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Abstract. Compilers have been very successful on automating the process of
program optimization, but there is still a significant difference in performance
between the code generated by the compiler and the hand-optimized code. Li-
brary generators such as ATLAS, SPIRAL, and FFTW address this problem by
using empirical search to find the parameter values of certain optimization such
as degree of unroll. We have recently developed a generator of sorting routines.
Sorting differs from the algorithms implemented by other library generators in
that performance of sorting depends not only on the target platform but also on
the characteristics of the input data. In our work we used a classifier learning
system to generate sorting routines that are capable of adapting to the input data.
In this paper we follow a similar approach and use a classifier learning system to
generate high performance libraries for matrix-matrix multiplication. Our library
generator produces matrix multiplication routines that use recursive layouts and
several levels of tiling. Our approach is to use a classifier learning system to
search in the space of the different ways to partition the input matrices the one
that performs the best. As a result, our system will determine the number of levels
of tiling and tile size for each level depending on the target platform and the
dimensions of the input matrices.

1 Introduction

Compilers have been very successful on automating the process of program optimiza-
tion, but there is still a significant difference in performance between the code generated
by the compiler and the hand-optimized code. The growing complexity of the architec-
tural features of modern processors makes it very difficult to optimize performance. An
approach that some researchers have followed is to use library generators to generate
high performance code for some specific problem domains.

Examples of well-known library generators are ATLAS [30], PHiPAC [4], FFTW [11]
and SPIRAL [33]. ATLAS and PHiPAC generate linear algebra routines and focus the
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optimization process on the matrix multiplication routine. During installation, the pa-
rameter values of a matrix multiplication implementation, such as tile size and amount
of loop unrolling, that deliver the best performance are identified using empirical search.
This search proceeds by generating different versions of matrix multiplication that only
differ in the parameter value that is being sought. An almost exhaustive search is used
to find the best parameter values. The other two systems mentioned above, SPIRAL and
FFTW, generate signal processing libraries.

Recently we have built a library generator for sorting [17, 18]. Sorting is different
from the algorithms implemented by the previous library generators in that performance
of sorting depends not only on the target platform but also on characteristics of the input
data, which are only known at runtime. In the work presented in [18] we used a classifier
learning system to generate algorithms capable of adapting to the input data. In the work
discussed herein, we follow a similar approach and use a classifier learning system
to generate high performance libraries for matrix-matrix multiplication (MMM). Our
library generator generates MMM routines that use recursive layouts [7, 8] and several
levels of tiling. Our approach is to use a classifier learning system to search among
all the different ways to partition the input matrices, the one that performs the best.
The MMM routine generated with our classifier learning system uses different levels
of tiling and tile sizes based on the dimensions of the matrices and the architectural
features of the target machine.

ATLAS is a library generator that also produces a MMM routine. The difference
between our approach and the one followed by ATLAS is that we use recursive layouts
to place the blocks in consecutive memory locations and focus the search on levels of
tiling and size of each tile. ATLAS does not search for the number of levels of tiling. In
fact, ATLAS only searches for the tile size for a single level of tiling, although a second
level of tiling can be implemented [1]. Also, notice that the performance delivered by
ATLAS in some platforms is still far from the one delivered by the vendor provided
libraries [36], mainly because ATLAS does not take into account all the levels of the
memory hierarchy and does not take advantage of some optimizations like prefetching.
Our objective is to reduce the performance gap between the hand-optimized code and
the automatic generated code by extending the search to consider parameters ignored
by ATLAS.

When using a single level of tiling, it has been shown that a model can predict the
best value of the tile size almost as well as the empirical search of ATLAS by simply
taking into account certain cache parameters [35, 36]. However, when tiling for the dif-
ferent levels of the memory hierarchy, the size of the matrices becomes important. If
the matrices are not a multiple of the tile sizes, we need to use padding or cleanup code.
With padding, the size of the matrices is increased with additional rows or columns of
zeros. Arithmetic operations are usually blindly performed on them. With cleanup, ad-
ditional code (which is usually suboptimal) is executed to multiply the remainder rows
or columns. With recursive layouts, padding is the method usually preferred. Given the
large sizes of the second and third level of caches of current machines (6 to 8 MB),
padding can represent a significant overhead if the tile sizes are computed without tak-
ing into account the matrix sizes. On the other hand, choosing the tile sizes based on
the matrix sizes and disregarding the cache sizes will result in poor cache utilization.



In addition, choosing the number of levels of tiling based on the number of caches of
the machine may result in slow-downs. In some platforms it is better to use a single
level of tiling because additional levels of tiling introduce additional instructions such
as branches that may execute slowly.

We compared the MMM routine generated using a classifier learning system with
the MMM routine generated by ATLAS when multiplying matrices of sizes 1000 to
5000. Our preliminary results show that the MMM routine generated using the ap-
proach we follow in this paper runs always faster than ATLAS in a Sun UltraSparc III
by an average 18%. In the case of Intel Pentium Xeon, our routine is almost always
faster than ATLAS by an average 5%. However, ATLAS runs on average 14% faster
than our routine in Intel Itanium II. Our experiments also show that padding is impor-
tant to obtain high performance, and we plan to implement more sophisticated padding
strategies to improve the performance of the generated library.

The paper is organized as follows. Section 2 revises some of the compiler opti-
mizations that are applied to MMM. Section 3 presents the partition primitives that
will be used by the classifier learning system, which is presented in Section 4. Sec-
tion 5 presents our experimental setup and preliminary results. Section 6 presents re-
lated work, and finally, Section 7 concludes.

2 Matrix-Matrix Multiplication

In this Section we present an overview of an automatic tiling and discuss copying and
recursive layouts in the context of matrix-matrix multiplication.

A naı̈ve implementation of matrix-matrix multiplication is shown in Figure 1-(a).
Usually this code runs slowly because of the poor utilization of cache memories. A
transformation used to increase cache locality is loop tiling. This transformation was
first introduced by McKellar and Coffman [19] and discussed in the context of compil-
ers by Abu-Sufah [3] and later by Wolfe [32]. Figure 1-(b) shows the code for a tiled
matrix-matrix multiplication using a square tile of size NB × NB. This tile size is a
parameter that must be chosen to minimize capacity misses. However, when the matri-
ces are large each row (in a row major layout) can be in a different physical page and
then TLB misses can occur. This problem can be avoided if the tile selection considers
the number of entries in the TLB in conjunction with the cache size [20]. In any case, to
reduce conflict and TLB misses, tiling is usually used in combination with copying [16,
28] where the elements of each NB×NB submatrix are copied into contiguous mem-
ory locations.

Tiling has been extensively considered in the literature when applied to a single
cache level [9, 16, 21, 25, 35]. However, when tiling for a single level of cache, we do
not exploit all the cache levels. For example, Figure 2-(a), shows the order in which the
submatrices of A, B and C are accessed when executing the code of Figure 1-(b). Each
iteration of the outermost loop (j) will traverse the 16 blocks of matrix A. Unfortunately,
if matrix A is large, it will not fit in the second level cache. Therefore each j iteration
will have to bring all the A blocks back to the second and first cache level. A solution
to this problem is to apply another level of tiling [25, 34].

Suppose that we apply another level of tiling to the code in Figure 1-(b) by adding
three additional loops with the same order JIK. The outer loops would operate on



for (j = 0; j < M ; j+ = NB)
for (i = 0; i < N ; i+ = NB)
for (k = 0; k < K; k = +NB)

for (j = 0; j < M ; j + +) for (jj = 0; jj < j + NB; jj + +)
for (i = 0; i < N ; i + +) for (ii = 0; ii < i + NB; ii + +)
for (k = 0; k < K; k + +) for (kk = 0; kk < k + NB; kk + +)

C[i][j]+= A[i][k] ∗ B[k][j] C[ii][jj]+= A[ii][kk] ∗ B[kk][jj]

(a) Na ı̈ve implementation (b) Tiled implementation

Fig. 1. Matrix Multiplication Code.
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Fig. 2. Memory layouts for tiled matrix-matrix multiplication. (a)- One level of tiling and
block data layout. (b)- Two levels of tiling and recursive layout.
blocks consisting of 2 × 2 tiles so that the blocks of matrix A will be traversed in the
order shown in Figure 2-(b). The blocks of the second level of tiling are no longer con-
secutive in memory and, as a result, these accesses can result in cache conflicts and
TLB misses [22]. To avoid this problem, nonlinear array layout or recursive layouts
together with tiling have been used [7, 8]. The idea is to copy these blocks into consec-
utive memory locations. These array layouts are described as based on quadtrees [10] or
on space-filling-curves[15,23, 27]. Instances of this family are familiar in parallel com-
puting under the names Morton ordering and Hilbert Ordering. The layout shown in
Figure 2-(b) for matrix A is known as Z-Morton. These recursive layouts were shown
to deliver high performance [7, 8], but some considerations need to be taken into ac-
count in their implementation:

• These nonlinear layouts can be applied recursively down to the level of individual
matrix elements [10]. However, Chatterjee et al. [8] showed that this was counter-
productive, and that it is better to follow a recursive layout only until the tile fits in
the cache.

• These recursive layouts require that for a matrix of size M × N and a tile of size
tm×tn, the following equations be satisfied: M

tm
= N

tn
= 2d. Sometimes it is necessary

to add padding to the matrix in order to satisfy this equation. The general idea is to
select the appropriate tile tm × tn for the cache of the machine, insert a zero padding
and perform the arithmetic operations on the zero padding.

3 Partition Primitives

The library generator used in this study produces a matrix-matrix multiplication (MMM)
routine that computes C = αAB + βC, where A, B and C are matrices of dimensions



M ×K, K ×N and M ×N respectively. The generated MMM routine uses multilevel
tiling and recursive layouts as discussed above. The routine first copies the original ma-
trices from row or column major layout to the recursive layout. Then, it multiplies the
matrices and transforms the resulting C matrix back to the row or column major layout.
The copy and multiplication procedures are determined by the number of levels of tiling
and tile sizes. These values will be selected using empirical search as discussed below.
This Section describes the partition primitives which will be used by the search proce-
dure to determine the best number of levels of tiles and tile sizes for the dimensions of
the input matrices and target architecture. Before explaining the primitive partitions, we
briefly describe the procedures for copying and padding.

We denote the matrix dimensions at level i as Mi, Ni and Ki, where i ranges from
1 to the number of levels of tiling. If the matrices at level i are partitioned with
factors pmi, pni and pki, the dimensions of each submatrix in the next recursion level
will be Mi−1 = Mi

pmi

, Ni−1 = Ni

pni

and Ki−1 = Ki

pki

respectively. The partition factors
determine how the sub-blocks must be copied from row (or column) major layout to the
recursive layout. An example of these recursive layouts has been shown in Figure 2-(b).
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Fig. 3. Example of padding

When the factors in the partition vector are not a divisor of the matrix dimensions
we need to use padding. For example suppose A is a matrix of 2000 × 1000, and we
divide it first by (3,2) and then (4,1). Since 3 is not a divisor of 2000, we need to add
padding so that we can divide the matrix in exactly 3 pieces. Each resulting submatrix
will be of size 667×500. Now, the 667 elements of the X dimension need to be divided
by 4. Since 4 is not a divisor of 667, we need to pad each submatrix, and make them
to be 668. Thus, we end up with a matrix of size 2004 × 500. We have 4 additional
columns of zeroes which will be blindly multiplied. The example is shown in Figure 3.

Next, we describe the partition primitives that we use in this work.

1. Partition by Block (PB)
This primitive specifies the tile or block size. It has three parameters, which are the
block size for each M, N and K dimension. So, consider M = 100, N = 100, K =



40. If we want tiles of sizes 50, 50, and 20 for the dimensions M, N, and K, respec-
tively, we would specify this as follows Partition By Block (50,50,20) .
The Partition By Block primitive will compute the partition factors (pm,pn,pk)
as follows:

pm = b m
bm

c,pn = b n
bn
c,pk = b k

bk
c

The Partition by Block primitive allows to specify tiles of any size, not only
square tiles.

2. Partition by Size (PS)
This partition primitive specifies the size of a block and partitions the different dimen-
sions of the matrix until the resulting submatrices are equal or smaller than the size
of the specified block. The primitive guarantees that the ratio between the dimensions
is kept constant. The primitive allows the specification of the dimensions to be parti-
tioned. It has four parameters. The first three parameters specify if a given dimension
M, N and K needs to be partitioned. The fourth parameter specifies the block size.
The algorithm used by this primitive is shown below.

Input Parameters:
m,n,k: input matrix dimensions
muse, nuse, kuse: boolean variables indicating the

dimensions to be partitioned
size: the block size

begin
maxratio = MIN(m,n,k)

2
for(ratio=maxratio; ratio ≥ 2;ratio--) {

if(muse) tmpm= d m
ratio

e
if(nuse) tmpn= d n

ratio
e

if(kuse) tmpk= d k
ratio

e
tmpsize= tmpm ∗ tmpk + tmpk ∗ tmpn + tmpm ∗ tmpn
if(tmpsize ≤ size)

break;
}
if(muse) pm = ratio;
if(nuse) pn = ratio;
if(kuse) pk = ratio;

end

Notice that most of the previous research on recursive layouts works by dividing each
dimension by half. The Partition by Size primitive is a generalization of the
divide by half strategy which can be implemented by setting muse = nuse =
kuse = true and size = m∗k+k∗n+m∗n

4 . In some studies, the recursion is carried
down all the way to the individual elements [10, 12]. The work in [12] showed that



this strategy resulted in minimum number of cache misses. Unfortunately in this case
minimizing the number of misses does not necessarily results in better performance,
because of the additional instructions that need to be executed. In fact, the work by
Chaterjee et al. [7, 8] showed that stopping the recursion at tiles of the appropriate size
returned better performance. In this paper, when generating the kernel routine for the
MMM we will follow the approach of Chatterjee et al.(Section 5).

4 Classifier Learning System
To build a high performance library we need to determine how the input matrices should
be partitioned along the M, N and K dimensions. The best partitioning is a function of
architectural features such as number of caches and size of each cache and the dimen-
sions of the input matrices. Choosing the correct partition is hard. For some machines,
we need to apply a single level of tiling, since the overhead of the additional instruc-
tions executed when more levels of tiling are applied results in lower performance. Even
when tiling for a single level of cache we need to decide whether to tile for L1 or L2 [2,
35]. When tiling for L2 and L3, it is important to take into account the dimensions of the
matrices. Since L2 and L3 tend to be large (sometimes 6 or 8 MB), when a dimension
of the matrix is not a multiple of the tile size, the amount of padding can be substantial.

We plan to use the partition primitives described in the previous Section as the
building blocks to generate a MMM library. By combining the different primitives and
selecting different parameter values, the space of the different algorithms that we can
generate is very large. As a result, exhaustive search is unfeasible. Our approach is to
use a classifier learning system [6, 24, 31] to search the space of possible algorithms.
The main reason to use a classifier learning system is that with this mechanism input
characteristics can be used to create a table with the best partitioning parameters. This
table can be used at runtime to enable dynamic adaptation.

A classifier system consists of a set of rules. Each rule has two parts, a condition and
an action. A condition is a string that encodes certain characteristics of the input, where
each element of the string can have three possible values: “0”, “1”, and “*” (don’t care).
Similarly, the input characteristics are encoded with a bit string of the same length. If
i and c are the input bit string and the condition string respectively, we can define the
function match(i, c) as follows:

match(i, c) =

{

true, ∀(j)ij = cj ∨ cj =′ ∗′, wherej = length of the bit string
false, otherwise

If there is only one match(i, c) which is true, the action corresponding to the con-
dition bit string c is selected. However, for a given input several matches are possible.
In this case, we will choose one action among all the rules that match. The mechanism
for the selection is explained below (in Section 4.3).

Next we explain how the classifier learning system is tuned for each platform and
input

4.1 Representation.
Encoding of the Rule Condition. The input characteristic that will determine the pa-
rameter values of the partition primitives is the dimension of the matrices. Thus, we will



encode possible values of the dimensions of the matrices A, B and C in the condition
of the rules.

Action of the Rule. The action part will be a list of the partition primitives partition
by size (PS) or partition by block (PB) with their corresponding pa-
rameter values. For example, an action will have the shape (PS param-list (PB
param-list)) , where param-list is the list of parameters. This action will re-
turn a single function that will decompose the input matrices of size M × N × K into
submatrices of size M ′ ×N ′ ×K ′, that result from applying first the PS primitive and
them the PB primitive.

Notice that each action, even if it contains several partition primitives correspond to
a single level of tiling. To apply several levels of tiling, we can recursively invoke the
rule set of the classifier system with the size of the resulting submatrices. The recursion
will finish when the number of levels of tiling has already reach the maximum number
of levels allowed, or when the size of the submatrices is within a predefined range.

4.2 Training

During the training process we generate matrices of different sizes. Given a training in-
put, we have a match rule set, which are the set of rules where the condition matches the
bit string that encodes the input characteristics. We use a XCS classifier learning system
as the one in [6, 31]. In this type of classifier systems, each rule has two attributes. The
first attribute is the fitness. The fitness is an estimation of the performance of this rule
on the inputs that match the associated condition. The second attribute is the accuracy.
The accuracy measures the confidence of the fitness attribute in predicting the correct
performance.

In our approach we use a multi-step classifier system, since the output of an invo-
cation can be used as the input for the next invocation. This system works as follows.
The first time we invoke the rule set with a training input we have a match rule set. All
the actions in the matching rules are the set of strategies that can be used to partition
the input matrices. During the training process, all the actions in the matching rules are
applied. Thus, given an input of size M×IN×K, the result will be submatrices of sizes
M ′

i ×IN′

i×K ′

i, where i = 1..number of matching rules. Each of the M ′

i ×IN′

i×K ′

i

generated outputs can be used as the input to the next invocation to the learning classi-
fier system. The system, as explained above, will stop when the maximum level of calls
is reached or when the size of the submatrices is within a specified range. At the end,
we have many different partition strategies, each of them blocking the matrices with
tiles of different sizes, and possibly different levels of tiling. We generate the MMM
routine for each partition strategy and measure the execution time. Based on the results
obtained, we update the fitness and accuracy of all matching rules used to generate each
of the MMM routines. The algorithm is shown in Figure 4.

To generate new conditions and actions, transformations such as mutation and crossover
applied in genetic algorithms [13, 18] are also used here. MOre details about the XCS
classifier learning system that we use in this work can be found in [6, 31].



4.3 Runtime
At the end of the training phase we have a tuned rule set. At runtime, the bit string
encoding the input characteristics will be used to extract all the rules whose condition
matches the input. Among all these rules, the one selected will depend on a function that
rewards low execution time and penalizes low accuracy. The runtime overhead includes
the computation of the input bit string, and the scan of the rule set to select the best one.

We train the classifier system to learn a set of rules that cover the space of the pos-
sible input parameter values, discover the conditions that better divide the input space
and tune the actions to learn the best partition scheme based on the input characteristics.

Multi Step Classifier Learning

Inputs:
M,N,K: dimensions of the input matrices
l: current level of recursion

Outputs:
pmi, pni, pki, i=[0..max-num-levels]: partition factors
exec: execution time

begin
P= variable that contains the partition factors —pmi, pni, pki, i=[0..max-num-levels]
Encode M,N,K into the bit string −→

in

mset = ∅

for each rule r
−−−→
rcond = condition of r

if match(
−→
in,

−−−→
rcond)

add r to mset

while (mset 6= ∅)
extract r from mset

act= action part in r

pmi, pni, pki= result of applying act on M, N, K

Update P with the new pmi, pni, pki

M ′, N ′, K′= result of applying pmi, pni, pki on M, N, K

if notend then
call Multi Step Classifier Learning (M ′, N ′, K′,l + 1)

else
Run matrix multiply with M, N, K using P
Measure execution time exec

Use exec to update fitness and accuracy of r

return exec
end

Fig. 4. Classifier learning algorithm

5 Experiments
In this section we evaluate our approach of using a classifier learning system to optimize
a MMM routine. In Section 5.1 we discuss the environmental setup that we use for the
evaluation and in Section 5.2 we present performance results.



5.1 Environmental Setup
We evaluated our approach on three different platforms: Sun UltraSparc III, Intel Ita-
nium 2, and Intel Xeon. Table 1 lists for each platform the main architectural parame-
ters, the operating system, the compiler and the compiler options used for the experi-
ments.

Sun Intel Intel
CPU UltraSparcIII Itanium 2 P4 Intel Xeon
Frequency 750MHz 1.5GHz 3GHz
L1d/L1i Cache 64KB/32KB 16KB/16KB 8KB/12KB (1)
L2 Cache 1MB 256KB (2) 512KB
Memory 4GB 8GB 2GB
OS SunOS5.8 RedHat7.2 RedHat3.2.3
Compiler Workshop cc 5.0 gcc3.3.2 gcc3.4.1
Options -native -xO5 -O3 -O3

Table 1. Test Platforms. (1) Intel Xeon has a 8KB trace cache instead of a L1 instruction
cache. (2) Intel Itanium2 has a L3 cache of 6MB.

To generate the MMM library we used the classifier learning system. We trained the
classifier with the algorithm of Figure 4. The classifier determines the number of levels
of tiling and the tile size for each matrix size. For the implementation of the MMM
at the last level of tiling we used the kernel generated by ATLAS. ATLAS generates a
MMM routine and uses empirical search to look for the best parameter values of certain
compiler transformations such as tile size, loop unrolling and software pipelining [30,
35, 36]. The kernel in ATLAS produces code for a MMM routine with a single level
of tiling and square tiles. Thus, in our MMM library the submatrices in the last level
of tiling must also be square. We allow these submatrices to be in the range of 40 -
120, since this range cover most of the different values that ATLAS finds for current
platforms [36]. ATLAS generates a single MMM routine and searches for the tile size
that obtains the best performance results. In our system, the tile size of the last level is
determined by the classifier learning system, but we use ATLAS to search for the rest of
the other parameters for each tile size in the range 40 - 120. We limited the maximum
number of levels of tiling to be 3, since current architectures have three or less caches,
and our experiments showed that increasing the level of tiling beyond 3 resulted in less
performance. Apart from this, after we determine the partitioning strategy, we need to
copy the tiles to the corresponding recursive layout. In this work we use the Z-Morton
layout, although in a longer study we could also search for the best layout. When the
matrix is not a multiple of the tiling we insert padding, as shown in Figure 3. Padding
can also be necessary to obtain a square tile at the last level of tiling.

To encode the size of the matrices, we used 13 bits per dimension. Since we have
3 dimensions M × N × K, we used a total of 39 bits. Initially we generated 1000
rules, and we randomly generated the condition and the action part of each rule. For the
training we randomly generated matrices whose sizes were between 1000 and 5000. We



did not specify any condition to end the training process. Instead, we let the training run
for a certain amount of time. In the experiments reported here, we let it run for 1 week.

We compare the MMM routine generated by our classifier learning system with
three different approaches:

– L1, where the MMM routine has a single level of tiling.
– L2, where the MMM routine has two levels of tiling.
– ATLAS.

To make a fair comparison with L1 and L2 approaches we used ATLAS to generate
the kernel of the MMM routine. In both cases we used the same copying strategy and
padding as the one used in the MMM routine generated using the classifier. For the L1
approach we used the tile size that ATLAS found to be the best. For the L2 approach
we used the value found by ATLAS for the first level of tiling. For the second level of
tiling we chose the size so that T ile2 = K × T ile1. We selected K so that T ile2 is
multiple of T ile1, and smaller than the value that results from resolving the inequality
3∗T ile22 ≤ CacheSize. The exception is Sun UltraSparc III. This machine has a large
L2 cache (1 MB) and selecting the T ile2 using the previous formula resulted in low
performance, since padding represented a large overhead in some cases. We decided to
select for the Sun UltraSparc a tile of size 1/3 of the computed value using the previous
formulas. Table 2 shows the values used for each T ile1 and T ile2. In both L1 and L2
we allowed the T ile1 to vary within the value reported in the Table and +/ − 10. We
varied the size of the T ile1 based on the matrix size to minimize the amount of padding.

UltraSparcIII Itanium 2 P4 Intel Xeon
L1 Tile 68 120 60
L2 Tile 380 240 240

Table 2. Tile Sizes.

For ATLAS we used the code produced by the ATLAS Code Generator using empir-
ical search. ATLAS can also use hand tuned BLAS routines. When ATLAS is installed
these hand-coded routines are also executed and evaluated. However, since in this work
we are only interested on the comparison on the MMM routine generated by ATLAS,
we only used the code generator, without hand-coded code. Notice, that ATLAS can
have a L2 Cache Blocking parameter by setting a variable called CacheEdge. For the
ATLAS experiments, we set this variable to the appropriate value as reported in [1].

5.2 Experimental Results

Figure 5 presents the performance results of the four MMM routines described in the
previous Section: L1, L2, Classifier and ATLAS. For the experiments we multiplied
square matrices whose sizes vary from 1000 to 5000, in steps of 100.

The results vary from platform to platform. In the case of the Sun UltraSparc, Clas-
sifier is always the best. For this platform L2 is also better than ATLAS and L1. For
Itanium 2, the code generated by ATLAS performs better than any of the other routines.
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Fig. 5. Performance Results

Only in a few points the code generated by the Classifier is equal or better. For Intel
Xeon, the code generated by the Classifier is usually the fastest, followed by that of
ATLAS.

It has been stated [26] that tiling for L1 was enough and that multi-level tiling was
not necessary. However, our results for Sun UltraSparc III show that multi-level tiling
can improve performance over one level of tiling, since L2 and Classifier are always the
best approaches for this platform. For the other two platforms it is not clear if multilevel
tiling is better.

The performance results for the Intel platforms Itanium 2 and Xeon shows high
variability in performance for the code generated by Classifier, L1 and L2. Since these
3 approaches use padding when the dimensions of the matrices are not multiple of the
tile sizes, while ATLAS (whose performance is very stable) uses cleanup code, we think
that the variability is due to the fact that the amount of padding changes for the different
matrices being multiplied. We need to conduct further experiments to verify this. Also,
in the future we plan to study different strategies to pad the matrices more efficiently.
For example, we can concentrate all the padding at the end of the matrix, instead of
distribute it in each tile, as we have done in the routine in this paper. We will also study
the possibility of combining cleanup code with recursive layouts. If we find out that
performance is highly dependent on the padding or clean up strategies, we can also
search in this space.



Overall, our results, still preliminary, show that the MMM routine generated using
the approach we follow in this paper runs always faster than the code generated by
ATLAS in a Sun UltraSparc III by an average of 18%. In the case of an Intel Pentium
Xeon, our routine runs almost always faster than ATLAS by an average of 5%. However,
ATLAS runs 14% faster than our routine in Intel Itanium II. In the future, we will also
add more platforms to this study.

6 Related Work

As mentioned in Section 2 the use of loop tiling to increase cache locality has been
extensively studied in the literature. Lam et al. [16], Coleman and McKinley [9] and
others have developed algorithms to compute the optimal tile sizes when a single level
of tiling is applied. Lam et al. [16] present an algorithm that selects the largest square
tile that does not cause self interference misses. Coleman and McKinley [9]’s technique
uses the Euclidean G.C.D. to generate a set of tiles without self-interference misses and
from those tiles select the one that maximizes cache utilization and minimizes cross-
interference misses.

Recursive matrix multiplication has been studied by Frens and Wise [10], Gus-
tavson [14], Chatterjee et al. [8] and Frigo et al [12]. Chaterjee et al [8] shows that
recursive layouts can significantly outperform traditional layouts for standard matrix-
matrix multiplication. They also show that stopping the recursion when the tile fits into
the cache results in better performance because it avoid some of the overheads due to
recursive calls. Our approach is different than that of Chaterjee et al. [8]. We use ma-
chine learning techniques to search for the appropriate number of levels of tiling and
tile sizes based on the dimensions of the input matrices and the architectural platform.

The ATLAS [30] generator uses empirical search to find the optimal tile size for a
single level of tiling. However, the ATLAS’ search problem is simpler than that of our
system because ATLAS only considers the case where the same tile size is used for all
the matrix sizes.

Finally, the approach that we present in this paper is also related to the problem of
selecting from a set of candidate algorithms the one that performs best for a particular
input and system. Systems that follow this approach are described by Li et al. [17, 18],
Brewer [5] and Thomas et al. [29]. In [17] we used the Winnow algorithm to select from
three sequential sorting algorithms the one that performs best for a target system based
on the entropy and number of keys of the input data, while in [18] we used a learning
classifier system to generate composite sorting algorithms. Brewer [5] and Thomas et
al. [29] use a framework for algorithm selection to generate parallel operations that
adapt to the input and platform. In particular Thomas et al. [29] describe a general
framework that can be easily extended with new operations and different empirical
learning approaches.

7 Conclusions

In this paper we have generated a MMM routine using a classifier learning system.
The MMM routine generated with our classifier learning system uses different levels
of tiling and tile sizes based on the dimensions of the matrices and the architectural
features of the machine where it is installed.



We compared the MMM routine generated using a classifier learning system with
the MMM routine generated by ATLAS when multiplying matrices of sizes 1000 to
5000. Our preliminary results show that the MMM routine generated using the classi-
fier runs always faster than ATLAS in a Sun UltraSparc III by an average of 18%. In the
case of an Intel Pentium Xeon, our routine runs almost always faster than ATLAS by an
average of 5%. However, ATLAS runs on average 14% faster than our routine in Intel
Itanium II. Our experiments also show that padding is important to obtain high perfor-
mance, and we plan to implement more sophisticated padding strategies to improve the
performance of the generated library.
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