fuses all loops at the two outer levels
but refrains from fusing all the innermost loops because it estimates the register
pressure will exceed available resources on the target machine. simple fuses all
loops at each nesting level and creates a large fused body for the inner loop. As
a result, this version of the code incurs many register spills as indicated by the
large number of issued loads in column 6 of Table 1. Although simple is able to
achieve some locality in L1 and L2 cache and also the L1 instruction cache, the

1 Since, we applied the model by hand we do not have numbers for the total tuning
time. The measured time for the source-to-source transformation was never more
than 15 seconds.



Table 5. Performance results for mgrid for different fusion strategies

Fusion Cycle L1D Misses L2 Misses L1 I Misses Loads Speedup
Strategy (×1010) (×108) (×107) (×105) (×109) over no-fuse

ccfm 1.05 4.63 6.37 3.39 3.64 1.07
simple 1.02 4.53 6.27 3.31 3.59 1.11
mips-pro 1.02 4.53 6.27 3.26 3.59 1.11
no-fuse 1.13 5.14 6.86 3.74 3.74 1.00

cost of register spills for this strategy outweighs its benefits. The peformance of
mips-pro and no-fuse is almost identical in this case. Closer inspection of the
generated code revealed that MIPSPro chose not to fuse any loops for advect3d
because the data set was too large for the stack frame size for the target machine.
For this reason, we ran another set of experiments with advect3d using a smaller
(128×128×128) data set. Results from the second set of experiments are shown
in Table 2. Again, ccfm performs significantly better than both no-fuse and
simple. Although, the performance gains have somewhat diminished due to the
smaller data set. The more interesting result from this set of experiments is the
performance of the mips-pro strategy. mips-pro performs as poorly as simple
in this case. We inspected the code generated by mips-pro and discovered that
it created two separate fully fused loop nests from the 27 fusible loops in the
program. In addition, it performed tiling on each fused loop nest. As it turned
out the combination of fusion and tiling was not able to improve locality in the
program. This is indicated by the increased number of misses at all levels of the
cache. These results demonstrate that indiscriminate fusion can indeed lead to
performance degradation. Our fusion strategy, although less aggressive, achieves
locality at both cache levels while keeping the register spill cost at a moderate
level. Hence, we are able to achieve an overall performance improvement across
all levels of the memory hierarchy.

Results from our experiments with erlebacher are presented in Table 3.
Again ccfm is able to outperform both simple and no-fuse through improved
locality in the L2 cache. However, in this case mips-pro does as well as ccfm.
For erlebacher, mips-pro fuses loops that our fusion strategy rejects because
of lost reuse in the outer loops. However, as was the case with advect3d, the
MIPSPro compiler applies tiling to these fused loops and in this case tiling is able
to recover some of the lost reuse due to over fusion. Thus there is no significant
increase in the number of L2 cache misses for mips-pro.

In Table 4 we present results from liv18. We observe the most significant
performance improvement for this kernel. This is not surprising since all the
work in liv18 is spent in three fusible loop nests. For liv18, our fusion strategy
chooses to fuse all three loops all the way through which is equivalent to the
simple strategy. Thus in Table 4 the rows corresponding to ccfm and simple are
identical. We notice that fusing all the way through does cause some extra loads.
However, this loss is more than offset by the benefits obtained from reduced L2



cache misses. mips-pro does not do too well on liv18. It decided to fuse only
two of the three fusible loops in the kernel leaving some unexploited reuse in the
third loop nest. It was not totally clear as to why mips-pro decided not to fuse
the third loop nest. We speculate that it may have been due to loop alignment
issues. The loop nests in liv18 need to be aligned before they can be fused.
For LoopTool we use the Omega code generator which inserts guards within
fused loop nests after alignment. On the other hand, it appears that MIPSPro
prefers to peel off iterations of the loop nest that fall outside the alignment
range. It is possible that because of this approach the third loop nest was left
unfused. Thus the performance improvement we observe over mips-pro may not
be due to an improved profitability model but rather due to a limitation in their
implementation of the fusion algorithm.

The final benchmark we look at is mgrid. The experimental results from
mgrid are presented in Table 5. In this case, although ccfm achieves better
performance than no-fuse it is beaten by both mips-pro and simple. mgrid
poses a similar situation as advect3d for our fusion strategy. Because ccfm

expects lost reuse in outer levels it chooses to perform only a two level fusion
leaving the innermost loops alone. On the other hand, mips-pro decided to fuse
all the way through and then apply both tiling and outer loop unrolling to the
fused loop nests. This combined transformation strategy improved locality for
L2 cache and also reduced the number of loads for the program.

We summarize the results of our experiments in Fig 2. The experimental
results presented in this section expose several key aspects for profitable loop
fusion. The results show that overly aggressive fusion can indeed lead to perfor-
mance loss through increased register pressure and lost reuse at outer levels of
loop nests. In some cases, this loss can be mitigated by applying transformations
such as tiling and unroll-and-jam. However, there are cases when these additional
transformations are unable to help improve the overall performance. Thus the
interaction between fusion and other transformations, particularly tiling is crit-
ical in improving memory performance. To address this issue, we have begun
work on a more complex model discussed in the concluding section.

5 Accuracy of the Cache Miss Prediction Model and its

Implications

The cache miss model presented in Section 3.1 makes the assumption that mem-
ory accesses between any two reused references are essentially random. Although,
this scheme works well when integrated with the rest of our framework it is im-
portant to evaluate the accuracy of the model on its own. To validate our model,
we performed a series of experiments with a set of synthetic benchmarks and
real-world applications [11]. In this section, we provide a brief summary of the
experimental results and discuss their implications.

Experimental results from [11] revealed that our model is able to predict an
upper bound for the conflict miss rate with reasonable accuracy. However, the
predicted upper bound for the miss rate can sometimes be significantly greater



0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

advect3d erlebacher liv18 mgrid

Benchmarks

S
p

e
e
d

u
p

 o
v
e
r 

n
o
-
fu

s
e

ccfm

simple

mips-pro

no-fuse

Fig. 2. Performance improvement for different fusion strategies

than the actual miss rate of the program. Although a conservative estimate
suffices for profitability estimates of loop fusion it is important to consider its
implications on other transformations. A key transformation for improving mem-
ory performance in numerical applications is tiling. If we use our conflict miss
model with tiling then the effective cache capacity would directly determine the
tile size for a given loop nest. In that case, a conservative estimate would imply
choosing a smaller tile size which in turn may lead to lost reuse in inner loops.
Therefore, in such situations we need a cache miss model that is able to predict
the cache miss rate more accurately. We are currently working on such a model.
Our new model incorporates the effects of tiling and also considers the layout of
arrays in memory.

6 Conclusions and Future Work

In this paper, we have presented a model for estimating the profitability of loop
fusion and a strategy for parameterizing the model for use in an empirical tuning
framework. Preliminary experiments in Section 4 suggest that our strategy can
help make the right fusion choices on a set of applications. However, to make a
stronger statement about the effectiveness of our approach the model has to be
evaluated on a large class of benchmarks and a variety of platforms. Our future
plans include a complete implementation of the model in our empirical tuning
framework and a more thorough evaluation on a large benchmark suite.

Experimental results from Section 4 also emphasize the need for considering
interactions between optimizations for overall improvement in memory perfor-
mance. In particular, there are complex interactions between tiling and fusion
that need to be considered to make fusion profitable. By merging loop bodies
fusion can increase the working set size of a loop nest and force the selection
of a smaller tile size. A smaller tile size might result in lost reuse in the inner
loops. If arrays are not aligned at cache line boundaries (generally the case) then
a smaller tile size may result in lost reuse in outer loops as well. In such cases, it



may be profitable to tile the two loop nests separately. We are currently working
on a profitability model that considers these complex interactions between tiling
and fusion to improve overall memory performance. In addition, this model em-
ploys a more accurate estimator for effective cache capacity that takes the effects
of tiling and array allocation strategies into account.

References

1. S. Carr. Memory-Hierarchy Management. PhD thesis, Dept. of Computer Science,
Rice University, Sept. 1992.

2. A. Darte. On the complexity of loop fusion. In PACT ’99: Proceedings of the 1999

International Conference on Parallel Architectures and Compilation Techniques,
1999.

3. C. Ding and K. Kennedy. Resource-constrained loop fusion. Technical report,
Dept. of Computer Science, Rice University, Oct. 2000.

4. C. Ding and K. Kennedy. Improving effective bandwidth through compiler en-
hancement of global cache reuse. In International Parallel and Distributed Pro-

cessing Symposium, San Francisco, CA, Apr. 2001. (Best Paper Award.).
5. G. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collective loop fusion for array

contraction. In Proceedings of the Fifth Workshop on Languages and Compilers

for Parallel Computing, New Haven, CT, Aug. 1992.
6. M. D. Hill and A. J. Smith. Evaluating associativity in cpu caches. IEEE Trans.

Comput., 38(12), 1989.
7. K. Kennedy. Fast greedy weighted fusion. In ICS ’00: Proceedings of the 14th

international conference on Supercomputing, 2000.
8. K. Kennedy and K. S. McKinley. Maximizing loop parallelism and improving data

locality via loop fusion and distribution. In Proceedings of the Sixth Workshop on

Languages and Compilers for Parallel Computing, Portland, OR, Aug. 1993.
9. A. Lim and M. Lam. Cache optimizations with affine partitioning. In Proceedings

of the Tenth SIAM Conference on Parallel Processing for Scientific Computing,
Portsmouth, Virginia, Mar. 2001.

10. K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with loop
transformations. ACM Transactions on Programming Languages and Systems,
18(4):424–453, July 1996.

11. A. Qasem and K. Kennedy. Evaluating a model for cache conflict miss prediction.
Technical report, Dept. of Computer Science, Rice University, Oct. 2005.

12. A. Qasem, K. Kennedy, and J. Mellor-Crummey. Automatic tuning of whole ap-
plications using direct search and a performance-based transformation system. In
Proceedings of the Los Alamos Computer Science Institute Second Annual Sympo-

sium, Santa Fe, NM, Oct. 2004.
13. Y. Song, R. Xu, C. Wang, and Z. Li. Data locality enhancement by memory reduc-

tion. In Proceedings of the 15th ACM International Conference on Supercomputing,
Sorrento, Italy, June 2001.

14. S. Verdoolaege, M. Bruynooghe, G. Jenssens, and F. Catthoor. Multi-dimensional
incremental loop fusion for data locality. In Proceedings of the IEEE International

Conference on Application Specific Systems, Architectures, and Processors, June
2003.

15. M. E. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings of the

SIGPLAN ’91 Conference on Programming Language Design and Implementation,
Toronto, Canada, June 1991.


