Parallelization of Utility Programs Based on Behavior
Phase Analysis

Xipeng Shen Chen Ding
{xshen, cding}@cs.rochester.edu

Computer Science Department, University of Rochester,
Rochester, NY, USA 14627

Abstract. With the fast development of multi-core processors, automatic paral-
lelization becomes increasingly important. In this work, we focus on the paral-
lelization of utility programs, a class of commonly used applications including
compilers, transcoding utilities, file compressions, and databases. They take a se-
ries of requests as inputs and serve them one by one. Their high input dependence
poses a challenge to parallelization.

We use active profiling to find behavior phase boundaries and then automatically
detect run-time dependences through profiling. Using a unified framework, we
manually parallelize programs at phase boundaries. We show that for two pro-
grams, the technique enables parallelization at large granularity, which may span
many loops and subroutines. The parallelized programs show significant speedup
on multi-processor machines.

1 Introduction

Nowadays due to the increasing complexity, it is difficult to improve the speed of high-
performance uniprocessors. Chip multiprocessors is becoming the key of the next gen-
eration personal computers. But many applications, especially those running on past
personal computers, are sequential programs and require parallelization to benefit from
multiple cores.

In this paper, we describe a novel coarse-grain parallelization technique focused on
a class of commonly used programs. Utility programs are a class of dynamic programs
whose behavior strongly depends on their input. The examples include compilers, inter-
preters, compressions, transcoding utilities and databases. The applications all provide
some sort of service: they accept, or can be configured to accept, a sequence of requests,
and each request is processed more-or-less independently of the others. Because their
behavior depend heavily on the input, utility applications display much less regular be-
havior than typical scientific programs. Many of them invoke many recursive function
calls.

Our parallelization is based on behavior-based phase analysis. Here we define be-
havior as the operations of a program, which changes from input to input. A behavior
phase is a unit of the recurring behavior in any execution. It may have plenty of loops
and function calls. We use active profiling and pattern recognition techniques to de-
tect phases [7]. Each instance of the top-level phase is the processing of a request. For
example, the compilation of a function is a phase instance in GCC, and the parsing

of a sentence is a phase instance in Parser. The key observation is that the phases in
utility programs coincide with program service periods and thus its memory usage pe-
riods. Operations inside a phase instance may have complex dependences but different
phase instances are usually independent or can be made independent. Therefore, phase
boundaries are good places to parallelize utility programs.

Phase-level parallelization has three steps. First, we automatically employ behavior-
based phase analysis to find phases and mark them in the program source code through
debugging tools [7]. Secondly, we discover the run-time data dependences among phase
instances through profiling. Finally, we parallelize the program under a unified frame-
work. The last step is currently semi-automatic, and the correctness requires the veri-
fication of a programmer. The step can potentially be automated with run-time system
support, which automatically detects dependence violations and recovers when neces-
sary. We have applied phase-level parallelization on two programs, Gzip and Parser and
obtained up to 12.6 times speedup on a 16-processor machine.

There have been many efforts on automatic parallelization. Dynamic parallelization
was pioneered more than a decade ago [5, 10]. Many recent papers studied thread-level
speculation with hardware support ([2] contains a classification of various schemes).
Most of those methods exploit loop-level parallelism, especially in low-level loops.
Ortega et al. manually find parallelism in coarse loops for SPECInt benchmarks, which
they call distant parallelism [4]. Our technique exploits parallelism at phase granularity
for utility programs with some user support. It is orthogonal to fine-grain parallelism
techniques.

2 Parallelization Techniques

2.1 Phase Detection

Phase detection is to find the boundaries of recurring behavior patterns in a program.
We use a two-step technique to detect phases in utility programs. Active profiling uses
a sequence of identical requests to induce behavior that is both representative of normal
usage and sufficiently regular to identify outermost phases. It then uses different real
requests to capture common sub-phases and to verify the representativeness of the con-
structed input. The phase boundaries are determined through statistic analysis on the
dynamic basic block trace of the execution and are marked in the program code (see [7]
for details.)

Phases have a hierarchical structure. In this study, we make use of the outermost
phases only. We use process-based parallelization, where each phase instance is exe-
cuted by a child process. If phase instances are small, a process can execute a group of
phase instances at a time.

2.2 Phase-dependence Detection

Phase-dependence detection is to find run-time data dependences between phase in-
stances during profiling runs. Similar to loop-dependence analysis[1], there are three
kinds of phase-dependences: flow dependence, antidependence, and output dependence.

A flow dependence happens when a phase instance stores a value into a memory loca-
tion and a later phase instance reads the value. An antidependence happens when a
phase instance reads from and a later one writes to the same location. Finally, an out-
put dependence happens when two phase instances write to the same memory location.
Since process-based parallelization creates a separate address space for different phase
instances, we can ignore anti- and output dependences. In comparison, thread-based
parallelization must deal with them explicitly.

NODE# xlevel (NODE x* expr) { /* function definition */
if (++xltrace < TDEPTH){. ..} /* read and write xltrace */
- -xltrace; } /+ read and write xltrace */
(a) False dependence due to implicit initialization

charxbuf;

buf[i] = 0; /* both load and store operations due to byte operationss/
(b) Addressing false dependence

#u = *t; /* load value of xt x/

(“t” is freed and “deletable” is allocated)
deletablel[i][j] = FALSE; /* store operationx/
(deletable is freed)

(c) Allocator false dependence

for (sym = getelement(array,i);. . .){. .. } /* load “array” elements/
setelement (array, i, sym); /* store “array” element */
(d) Real phase dependence

Fig. 1. Example code of LI and Parser from the SPEC CPU2000 benchmark suite showing remov-
able flow dependences. Each case contains a load from and a store to the same memory location.
The dependence flows from the store in each phase instance to the load of the next phase instance.

Most flow dependences among phases are removable. Here “removable” means that
the flow dependence can be safely ignored in process-based parallelization. We divide
the removable flow dependences into three classes, give examples for each class, and
describes the detection of these dependences as well as possible run-time support to
guarantee correctness. As examples, Figure 1 shows fragments of the code of LI and
Parser in the SPEC CPU2000 benchmark suite. Figure 1 (a) shows the first class of
removable dependence, which are caused by implicit initialization. In this case, the
variables are reset to their initial value at the end of each phase instance. In the exam-
ple, the global variable xltrace is a stack pointer. It increments by 1 when evaluating
an expression and the evaluation function may call itself to evaluate subexpressions. It
decrements by 1 after the evaluation. It is always equal to -1, its initial value, at the be-
ginning and the end of each phase instance. Such objects can be automatically detected
by checking the consistency of their values at the beginning of every phase. If their

values are always the same, the variables are likely to belong to this class. In the run-
time system, the value of those variables may be checked dynamically, and the parallel
process may be rolled back when the value is unexpected.

Figure 1 (b) shows the second class of removable dependences, addressing depen-
dences. In this class, the source code has no loading operations but the binary code
has because of addressing. In the example code, there is a write of a byte. The code is
compiled into the following assembly code on a Digital Alpha machine, which does not
have a byte write operation.

lda s4,-28416(gp) /x load array base address */

addq s4, s0, s4 /* shift to the target array element */

Idqu vO0, 0(s4) /% load a quadword from the current element x*/
mskbl v0, s4, vO /* set the target byte to O by masking */

stg-u v0, 0(s4) /x store the new quadword to the array */

Our dependence detection finds a flow dependence between instruction “stq_u vO0,
0(s4)” and “Idq-u v0,0(s4)” when more than one phase instances execute that statement.
It is removable dependence since the loading operation is purely for the store operation
and the value of the loaded location has no effects on the program’s execution.

Finally, flow dependences may happen when memory is reused across phase in-
stances by a dynamic memory allocator. Figure 1 (c) shows an example. The two objects
«t and deletable are independent and have exclusive live periods. They are allocated to
the same memory region by the memory allocator. Process-based parallelization can ig-
nore all these three classes of flow dependences because it uses separate address spaces
for processes.

Figure 1 (d) shows a real phase-dependence. An earlier phase instance fills array
with some calculation results, which are loaded in a later phase instance. For correct-
ness, the parallelization must protect such objects to avoid the violation of the depen-
dence.

We develop an automatic tool to trace memory accesses in profiling runs, detect
different kinds of dependences, and then find the corresponding source code. The tool
cannot detect all possible dependences in a program but it can help the parallelization
process by finding the likely parallel regions in the program. The tool first instruments
the binary code of a program to monitor memory accesses for dependence detection
through instrumentor ATOM [8] and then finds and displays the source code related to
phase-level flow dependences that are not removable. Trace-level dependence tracking
has been used extensively for studying the limit of parallelism (an early example is give
by Kumar [3]) and for easing the job of debugging.

The effect of profiling depends on the coverage, that is, the portion of phase-level
dependences that we find through profiling. Multiple training runs help to improve the
coverage. Utility programs take a series of requests as an input; thus one execution
contains the process of many different requests. This leads to good coverage even with
a single input.

2.3 Program Transformation

Our parallelization is process based. Thread-based parallelization is an alternative. Pro-
cesses have their own address space and are thus more independent than threads. Utility
programs often have just a small number of phase-level flow dependences, since phase
instances coincide with the memory usage period of a program. For example, variable
optind is the only flow dependence that is not removable in benchmark Gzip and re-
quires code movement. There are other global data structures shared by phase instances,
but they can be privatized since they introduce no flow dependences. In thread-based
parallelization, multiple threads share the address space and must deal with antidepen-
dences and output dependences explicitly. In our study, we use process-based paral-
lelization.

Many utility programs have a common high level structure; they first read requests
and then process them one by one. We design a unified framework for their paralleliza-
tion, which is shown in our technical report [6] for lack of space.

There are two strategies for parallelization. One is to let programmers know the
phase structure and the detected dependences so the programmer may parallelize the
program when possible. The manual effort is simplified by the automatic tools, which
suggest parallel regions that have good efficiency and scalability. The other strategy is
run-time dependence detection and phase-level speculation. All objects are put into a
protected region so speculation can be canceled when it fails. To improve efficiency and
scalability, we can give special treatment to the dependences detected in the profiling
runs. The operating system can monitor the accesses to those objects and roll back later
processes only when the dependences on those objects are violated or an earlier process
writes to the other objects in the protected region. This strategy requires less manual
work but requires the support of operating system. It has extra overhead. We use the
first strategy in this work and are in the process of developing the second strategy.

3 Evaluation

We apply phase-level parallelization on Parser and Gzip in Spec CPU2000 suite. We
first discuss the issues in the parallelization of each benchmark, then report the perfor-
mance of the parallelized programs.

3.1 Parser

Parser is a natural language (English) parsing program. It takes a series of sentences as
its input and parses them one by one. The detected phase boundary is before the parsing
of a sentence. The dependence detector reports 208 dependences in which 6 are distinct
flow dependences. Figure 2 shows part of the report. Among the six, the first two are
removable addressing dependences. The next two are implicit initialization removable
dependences: the store statement for lookup list traverses the list to free the list elements
and mn_free_list is freed at the end of each phase instance. The rest two dependences
are not easily removable. They include four global variables as array user_variable,
unknown_word_defined, use_unknown_word and echo_on. The last three variables are

elements of array user_variable. They are a set of global boolean variables, used to con-
figure the parsing environment. For example, variable echo_on determines whether to
output the original sentence or not. As the program comes across a command sentence
like “!echo” in the input file, it turns on the boolean value of echo_on. The command
sentences are part of the input file. In our parallelization, we let the root process han-
dle those command sentences first and then create child processes to parse every other
sentence with the corresponding environment configuration.

Dep. type Operation File Line Source code
addressing store analyze-linkage.c 659 patch_array[i].used = FALSE;
load analyze-linkage.c 659 patch_array[i].used = FALSE;
addressing store and.c 540 if (s =="%) *u = *t;
load and.c 540 if (s =="%") *u = *t;
initialization store read-dict.c 763 lookup_list = n;
load read-dict.c 760 while(lookup_list != NULL) {
initialization load fast-match.c 59 mn_free_list =m;
store fast-match.c 44 if (mn_free_list != NULL) {
real dep. store main.c 620 (*(user_variable[i].p)) =
!!(x(user_variable[i].p));
load main.c 1557 if (!(unknown_word_defined
&& use_unknown_word)) {
real dep. store main.c 674 x(user_variable[j].p) = !(x(user_variable[j].p));
load main.c 1573 if (echo_on) printf(“%c ”, mc);

Fig. 2. The partial report of dependences in Parser. Each pair of rows show the two lines of code
causing a phase-level flow dependence.

32 Gzip

Gzip is a popular data compression program (the Gzip used in the experiment is config-
ured as the GNU compression program instead of the SPEC CPU2000 default version).
It takes a series of files as the input and compresses them one by one. It has only one
phase-level flow dependence, variable optind, which counts the number of input files.
It increases by one in each phase instance. Automatically our analysis tool finds the
boundary of file processing as the phase boundary. The dependence detection finds the
flow dependence. After applying the unified framework for transformation, the only re-
maining work is to move the counter increment operation from child processes to the
root process to resolve the dependence.

3.3 Methodology

We measure the performance on two multi-processor machines, whose configurations
are shown in Table 1.

We use “gcc -O3” for compilation. The Gzip has only one input file as its test
input. We duplicate the file multiple times as the regular input for profiling. The ref
input of Gzip contains too few files to measure the effectiveness. We create 105 files by
duplicating all ref inputs 20 times each. The regular input for Parser is a file containing
six identical English sentences. We use the test input for the dependence profiling of
Parser and the ref input for evaluation.

Table 1. Machine configurations

CPU Number |4 16

CPU Type |Intel Xeon|Sunfire Sparc V9
CPU Speed |2.0GHz |1.2GHz

L1 cache 512K 64K

3.4 Speedup

Figure 3 (a) and (b) show the speedup curves of the parallelized programs on Intel Xeon
and Sunfire multi-processor machines. The x-axis is logarithmic. We experiment up to 8
processes on the 4-CPU Intel machine. When the number of process is smaller than the
number of processors, the speedup increases significantly and reaches the peak when
the process number is equal to the processor number. Gzip achieves 1.6 times speedup
and Parser achieves 2.0.

On the 16-CPU Sunfire machine, Parser shows 12.6 times speedup with 16 pro-
cesses. Gzip shows 2.4 times speedup. The limited speedup of Gzip is due to the satu-
ration of file I/O.

254 —+— Gzip - = Parser 14 —+—Gizip - Parser

B
ome T .

215 A I~
2 = g8
8 3 .
o 2 6 e
a1 & -

1 8

4 4 8
Processes Processes

(a) Speedup on an Intel Xeon machine (b) Speedup on a Sunfire Sparc V9 machine

Fig. 3. Speedup of parallelized programs on multiple-processor machines

4 Related Work

There have been many efforts on automatic parallelization. The most related work is the
study from software aspects. Those efforts roughly include two classes: task and data
based parallelization.

Previous parallelization techniques are based on static compiler or run-time tech-
niques. The former tries to find the parallelism opportunities in program loops through
static dependence analysis in compilers and then applies privatization and reduction
parallelization [1, 9].) Static techniques work well for programs with regular, statically
analyzable access patterns. Run-time parallelization can reveal and exploit input de-
pendent and dynamic parallelism in loop nests [5, 10]. In comparison, this work uses

profiling to parallelize programs at phase boundaries and exploit parallelism that may
span many loops and subroutines.

Another class of parallelization is based on Thread-level Speculation (TLS) hard-
ware. TLS hardware provides support for speculative threads and dynamical roll back
given the violation of dependences. This work partially relies on programmer knowl-
edge but requires no special hardware support.

5 Conclusions

In this work, we propose a phase-level parallelization technique for parallelizing utility
programs. It finds phase boundaries by active profiling, identifies common phase-level
dependences by training, handles anti- and output dependences through process-based
parallelization, classifies removable flow dependences, and relies on programmer sup-
port to handle remaining flow dependences and ensure the correctness of the transfor-
mation. Unlike previous work, this technique helps to parallelize a program in coarse
granularity, which may span many loops and subroutines. Our preliminary experiments
show significant speedups for two non-trivial utility programs on multi-processor ma-
chines.

References

1. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures: A Dependence-
based Approach. Morgan Kaufmann Publishers, October 2001.

2. M. J. Garzaran, M. Prvulovic, J. M. Llaberia, V. Vinals, L. Rauchwerger, and J. Torrellas.
Tradeoffs in buffering memory state for thread-level speculation in multiprocessors. In Pro-
ceedings of International Symposium on High-Performance Computer Architecture, 2003.

3. M. Kumar. Measuring parallelism in computation-intensive scientific/engineering applica-
tions. IEEE Transactions on Computers, 37, 1988.

4. D. Ortega, Ivan Martel, Eduard Ayguade, Mateo Valero, and Venkata Krishnan. Quantifying
the benefits of specint distant parallelism in simultaneous multi-threading architectures. In
Proceeding of the Eighth International Conference on Parallel Architectures and Compila-
tion Techniques, Newport Beach, California, October 1999.

5. L. Rauchwerger and D. Padua. The LRPD test: Speculative run-time parallelization of loops
with privatization and reduction parallelization. In Proceedings of ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, La Jolla, CA, June 1995.

6. X. Shen and C. Ding. Parallelization of utility programs based on behavior phase analy-
sis. Technical Report TR 876, Department of Computer Science, University of Rochester,
September 2005.

7. X. Shen, C. Ding, S. Dwarkadas, and M. L. Scott. Characterizing phases in service-oriented
applications. Technical Report TR 848, Department of Computer Science, University of
Rochester, November 2004.

8. A. Srivastava and A. Eustace. ATOM: A system for building customized program analysis
tools. In Proceedings of ACM SIGPLAN Conference on Programming Language Design and
Implementation, Orlando, Florida, June 1994.

9. M. Wolfe. Optimizing Compilers for Supercomputers. The MIT Press, 1989.

10. C. Q. Zhu and P. C. Yew. A scheme to enforce data dependence on large multiprocessor
systems. IEEE Transactions on Software Engineering, 13(6), 1987.

