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Abstract. The increased popularity of grid systems and cycle sharing across or-
ganizations requires scalable systems that provide facilities to locate resources,
to be fair in the use of those resources, and to monitor jobs executing on remote
systems. This paper presents a novel and lightweight approach to monitoring the
progress and correctness of a parallel computation on a remote, and potentially
fraudulent, host system. We describe a monitoring system that uses a sequence
of program counter values to monitor program progress, and compiler techniques
that automatically generate the monitoring code. This approach improves on ear-
lier work by omitting the need to duplicate computation, which both simplifies
and reduces the overhead of monitoring. Our approach allows dynamic and ac-
countable cycle-sharing across the Internet. Experimental results show that the
overhead of our system is negligible and our monitoring approach is scalable.

1 Introduction

Computational workloads for academic groups, small businesses and consumers are
characterized by long periods of little or no processing punctuated by periods of intense
computational needs. It has been observed that computational resource demands can be
“smoothed out” across sub-groups by aggregating large numbers of resources and users
together. Computational resources across the world naturally experience different levels
of demand at any given time because of their distribution. Computational resources
are perishable, thus failing to use cycles, bandwidth and disk space does not create
additional resources to be used in the future. However, if resources that would otherwise
go unused could be provided to other users with the promise of sufficient compensation
to cover the overhead of providing the resources, along with a small profit, then these
resources would yield some value to the provider.

The major value of computational resources to their owner is the knowledge that
they are available when needed. The major cost of sharing unneeded cycles is the legal
and administrative overheads involved in allowing others access to the resources. Al-
lowing compensation for these administrative overheads would dramatically increase
the quantity, and decrease the cost, of available cycles. Both the decreased cost and
the ease of accessing cycles increase the number of applications that can exploit these
resources and increase the number of users that can access them. Academics and re-
search laboratories would have access to a vast array of machines for running simu-
lations, benchmarking programs, and running scientific applications; small businesses



would have machines available for data-mining sales, accounting and forecasting; and
consumers would have machines available to perform computationally intensive, but
low-economic value activities such as games and digitally processing home movies.
Elimination of these overheads would allow automatic intermediation between con-
sumers and providers of resources, allowing shared resources to blend seamlessly with
locally owned resources.

Current cycle sharing systems take two approaches to minimizing these overheads.
The first approach relies on volunteers providing cycles to a trusted job provider [1–3]
with no desire for real compensation. These projects have allowed large computations,
which would be infeasible on committed hardware, to be performed using surplus cy-
cles on thousands of machines world-wide, and show the value of exploiting surplus
cycles. By having volunteers provide the machines and absorb the local administrative
overhead of enabling the application to run, by having a single trusted application, and
by avoiding compensation issues, these projects avoid the difficulties that a more gen-
eral approach must tackle. Although this model performs well in its targeted application
domain, it clearly cannot be generalized to support cycle sharing for applications that
do not inspire similar levels of generosity.

The second approach is typified by centrally managed systems like Condor [4] and
LoadLeveler [5] that have been developed to allow resources to be aggregated within
permanent or ad-hoc organizations. Centralized administration of resources allows a
trusted entity – the system administrators – to verify and track the trustworthiness of
users given access to the resources, and it allows users to deal with a known, trusted
entity. Although this model has allowed organizations to share unused cycles internally,
it does not work well for sharing cycles across organizations.

Four technical challenges must be overcome to allow the exploitation of the massive
amounts of computational resources that are going unused. Solutions to the first three
of these have been developed by other projects. The first challenge is how to discover
resources to be used, and how to compensate the providers of the resources and punish
cheaters [6–8]. The second challenge is how to enable a submitter machine to generate
executables compatible with the host platform in a heterogeneous system [9, 10]. The
third challenge is how to protect the host machine, i.e. the machine executing the job,
from hostile binaries [11, 12].

In this paper, we discuss a solution to the fourth technical challenge, the problem
of allowing the submitter machine, i.e. the machine submitting a job, to know its job
is being faithfully executed. This capability is necessary for widespread cycle sharing,
both to allow submitters of jobs to have confidence that their jobs are making progress
towards completion, and to allow submitters of jobs to incrementally compensate the
system hosting the job, thereby bounding the risk of the host. In this paper, we assume
that host nodes may act fraudulently, but not maliciously. That is, a host node may take
actions to gain compensation for which it is not entitled, but it will not take actions
that harm the submitter but which do not benefit the host. We make the following
contributions to monitoring the progress of remote jobs:

– We present a novel, lightweight technique to remotely monitor the incremental
progress of a program that is executing in an untrusted environment. This technique
has a lower overhead than any previous technique known to the authors.



– We present experimental data showing the overhead of this system is less than 2.1%
on the remote system executing the program, and is negligible on the submitter
system that is monitoring the application’s progress.

– We present a monitoring technique that uses characteristics of the currently exe-
cuting binary to generate and encode progress information, and is impervious to
replay attacks.

– We show how the relatively uniform distribution of system and library calls can
be used to guide the placement of the monitoring code, allowing simple compiler
algorithms to be used to generate the monitoring code. We present experimental
data that validates this approach.

The rest of the paper is organized as follows. Section 2 presents our novel binary file
location beacon (BLB) approach to remote job monitoring for native binary executable
programs. Section 3 presents the implementation of our general BLB approach to target
MPI programs. Section 4 presents the experimental results showing the effectiveness of
the system. Finally, Section 5 discusses the related work and Section 6 concludes the
paper.

2 Monitoring Progress and Correctness with Beacons

In this section, we present a light-weight technique based on binary file location bea-
cons (BLB) for monitoring the progress of remotely executing programs.

We assume a generic Internet cycle sharing system where each participating node
can submit jobs (i.e. be a submitter node) or host jobs (i.e. be a host node). In this paper,
we focus on remote job monitoring, with other components, such as resource location
and credit management, being beyond the scope of this paper.

2.1 Key Idea

Before the submitter node submits a computational job to the host node for execution,
it passes the program to our tool which transforms the original program into a pair of
programs, one that executes on the host machine (H-code) and one that executes on
the submitter machine (S-code). The H-code is the original program augmented with
beacons and auxiliary code that send information about the program to the submitter
machine. The S-code uses this information to track the progress, and verify the execu-
tion of, the program. Figure 1 shows an example of the runtime architecture of a remote
job monitoring system.

The basic idea of this paper is to use place location beacons (L-beacons) along the
control flow graph (CFG) of a program to track the fine-grained remote job progress
information. However, a L-beacon based tracking mechanism is vulnerable to a replay
attack. For example, Miller et al. [13] describes how to use existing tools to replace,
on-the-fly, a process with another process. Thus, if a valid L-beacon value stream of a
previous execution is captured, the attacker can replace the process of the later com-
putation with a process that emits the captured L-beacon value sequence to cheat the
submitter.
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Fig. 1. The run time monitoring system for MPI programs: displaying only one tracking thread
and the corresponding process it monitors

The contribution of this paper is on how to use the location beacons to monitor re-
mote program execution. Specifically, the key idea of this paper is that by making the
value transmitted by location beacons reflect the structure of the program and by par-
tially randomizing their placement, we can defeat replay attacks. We call this technique
binary file location beacons, or BLB-based remote monitoring for binary applications.

In our BLB-based remote job monitoring, the submitter constructs a finite state au-
tomaton (FSA) that tracks the progress of the remote job executing on the host machine.
BLBs are placed along control flow graph (CFG) edges of a program and used to iden-
tify the current location of the program during its execution. At runtime, a BLB invokes
a function f that stores the beacon value in a buffer, with the buffer sent to the submit-
ter program at predetermined intervals. The value placed in the buffer is the value of
the program counter at the BLB site, more precisely, it is the program counter of the
instruction immediately following the call to f . By using the program counter value,
the beacon value is intimately tied to the layout of the binary code generated for the
program.

Our beacon insertion technique works as follows. The original program is scanned
for candidate beacon insertion points, i.e., the entries to computationally significant
regions. Computationally significant regions can be identified by the programmer or
can be identified via an analytical cost model (see [14] for details). In this paper, we
use a variant of the former approach, but instead of having the programmer explicitly
identify candidate insertion points, we make use of the observation that system and
library calls tend to be relatively uniformly distributed across programs, and tend to
not appear within the inner loops of high performance programs. By using system and
library call sites as candidate sites for placing BLBs, we do not need to use analytical
models within the compiler to locate candidate sites.

2.2 Possible Attacks

Each BLB inserted will attempt to add a beacon value, which is a program counter
(PC) value, into the BLB buffer to be sent to the host. An attack on our monitoring



system needs to emit a stream of valid BLB values to be communicated to the submitter
machine. There are two ways of doing this. The first is to capture a valid stream of
beacon values from a previous correct execution of the program, and then replay this
stream on future requests to execute the program. We prevent this attack by not always
inserting beacons at the same locations when generating a program. At each potential
BLB insertion site B, a beacon is actually inserted with probability PB . If PB = 0, no
beacon is ever inserted at this site, if PB = 1 a beacon is always inserted at this site. For
0 < PB < 1 a beacon may be inserted. By setting the values of PB to be non-zero and
less than one, each version of the program generated by our compiler will likely have a
different set of beacons inserted and consequently a different set of valid beacon values.
Because the values of PB can be different at different candidate sites B the placement of
beacons can be made more or less likely, depending on the hotness of a program region.
In any case, attempts to replay the old beacon values will fail, with a high probability,
because the replayed set of beacons will likely contain invalid beacon values. Because
the binaries for programs used in high performance computing are usually orders of
magnitude smaller than the data they operate on, shipping a (possibly) new binary with
each execution imposes only a small overhead.

The second form of attack is for the host to analyze the binary and to extract the set
of BLB call sites and the reachability information between BLB call sites necessary to
construct the FSA. With this information a host can reconstruct the FSA and generate a
valid sequence of BLB values. Two approaches can be used to prevent this attack. The
first is to use code obfuscation to hide the control flow structure of the program, and
consequently make it very difficult to determine the reachability information necessary
to construct the FSA. A moderate use of jump tables to implement branches, and a
moderate use of jump tables for function dispatch in code not on the critical path, should
be sufficient to thwart program analysis tools. We note that simply compiling programs
at high optimization levels performs a high degree of code obfuscation, and that is the
technique we use now. Explicit code obfuscations techniques, such as the one described
in [15] to enhance the difficulty of reverse-engineering, can be applied to our approach
to further enhance the security of the system.

We note that attacks predicated on changing the binary must simultaneously pre-
serve two structural properties of the program. First, the reachability of beacons from
other beacons must be unchanged. Failing to do this will cause the host to run the risk
that sequences of beacons not possible in the original program will be sent to the sub-
mitter. Second, the location of the code (explained in detail in the next section) that
obtains the PC cannot be changed, since this will cause sequences of beacons sent to
the submitter to contain values that are not possible in the original program.

Finally, we note that our goal is not to construct an unbreakable system, but rather
to construct a system where the cost of breaking it is as high as the benefit.

3 Implementation Details

In the previous section we introduced a general BLB-based technique applicable to any
binary executable program. In this section, we present a concrete implementation using
BLBs in MPI message passing programs. We choose MPI programs because MPI is the



most popular programming model for high performance computing. Moreover, MPI
programs are able to work on more diversified platforms, including SMP and distributed
memory systems, than any other programming model.

3.1 Program Counters of MPI Calls as BLB values

As described in Section 2, BLBs provide fine-grained location information about an
executing program. The compiler in the monitoring system generates host code by in-
serting hard-coded beacon instructions at significant points in the program. Because
beacon instructions that are inserted in the host code take time to execute and therefore
add to the overhead of the program, the selection of locations to insert BLBs must ac-
count for the tradeoff between the granularity of monitoring and the program overhead.
Thus locations chosen to insert beacon instructions should be: (i) where the overhead of
executing the beacon instructions is affordable, and (ii) easily identified by a compiler
as an efficient place to locate a binary location beacon.

In an MPI program, interprocess communication and synchronization are achieved
by calling MPI library functions. Therefore, locations of interprocess communication
and synchronization points, i.e., the MPI calls in the program, naturally satisfy the above
two criteria because (i) the cost of a beacon instruction is insignificant compared to the
interprocess communication or synchronization cost plus the cost of the computation
performed since the last beacon, and (ii) a compiler front-end can trivially identify MPI
calls.

The code in Figure 2 shows our implementation to obtain PC values to be used as
BLB values. GetPC() is an instruction that obtains the PC value of the next instruction
(the invocation of the mpi send call) in a C program targeting an Intel IA32 processor
running FreeBSD. Function getPC() returns the address that is placed on the stack
frame when it is invoked, i.e. the PC of the instruction immediately after the invoca-
tion of getPC(). Adding the C expression pc = getPC() immediately before an
MPI call returns the address where the MPI operation is invoked, i.e., the PC value at
the MPI operation call site. We have implemented the same functionality for Fortran.
The only difference between the C and Fortran implementations is how the value is re-
turned by the respective getPC() functions because of the different function calling
conventions.

For different machine architectures, a slightly different function needs to be pro-
vided. AMD64 family processors have the same calling convention and stack layout as
the Intel IA32 architecture, and the above method to get the program counter value is
valid. For architectures that allow more aggressive use of registers during code gener-
ation (e.g. the PowerPC architecture), slightly different code is generated because the
return address from a function call is saved into a dedicated register instead of onto the
stack. Therefore the getPC() function for these architectures returns the value held
in the dedicated register instead of returning the value on the stack frame. For 64-bit
Intel Itanium architecture, the cost of getPC() can be reduced by utilizing its “regis-
ter stack frames” architecture, which enables getPC() to avoid accesses to the stack
frames in main memory.



main(){
...
mpi send(...);
...

}

int pc;
main(){

...
pc = getPC();
mpi send(...);
...

}
...
int getPC(){

asm(”mov 4(%ebp), %eax”);
}

(a) An MPI call in original code (b) PC values returned by getPC() as BLB

Fig. 2. Obtaining the program counter of an MPI call in a C program on IA32

3.2 FSA Constructed with Program Counters of MPI Calls

We now present the method used to construct a finite state automaton (FSA) to track
legal sequences of BLB values. Each process in the host system executing the submitted
program runs the same MPI executable, and their FSAs are identical.

The FSA construction algorithm is presented in [14]. This algorithm projects a com-
plete program control flow graph onto a program control flow graph containing only
nodes that are annotated with beacons. A node ni in the new graph can reach a node nj

in the new graph if and only if ni could reach nj in the original graph. Using this algo-
rithm, we construct an FSA where states in the FSA represent nodes in the new control
flow graph. After compiling the code into a binary executable, we use a disassembler
(objdump() in our case) to get the addresses of the MPI calls that are identified as
beacon sites, map them onto the corresponding states in the FSA, and use the addresses
as the state labels in the FSA. The address of the call to mpi init() corresponds to
the initial state of the FSA, and the address of the call to mpi finalize() corre-
sponds to the final state of the FSA. The transition symbol α driving a transition toward
a specific state (also labeled α) is the address of the corresponding node in the binary
executable.

Figure 3 shows an MPI program fragment, the corresponding H-code and the re-
sulting FSA. In this example, we treat each MPI call as a beacon site (i.e. all PB =

1). As shown in Figure 3(b), the compiler identifies each MPI call and inserts a call
to getPC() immediately before the MPI call. The compiler also inserts a call to
deposit beacon(), which puts the BLB value into the beacon buffer, after each
MPI call identified as a BLB. After the FSA is constructed, and after the transformed
code is compiled, the BLB values are mapped onto the states and transition symbols in
the FSA, as shown in in Figure 3(c).

3.3 Runtime System of Monitoring MPI Programs

We now discuss the details of how the deposit beacon() call places the BLB value
generated by getPC() into a beacon buffer, and how the sequence of values placed
into the buffer is transmitted to the submitter machine and used to monitor the progress



main(){
...
mpi irecv(...);
...
if(...)

mpi send(...);
...
mpi wait();
...

}

main(){
...
pc = getPC();
mpi irecv(...);// @0x804a641 in the executable
deposit beacon(pc);
...
if(...){

pc = getPC();
mpi send(...);// @0x804a679 in the executable
deposit beacon(pc);

}
...
pc = getPC();
mpi wait(); // @0x804a69b in the executable
deposit beacon(pc);
...

}

(a) A piece of pseudo code of MPI program (b) Generated host code

‘0x804a679’ ‘0x804a69b’‘0x804a641’

To other states

State 0x804a641 State 0x804a679 State 0x804a69b

‘0x804a69b’

(c) Part of FSA corresponding to above program: transition symbols on the edges correspond to
the unique program counter emitted by the inserted beacon instructions

Fig. 3. An example of program counter based FSA

of the program. Figure 1 shows a tracking thread on the submitter and the corresponding
process that it monitors in the host cluster.

At the beginning of the computation on the host, the H-code performs an initial-
ization procedure. Each MPI process allocates a beacon buffer where the BLB values
generated by this process are inserted. A beacon buffer in our current implementa-
tion can hold up to 1500 beacon values. Each process also creates a separate reporting
thread. The reporting thread on each process builds a TCP socket that connects to the
monitoring S-code program running on the submitter. During the computation, the main
computation thread on each process takes beacon values returned by invocations of the
getPC() function and, via a call to deposit beacon(), places the beacon value
into the beacon buffer. This is shown in Figure 3(b). Periodically the reporting thread
on each process sends the contents of its buffer to the submitter, and then clears the
buffer to allow more beacon values to be deposited. The pthread mutex and condition
variables are used to synchronize access to the beacon buffer by the main computation
and the reporting thread.

The reporting thread on a process sends the values in the beacon buffer back to the
submitter using a paced transmission scheme. The paced transmission scheme works
as follows. The reporting thread sleeps for an interval, which is set by the submitter



when the program is submitted to the host. When this interval passes, the reporting
thread wakes up to send the values in the beacon buffer. If the buffer is filled before the
interval expires, the reporting thread is woken up and immediately sends the buffer to
the submitter node. When the reporting thread finishes sending the buffer, it sleeps for
another interval. Thus, the cross-network data transfer procedure is asynchronous to the
main computation of the program.

We now discuss the submitter machine actions. The submitter machine creates a
dedicated thread (the tracking thread) for each MPI process executing on the host ma-
chine. Each tracking thread maintains an FSA, and the current state of the FSA is ini-
tialized to be the initial state, i.e. a state corresponding to an mpi init call. Over
time, the tracking thread receives buffers from its corresponding reporting thread, via
the already established socket. Each beacon value in the buffer is processed by com-
paring it to states adjacent to the current state, which are found by performing a lookup
in the FSA’s transition table. If the beacon value does not match a valid transition from
the current state, it is an illegal transition and the appropriate action is taken. Buffers
continue to be received, and beacon values in the buffers continue to be processed, until
the submitter receives the final state beacon value.

Finally we note that the monitoring runtime system can be configured with different
setups. For example, the submitter can only build a connection to a single host process
(e.g., the master node) and by receiving and tracking the single node’s BLB values, the
submitter can track the progress of the remote computation. Our system has sufficiently
low overhead when tracking all host processes that we have not investigated this strategy
further.

4 Experimental Results

In this section, we present performance results showing the overhead and effectiveness
of our system.

4.1 Experimental Platform

Our experiments were run on a submitter/host pair located at the University of Illinois at
Urbana-Champaign and Purdue University. The submitter machine, located at UIUC, is
a uniprocessor with an Intel 3GHz Xeon processor, 512KB cache and 1GB main mem-
ory running the Linux 2.4.20 kernel. It is connected to the Internet through the campus
network. The host machine is a cluster located at Purdue with 8 computational nodes,
each of which has an Intel Pentium IV processor with 512KB cache, 512MB main
memory, and runs FreeBSD 4.7. The nodes within the cluster are interconnected by a
FastEthernet. The nodes in the cluster share a single file system, and the MPICH 1.2.5
library is installed on the cluster. Programs were hand-transformed using the approach
described in Section 3.

4.2 NAS Parallel Benchmark Kernels

The NAS Parallel Benchmarks(NPB) [16] version 3.2 is a set of benchmarks developed
to evaluate the performance of highly parallel computational resources. These bench-



marks consist of five parallel kernels and three simulated applications. From these ker-
nels and applications, we selected four kernels representing totally different types of
computation and communication patterns to evaluate our approach.

– EP (an embarrassingly parallel kernel) represents computations without significant
interprocessor communication. EP provides an estimate of the upper achievable
limits for floating point performance.

– IS (a large integer sort kernel) performs a sorting operation that is important in
particle method codes. IS tests both integer computation and communication per-
formance.

– MG (a simplified multigrid kernel) performs the 3D V-cycle multigrid algorithm
which solves the discrete Poisson problem with periodic boundary conditions. MG
represents highly structured long distance communication and tests both short and
long distance data communication.

– CG (a conjugate gradient kernel) performs the computation of the smallest eigen-
value of a large, sparse, symmetric positive definite matrix. CG represents irregular
long distance communication and unstructured matrix vector multiplication, which
is typical of unstructured grid computations.

In our measurements, the inter-transmission intervals of the beacon reporting thread
is set to 2 seconds, which represents a highly aggressive monitoring scenario. In an
actual system, the inter-transmission interval would be tens of seconds or minutes. Also,
we generate beacon information for each MPI call in the program, reflecting the case
of PB = 1 described in Section 2, which is the most expensive version of the H-code
to monitor. Therefore, our experiment provides an upper bound on the performance
overhead and network traffic incurred by using our monitoring system.

4.3 Run Time Computation Overhead

We first evaluate the scalability of our system by measuring the system performance
overhead with computations running on different numbers of processors. To evaluate
this, we run each of the above benchmarks with problem size-B inputs on 2, 4 and 8
processors of our cluster. We measure the time to run the original benchmarks on our
cluster, which reflects the scenario of remote job execution without monitoring. These
form our baseline numbers. We then run the manually transformed submitter code and
host code of the same benchmarks on the submitter/host pair, which reflects the scenario
of a remote job submission with monitoring. Figure 4 shows the overhead of job execu-
tions, using beacons for monitoring, over the corresponding un-monitored baseline job
execution times. Our experimental results show that the maximum performance over-
head is under 2.1%. We notice that the overhead does not monotonically increase with
an increasing number of processors, and now explain why. Both the base line number
(the computation time without monitoring) and the number of beacon calls under mon-
itoring (the number of the MPI function calls per process at run time) decrease when
the number of processes increases. There is, however, no explicit relationship between
these two decreasing values. As well, our monitoring system introduces additional syn-
chronization overhead by adding a single reporting thread to each process. But this
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synchronization overhead is always one extra thread (the reporting thread) per process
no matter how many processes the MPI code runs on.

Next we evaluate the relationship between the problem size of a monitored com-
putation and the monitoring overhead. A problem with size-C input represents a larger
problem size than the problem with size-B input. For example, for MG problem size-B
uses a 256 by 256 by 256 matrix as the input data set, and problem size-C uses a 512 by
512 by 512 matrix as the input data set. Figure 5 shows that the overhead to monitor a
larger computation (in this case, size-C) is always smaller than that to monitor a smaller
computation (in this case, size-B). This is because the number of MPI calls in problem
size-B and in problem size-C runs of each benchmark are similar. Therefore the cost of
depositing BLBs into the buffer and transferring them across the network (the overhead
on the host machine) for both problem sizes are similar. However, the total computation
time for problem size-C is greater than that for problem size-B, thus the overhead is
lower for problem size-C.

Finally, we evaluate the submitter node CPU usage to monitor a remote job. As the
submitter code only performs FSA transitioning, it uses a small fraction of the CPU.
We use the system time facility to measure the computational resources used by the
verification process on the submitter. This is an imperfect evaluation because this ratio
changes according to two factors: (1) the submitter’s hardware, and (2) the submitter’s
workload while monitoring a remote job, which affects the resources available to per-
form the monitoring. We believe, however, that the numbers give a feel for the low
overheads, and small amount of resources required to perform the monitoring. Table 1
shows the ratio of the sum of the user CPU time and the system CPU time to the wall
clock time (elapsed real time) during the S-code execution.

As the results in Table 1 show, monitoring a computation with a larger problem size
always takes a smaller percentage of the submitter’s CPU resources than monitoring
a computation with a smaller problem size. This is because the amount of beacon in-
formation processed by the submitter for problem size-B and problem size-C is same
for each benchmark, while the monitoring time, i.e., the computation time on the host
for problem size-C is significantly longer than that for problem size-B. These numbers
were measured while one author logged into the submitter machine and launched two
emacs processes, one vi process, and one Mozilla web browser process, which mimics
a ‘realistic’ working scenario of a job submitter.



Size-B Size-C
EP 0.06% 0.02%
IS 0.07% 0.02%
MG 0.15% 0.03%
CG 0.17% 0.07%

Table 1. CPU Usage of Monitoring Compu-
tation with Different Problem Size Code on
Submitter: 8-processors on the host in both
cases

Size-B (8 procs) Size-C (8 procs)
EP 4.2 bytes/sec 1.0 bytes/sec
IS 101.5 bytes/sec 23.2 byte/sec
MG 21.2K bytes/sec 1.5K bytes/sec
CG 21.9K bytes/sec 7.9K bytes/sec

Table 2. Average network traffic (total traf-
fic / execution time) in for different problem
sizes

4.4 Network Bandwidth Overhead

Since network resources are finite, it is necessary to limit the amount of data sent from
the host to the submitter node. We evaluate the network traffic generated by our system
by measuring the number of bytes sent from the host machine to the submitter ma-
chine. In our experimental setup, each working process in the host cluster builds a TCP
connection to the monitoring program (S-code, which creates tracking threads for all
remote working processes) running on the submitter machine. In a real monitoring sys-
tem setup, the submitter could choose to track a subset of the processes. Therefore, our
experimental results reflect the upper bound of network traffic in a monitoring system.

In our experiment, we measured the average network traffic incurred by different
benchmarks with problem size-B and problem size-C running on 8 processors. Table 2
shows the result of the above measurement, i.e. the total bytes of BLB values divided
by the job execution time for each experiment. The results show that the larger the
problem size , the smaller the average amount of network traffic the monitoring system
incurs per unit time. The EP (embarrassingly parallel) kernel causes nearly zero traf-
fic because this benchmark represents the type of computation without interprocessor
communication. The BLB traffic is non-zero for EP because the benchmark uses several
mpi reduce() calls to get the computation result at the end of the benchmark. IS is
the integer sorting benchmark and it uses a small amount of interprocessor communi-
cation to exchange the single elements at the boundaries of sub-arrays. MG and CG are
typical numerical computations representing different communication patterns. These
numbers show that the network traffic caused by our monitoring system is within the
dial-up bandwidth.

4.5 Beacon Distribution Over Time

Our BLB based MPI program tracking approach leverages the observation that MPI
calls are relatively uniformly distributed across most programs. This property enables
the incremental progress tracking by the submitter. To verify this observation, we mea-
sure the number of beacon packets received by the submitter, i.e., the number of TCP
send operations on the host machine, across the execution (monitoring) time. Figure 6
shows the number of packets received in a single tracking thread, which reflects the
beacon temporal distribution over execution time during computations of problem size-
C for a single computation process in the host cluster in our experiment. Each bin in
Figure 6 represents a two seconds interval. Figure 6 shows that with the exception of
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Fig. 6. Beacon packets sent by the host machine distributed during the execution (problem size-
C) period: each bin representing a 2-second interval; ‘yes’ meaning there is BLB packet sent to
receiver at that interval, ‘no’ meaning no BLB packet sent at that interval

EP, the beacon buffer packets sent by the host machine in our benchmarks are relatively
uniformly distributed across the program execution time. EP is an embarrassingly par-
allel program and has no communication (because no data dependencies exist) during
the main computation. For EP style programs, the submitter may choose to insert BLBs
via an analytical cost model, as mentioned in Section 2.1 and described in [14], to get a
relatively uniform BLB distribution. (We chose not to use that approach in this paper for
the EP benchmark to keep our experimental conditions consistent.) We conclude that
our approach of using MPI calls to place beacon calls gives good incremental progress
information for most MPI programs.

5 Related Work

With the increasing popularity of grid systems and cycle sharing, efficient protection
against malicious machines has become an important research topic. Sarmenta dis-
cusses a spot checking mechanism to catch malicious machines (saboteurs) [17]. The
central manager randomly assigns some computations, whose results are known to the
central manager, to volunteer machines. By comparing the known results with the re-
sults sent by the volunteer machines, malicious volunteers can be caught efficiently.
Du et al. [18] proposed a Merkle (Hash) tree based technique to detect cheating nodes
when embarrassingly parallel computations are being performed. By verifying a subset
of leaves in the Merkle tree, a central job manager can grant the correctness of all the re-
sults in the tree. Both of above techniques ensure the integrity of participant machines
by checking a subset of independent computations completed by the participant ma-
chines. Our approach differs in that it monitors the integrity of all parts of an application
execution. Moreover, our approach monitors the progress of the application and enables
partial payments or detection of errors before a long running application finishes. We
note that monitoring the progress of an execution is stricter than only checking that a
remote machine has faithfully executed the program. Monitoring the progress of execu-
tion requires incremental confirmation of faithful execution. This is important for long



running jobs so that the submitter machine does not have to wait for the job to finish to
know the job’s progress.

Hofmeyr et al. [19] uses sequences of system calls to detect intrusions. They built a
profile of normal system call behavior for a process of interest, treating deviations from
this profile as anomalies. Chen and Wagner [20] designed the MOPS system based on
the formal model of a program and of a security property, which uses a finite state au-
tomaton to describe security rule of a process. Both of these techniques analyze system
call sequences to achieve anomaly detection. Our approach differs from theirs in that
the beacons in our monitoring system are not limited to system calls (e.g. the imple-
mentation example in this paper uses MPI function calls as beacons). Moreover, the
purpose of our approach is to monitor the remote job progress instead of assuring the
security of a local machine.

Our previous monitoring system [14] provides an approach to monitoring remote
computations running Java bytecode. The submitter constructs an FSA to track the
progress of the program, and it duplicates a portion of the computation (R-beacon) to
prevent replay attacks. The BLB approach presented in this paper differs from it in that
the BLB approach obviates the need for recomputation beacons (R-beacon), which are
the main component of network traffic and computational burden on the submitter side
incurred by the monitoring system. The BLB approach also makes the beacon location
identification much easier for the compiler.

Program monitoring is also employed in the Globus project for providing better
quality of service [21]. This monitoring is either achieved indirectly by determining the
resource utilization of the program, or by modifying the program to insert explicit calls
to the Globus API. The motivation of our work is different in that we are using the
monitoring to determine if we are receiving a resource as promised, and we do not need
any special APIs in the host system, increasing the portability of our approach.

6 Conclusion

We have described a solution for monitoring the progress and correctness of a remote
job. We show that the overhead of performing this monitoring is small. Although we
describe our approach in the context of the MPI programming model, it is applicable
to any binary. It is beneficial to both resource providers and resource consumers by
limiting their risks. This technique, combined with our work, and the work of others, in
resource discovery, sandboxed execution and automatic credit systems, opens the way
for exploiting idle cycles across the Internet in a dynamic, ad-hoc fashion.
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