
A Language for the Compact Representation of Multiple
Program Versions

Sebastien Donadio1,2, James Brodman4, Thomas Roeder5, Kamen Yotov5, Denis
Barthou2, Albert Cohen3, Marı́a Jesús Garzarán4, David Padua4, and Keshav Pingali5

1 BULL SA
2 University of Versailles St-Quentin-en-Yvelines

3 INRIA Futurs
4 University of Illinois at Urbana-Champaign

5 Cornell University

Abstract. As processor complexity increases compilers tend to deliver subopti-
mal performance. Library generators such as ATLAS, FFTW andSPIRAL over-
come this issue by empirically searching in the space of possible program ver-
sions for the one that performs the best. Empirical search can also be applied by
programmers, but because they lack a tool to automate the process, programmers
need to manually re-write the application in terms of several parameters whose
best value will be determined by the empirical search in the target machine.
In this paper, we present the design of an annotation language, meant to be used
either as an intermediate representation within library generators or directly by
the programmer. This language that we callX represents parameterized programs
in a compact and natural way. It provides an powerful optimization framework
for high performance computing.

1 Introduction
Processors and machines in general are becoming increasingly complex and it has be-
come extremely difficult even for experts to identify the fastest code sequences and the
sequence of transformations that would optimize a given code sequence [6, 7, 29, 30].
Furthermore, the best code for a particular machine is not necessarily the best for other
machines, even when architectural differences are minute.Because of this complexity,
compilers tend to deliver suboptimal performance and programmers make limited at-
tempts at manual optimization. The result is that, in many cases, applications only use
a small fraction of the target machine’s power.

Clearly, an optimization methodology must be developed to improve the current
situation. Recent studies have shown that a conceptually simple strategy, known asem-
pirical search, can be a very effective optimization strategy. Empirical search consists
of searching the space of possible program versions, executing each of them on the
target machine, and selecting the fastest version.

Empirical search has been studied in the context of compilertransformations [14]
and library generators. Thus, ATLAS [27], a linear algebra library generator, searches
the space of possible forms of matrix-matrix multiplication routines. The different
forms vary in the size of tiles, degree of unrolling, and schedule of operations. The SPI-
RAL [20] and FFTW [10] signal processing library generatorssearch a space consisting

of implementations of different formulas representing thetransform to be implemented.
In the case of library generators, empirical search leads toperformance improvements
of an order of magnitude over good generic libraries that have not been tuned for a
particular machine.

Empirical search can also be applied manually by a programmer. The idea would
be for the programmer to write the application in terms of several parameters whose
best value for a particular target machine is to be determined by empirical search. The
parameters could specify values such as degree of unrollingof a given loop, tile size,
etc. Parameters could also be used to represent completely different ways of carrying
out a computation or part of a computation by numbering the different strategies and
making this number one of the parameters whose value is to be identified.

In this paper we describe an ongoing effort to design and implement a new language,
X, that could be used by programmers and also serve as an intermediate representation
within of library generators.X is a language to represent parameterized programs nat-
urally and compactly. Programmers would be able to program in X directly. Library
generators could be organized as depicted in Figure 1 where it is assumed that func-
tions of the library are designed in a very high level domain specific language which
is analyzed, parameterized and translated intoX programs. The availability ofX would
enable the reuse of a search engine across library generators.

DSL Translator

Algorithm
in

Domain
Specific

Language

X program

Search engine

Optimized
program

X Translator Machine
language

Execution
and

measurement

High
Level

language
HLL Translator

Fig. 1. Programming adaptive library generators

Our objective is to designX so that it is easy for the programmer to specify which
transformations to apply, and change the order or the valuesof the transformations. The
value of the parameters can be determined using empirical search orchestrated by a
search engine which could use the target machine to evaluatethe performance of each
version of the program or rely on analytical models.

Since many programs spend most of their time executing loops, loop-based opti-
mizations are the main focus of attention of the transformations we propose in this
initial version ofX, although non-loop transformations are also possible.

The output of processingX could be machine code, which would give programmers
access to low-level optimizations. However, this approachwould force the development
of anX translator for each machine. To makeX portable, high level language code could
be generated so that each version of the code, that is, each point in the search space,
would have to be fed to the native compiler. This compiler is in charge of the low-
level optimizations such as register allocation and code generation of the executable

code. In many occasions, we would like to disable many of the optimizations of the
native compiler, but this is not always possible, because disabling all optimizations (-
O0) could lead to poor performance. As a result, the transformations represented inX
may or may not be preserved by the native compiler. The only solution to this problem
is the search of the best combination of transformation at the source level that interacts
with the low level compiler.

The rest of the paper is organized as follows: Section 2 liststhe language require-
ments to ease the design of multiversion programs; Section 3analyzes the multiver-
sionning capabilities of macro or multistage languages with respect to these require-
ments; Section 4 presents theX language which combines multistage evaluation with
reification and transformation pragmas; Section 5 details the design of theX language
source-to-source compiler; Section 6 presents promising results on mimicking the code
generator for DGEMM (matrix-matrix multiplication) in ATLAS [27]; and Section 7
compares theX language with related work and results, before we conclude and sketch
future work.

2 Necessary Features of the Language
In this section, we discuss the features that must be exhibited by any language designed
specifically for the compact representation of multiple code versions.

1. Elementary transformations. The first features that cometo mind are constructs to
generate multiple versions of a statement by applyingelementarytransformations to
a statement. Elementary transformations are widely used transformations that cannot
be conveniently cast in terms of other, simpler transformations. For program opti-
mization, the targets of the transformations are usually compound statements and the
transformations typically manipulate the order of execution and the control structure
of the components. For sequences of assignment statements,typical elementary trans-
formations are statement reordering, replication, and deletion. Loop transformations
include unrolling, interchanging, stripmining, fusion, fission, and scalar replacement.
We also consider loop tiling an elementary transformation although in theory it can be
represented as a combination of stripmining and interchanging. Some loop schedul-
ing transformations, such as software pipelining, are be considered to be elementary
transformations. The reason is that, although scheduling can be represented as a se-
quence of simpler transformations, it is usually difficult to do so.

do i=1, 100
a(i)=b(i)+c(i)

end do

do i=1, 99, 3
a(i)=b(i)+c(i)
a(i+1)=b(i+1)+c(i+1)
a(i+2)=b(i+2)+c(i+2)

end do
a(100)=b(100)+c(100)

do i=1, 100, 2
a(i)=b(i)+c(i)
a(i+1)=b(i+1)+c(i+1)

end do

do i=1, 100
a(i)=b(i)+c(i)

end do

1 32

Unroll

Fig. 2. Unroll

Many of elementary transformations require input parameters, such as the degree of
unrolling (Figure 2), tile size, and locations where the loop is to be split in the case of

do i=1, 100
S1: a(i)=b(i)+c(i)
S2: c(i)=a(i)+d(i)
S3: e(i)=a(i)+e(i-1)
end do

do i=1, 100
S1: a(i)=b(i)+c(i)
end do
do i=1, 100
S2: c(i)=a(i)+d(i)
end do
do i=1, 100
S3: e(i)=a(i)+e(i-1)
end do

do i=1, 100
S1: a(i)=b(i)+c(i)
S2: c(i)=a(i)+d(i)
end do
do i=1, 100
S3: e(i)=a(i)+e(i-1)
end do

do i=1, 100
S1: a(i)=b(i)+c(i)
end do
do i=1, 100
S2: c(i)=a(i)+d(i)
S3: e(i)=a(i)+e(i-1)
end do

S1 S1, S2
S2

Loop Fission

Fig. 3. Loop Fission

fission (Figure 3). Multiple versions of the initial statement are obtained by varying
the values of these parameters.
Elementary transformations are used in library generatorsduring empirical search.
Thus, ATLAS makes use of tiling, unrolling, and loop scheduling; FFTW makes use
of scheduling; and SPIRAL applies loop unrolling.

2. Composition of transformations. Usually, the best version of a statement is the re-
sult of applying several elementary transformations. Thus, for example, ATLAS ap-
plies interchanging, tiling, unrolling and scheduling to the triply nested matrix-matrix
multiplication loop during its empirical search for an optimal form of the loop. There-
fore, our language should allow the application of multipletransformations to a single
statement. An example of composite transformation isunroll&jam shown in Figure 4.
This transformation can be implemented by applying an outerunroll followed by fu-
sion of the two inner loops. Alternatively, unroll&jam can be implemented by first
stripmining the outer loop, then interchanging the inner loop with the newly gener-
ated loop, and finally unrolling the innermost loop.

outer unroll

fusion

stripmine

interchange

inner unroll

for (i=0; i<n*2; i++)
for (j=0; j<m; m++)

a(i) = a(i) + b(j)

for (i=0; i<n*2; i++)
for (j=0; j<m; j++)

a(i) = a(i) + b(j)
for (j=0; j<m; j++)

a(i+1) = a(i+1) + b(j)

for (i=0; i<n*2; i++)
for (j=0; j<m; j++)

a(i) = a(i) + b(j)
a(i+1) = a(i+1) + b(j)

for (i=0; i<n*2; i+=2)
for (ii=i; ii<i+2; ii++)

for (j=0; j<m; j++)
a(ii) = a(ii) + b(j)

for (i=0; i<n*2; i+=2)
for (j=0; j<m; j++)

for (ii=i; ii<i+2; ii++)
a(ii) = a(ii) + b(j)

Fig. 4. Unroll & Jam

An important form of transformation composition isconditionalcomposition, where
a condition is used to select the transformation or the parameter value of a transforma-
tion. For example, consider a loop that is to be first stripmined and then the resulting
inner loop unrolled. We may want to fully unroll the inner loop but only when the
size of the strip is less than a certain threshold and partially unroll otherwise.

3. Procedural Abstraction. For composite transformations, it is convenient to have pro-
cedural abstractions to encapsulate new transformations and to avoid having to rewrite
sequences of transformations that are applied more than once.

4. A mechanism to define new transformations. This extensionmechanism enables
the user to add new transformations that cannot be represented as composition of
elementary transformations. In particular, programmers should be able to generate
application-dependent transformations that take into account the semantics of the
computation. The simplest way to represent a transformation is usingtransforma-
tion ruleswhich are adequate to represent many transformations. The transformation
rules consist of a code template followed by the form resulting after modification by
the transformation. For instance, a stripmine transformation with a tile of size 4 could
be defined as follows:

for (i = 0; i < N; i++) { <body> }
->

for (ii = 0; ii < (N/4)*4; ii += 4)
for (i = ii; i < ii+4; i++) { <body> }

for (i = (N/4)*4; i < N; i++) { <body> };

Transforming the top code template into the bottom code is the stripmine transforma-
tion, where variable<body> represents the body of the loop to be stripmined.
As the example illustrates, transformation rules are quiteconvenient. However, since
transformations rules are not universal, some transformations must be represented
as a program written in, for example, a conventional programming language. In this
case, the interface between the source language and the transformation routines must
be clearly specified. This interface should contain the abstract syntax tree of the code
to be transformed and perhaps other related information such as dependence graphs.

5. A mechanism to name statements. When applying a sequence of transformations,
it is often necessary to apply one of the transformations to one of the components
of the resulting code. For example, to implement unroll&jamunrolling is applied to
the innermost loop resulting from stripmining. Therefore,the ability to name com-
ponents and subcomponents of statements is necessary to enable the composition of
transformations.

3 Macro Language
Perhaps the simplest approach to implementX would be to use a macro language. As-
suming that the macro language statements are C-like statements preceded by the char-
acter% and that references to macro language variables are also preceded by%, Figure 5
shows an example where the%for statement produces the body of a loop unrolled%d
times. That is, when the%for loop is executed, it produces the sequence of assignments:
s=s+a[i+0]; s=s+a[i+1]; ...;s=s+a[i+%d-1]. In this this example we assumed
that%d is a sub-multiple of 256 and, for that reason did not include the clean-up code
needed to correctly handle the remainder of the256 iterations of the original loop. No-
tice that%d in Figure 5 will be assigned a value at compile-time, and willusually be
assigned several values in successive compilations duringan empirical search for the
best version of the program.

sum=0;
for (i=0;i<256;i+=%d) {

%for (k=i; k<=i+(%d-1); k++)
s = s + a[i+%k];

}

Fig. 5. Loop unroll using macro statements.

An implementation based on macro language would produce a system that relies on
generation rather than transformation. Thus, the construct of Figure 5 does not trans-
form an initial loop butgeneratesa loop with the body unrolled%d times. If the macro
language includes procedures, it would be possible to writegeneration routines that
accomplish the same objectives as any transformation. For example, we could conceiv-
ably develop an%unroll-loop routine that accepts the body of the loop, the index
variable, and the degree of unrolling as parameters. These generation routines could be
a convenient way to extend the base language with new parameterized statements.

In some cases it is preferable to use the generation approachso that the programmer
can produce exactly the transformed code that he desires. For this reason,X includes a
macro language. However, we have found that the generation approach has two disad-
vantages:

• The generative approach leads to code that is difficult to develop and understand. If
we want to optimize an existing program it will be necessary to modify the original
code which may introduce errors. Furthermore, code containing generative statements
is difficult to write and read. Therefore, the generative approach has disadvantage
even when the parameterized code is to be written from scratch.

• Complexity when composing transformations. Since the programmer is directly ma-
nipulating source text, when two or more transformations are applied to a statement,
the macro statements can become complicated. For instance,tiling the three loops of
the matrix-matrix multiplication code in Figure 6-(a) withsquare tiles of sizetile
results in the code shown in Figure 6-(b). The variable%tile will be instantiated at
compile time, so that versions of matrix-matrix multiplication with different tile sizes
can be generated by just changing the value of the%tile variable. The code in Fig-
ure 6-(b) shows the remainder loops when%tile is not divisible byK, and outlines the
additional code that should be written to generate the remainders ofM andN. A pro-
grammer who needs to write all this additional code is likelyto make mistakes. This
problem will be less severe if the macro language contains procedures, but then there
would be the need to develop a procedure for each combinationof transformations
or procedures with a cumbersome parameter list. In any case,tiling can be obtained
by composing loop stripmine and loop interchange. Unfortunately, the programmer
using macro statements cannot take advantage of this.

4 X Language using Pragmas
In this Section, we describe theX language that we have designed taking into account
the features described in Section 2.X uses#pragmas to name loops or portions of code
and to specify the transformations to apply. The syntax of the #pragmas used to name
loops or code sections has the form:

#pragma xlang name <id> { ... }

for (i=0;i<N;i++) { for (i=0;i<(N/%tile)*%tile;i+=%tile) {
for (j=0;j<M;j++) { for (j=0;j<(M/%tile)*%tile;j+=%tile) {
for (k=0;k<K;k++) { for (k=0;k<(K/%tile)*%tile;k+=%tile) {
c[i][j] += a[i][k] * b[k][j]; for (ii=i;ii<i+%tile;i++) {

}}} for (jj=j;jj<j+%tile;j++) {
for (kk=k;kk<k+%tile;kk++) {

(a) c[ii][jj] += a[ii][kk] * b[kk][jj];
}}}}

%if ((K/%tile)*%tile)!=K) {
for (k=(K/%tile)*%tile;k<K;k++) {
for (ii=i;ii<i+%tile;i++) {
for (jj=j;jj<j+%tile;j++) {
for (kk=k;kk<k+%tile;kk++) {
c[ii][jj] += a[ii][kk] * b[kk][jj];
}}}}}}

%if (((M/%tile)*%tile) != M) { ... }
%if (((N/%tile)*%tile) != N) { ... }

(b)

Fig. 6. (a)-Matrix multiplication code. (b)-Tiled matrix multiplication code using macro statements.

The{} are only necessary when naming a set of statements, but they are not required
to name a single statement. These pragmas need to be placed right before the code
section to be named. The syntax of the#pragmas to specify transformations has the
form:

#pragma xlang transform keyword <list-input-par> <list-output-par>

The original source code only needs to be modified with the name #pragmas. The
transform#pragmas can be in the same file that the source code or in a different one.

sum=0; sum=0;
#pragma xlang name l1 #pragma xlang name l1
for (i=0;i<256;i++) { for (i=0;i<256;i+=4) {

s = s + a[i]; s = s + a[i];
} s = s + a[i+1];
#pragma xlang transform unroll l1 4 s = s + a[i+2];

s = s + a[i+3];
}

(a) (b)

Fig. 7. unroll example. (a)-Pragmas (b)-Generated code

In X, theloop unrolling transformation in Figure 2 is specified as shown in Fig-
ure 7.#pragma xlang name l1 is used to name the loop right after it, while#pragma
xlang transform unroll l1 4 specifies the transformationunroll l1 4 times.

The stripmine transformation is specified inXwith #pragma xlang transform stripmine

l1 4 l3 l1rem as shown in Figure 8-(a). This transformation willstripmine the l1
loop using a tile size of 4. The generated code is shown in Figure 8-(b). The new loop
that results of thestripmine transformation is namedl3. To name the remainder loop,
the example usesl1rem. Using this postfix notation we can apply the same transforma-
tion tol1 and l1rem by simply usingl1∗

Another transformation thatX includes is array scalarization. The syntax for this
transformation is#pragma xlang transform scalarize-func <array-name> in
[<id>], wherefunc can bein, out, -in&out or none. scalarize-in is used when
copy-in is needed, that is, when the initial values in the array have to be loaded into
the scalar variables.scalarize-out is used when copy-out is needed, that is, when the
scalar values need to be written back to memory to the corresponding array locations.

#pragma xlang name l1 #pragma xlang name l1
for (i=0;i<N;i++) { for (i=0;i<(N/4)*4;i+=4) {

#pragma xlang name l2 #pragma xlang name l3
for (j=0;j<M;j++) { for (ii=i;ii<i+4;ii++) {

c[i] = a[i][j] * b[j]; #pragma xlang name l2
}} for (j=0;j<M;j++) {

#pragma xlang transform stripmine l1 4 l3 l1rem c[ii] = a[ii][j] * b[j];
}}}

#pragma xlang name l1rem
for (i=(N/4)*4;i<N;i++) {

#pragma xlang name l2
for (j=0;j<M;j++) {

c[ii] = a[ii][j] * b[j];
}}

(a) (b)

Fig. 8. stripmine example. (a)-Pragmas. (b)-Generated code.

scalarize-in&out is used when both bothin andout are required.scalarize is
used when norin or out are necessary. The programmer must determine which is the
appropriate scalarize transformation to apply so that the generated code is correct.

sum=0; double a0,a1;
#pragma xlang name l1 sum=0;
for (i=0; i<256; i+=2){ #pragma xlang name l1

s = s + a[i]; for (i=0; i<256; i+=2){
s = s + a[i+1]; #pragma xlang name l1.loads

} { a0 = a[i];
#pragma xlang transform scalarize-in a in l1 a1 = a[i+1]; }

#pragma xlang name l1.body
{ s = s + a0;

s = s + a1; }
}

(a) (b)

Fig. 9. scalarize-in example. (a)-Pragmas. (b)-Generated code.

Figure 9-(a) shows an example where thescalarize-in transformation is used to
scalarize the arraya in l1. The generated code is shown in Figure 9-(b). The gener-
ated code contains the declaration of the new scalar variablesa0 anda1, and two new
pragmas that name certain statements of the generated code.#pragma xlang name
l1.loads name the statements that load the array values into the scalars. #pragma
xlang name l1.body name the statements where the array references have been re-
placed with scalars. Notice that these#pragmas are automatically generated after a
scalarize transformation is applied, without the programmer specifying anything. In the
case of ascalarize-out transformation an additional#pragma namingl1.stores
would have been generated. Naming these loop sections allows the programmer to ap-
ply new transformations on the generated code. For example,Figure 10-(a) shows an
example where the load statements of the copy-in phase have been moved beforel1
and the store statements of the copy-out phase have been moved outsidel1 as shown in
Figure 10-(b). In this new example, we have used#pragma xlang transform lift
l1.loads before l1 and#pragma xlang transform lift l1.stores after l1,
where the syntax of this transformation is
#pragma xlang transform lift <statement-id><before | after><loop-id>.

X also includes transformations for software pipelining. One difference between the
software pipelining and the loop transformations is that software pipelining operates on

for (i=0;i<N;i++) { double c0,c1;
for (j=0;j<M;j++) { for (i=0; i<N; i++) {
#pragma xlang name l1 for (j=0; j<M; j++) {
for (k=0;k<K;k+=2){ #pragma xlang name l1.loads
c[i][j] += a[i][k] * b[k][j]; { c0 = c[i][j]; }
c[i][j] += a[i][k+1] * b[k+1][j]; #pragma xlang name l1

}}} for (k=0; k<K; k+=2) {
#pragma xlang transform scalarize-out c in l1 #pragma xlang name l1.body
#pragma xlang transform lift l1.loads before l1 { c0 += a[i][k]*b[k][j];
#pragma xlang transform lift l1.stores after l1 c0 += a[i][k+1]*b[k+1][j]; }

}
#pragma xlang name l1.stores
{ c[i][j] = c0; }
}}

(a) (b)

Fig. 10. scalarize-out and lift examples. (a)-Pragmas. (b)-Generated code.

statements instead of loops. The lower granularity of software pipelining transforma-
tions makes them more complex, since the programmer needs todeal with movement of
individual statements. The two transformations used for software pipelining aresplit
andshift. Thesplit transformation is not necessarily a software pipelining transfor-
mation. It is used to separate atomic instructions. Figure 11 shows how an instruction
combining a load and an operation is breaking assignment statements into two state-
ments, one to compute the right hand side and the other to assign the computed value
to the left hand side.

for (i=0; i<N; i++) { double temp[0..K];
for (j=0; j<M; j++) { for (i=0; i<N; i++){

for (k=0; k<K; k++) { for (j=0; j<M; j++){
#pragma xlang name statement st1 for (k=0; k<K; k++){
c[i][j] += a[i][k] * b[k][j]; #pragma xlang name statement st1

}}} temp[k] = a[i][k] * b[k][j];
#pragma xlang split st1 st2 temp #pragma xlang name statement st2

c[i][j] = c[i][j] + temp[k];
}}}

(a) (b)

Fig. 11. split example. (a)-Pragmas. (b)-Generated code.

Figure 12 shows how to software pipeline a loop with theshift transformation.
We have used#pragma xlang transform shift l1.1 2. The first argumentl1.1
corresponds to the first statement of loopl1 and in general, theloop.<n> notation is
used to designate the sequence of the firstn statements in the body of looploop. In
the example, the first statement is shifted with respect to the remaining statements with
a latency of 2, given by the second argument. Application of the shift transformation
creates a pipeline with multiple stages. The example shows the resulting code, with
a prolog and a epilog loop. Notice that these loops can be unrolled using the pragma
fullunroll as shown in Figure 12-(b).

Defining transformations with respect to existing ones provides a procedural ab-
straction to theX language. We describe them in Section 5.

5 Implementation

In this section, we describe the implementation of the X language translator and present
how transformations are encoded.

for (i=0; i<N; i++) { for (i=0; i<N; i++) {
for (j=0; j<M; j++) { for (j=0; j<M; j++) {

#pragma xlang name l1 #pragma xlang name l1.prolog
for (k=0; k<K; k++) { for (k=0; k<2; k++) {
temp[k] = a[i][k] * b[k][j]; temp[k] = a[i][k] * b[k][j];
c[i][j] += temp[k]; }

}}} #pragma xlang name l1
#pragma shift l1.1 2 for (k=2; k<K; k++) {

temp[k] = a[i][k] * b[k][j];
c[i][j] += temp[k-2];

}
#pragma xlang name l1.epilog
for (k=N-1; k<K; k++) {
c[i][j] += temp[k];

}}}
#pragma xlang transform fullunroll l1.prolog
#pragma xlang transform fullunroll l1.epilog

(a) (b)

Fig. 12. shift example (software pipeline). (a)-Pragmas. (b)-Generated code (with unrolling).

5.1 X Translation
The X language is translated in two steps. The frontend performs several tasks before
passing the result to the backend. First, the frontend parses the annotated C program
and builds the associated abstract syntax tree. Next, a tree-walk identifies the loops
and transformations specified by the X language directives.The marked loops are then
rewritten as series of library calls that represent the loops inside the backend. Also,
transformation directives are translated into library calls for performing the appropriate
transformations on the annotated loops. After all the annotations of the C program have
been translated, the remaining code is transformed using amultistagelanguage similar
to the language described in Section 3. Our multistage language also resembles ‘C [19]
which is a generalization of a macro language with arbitraryrecursion and where a
program may generate another program and execute it, havingmultiple program levels
cooperate and share data possibly at run-time. The final translated program is then ready
to be processed by the backend.

In the second step, this program is executed: it reads a separate file describing the
optimizations, performs the optimizations and produces the final optimized C code. The
macro language is used to manipulate code expressions and towrite some optimizations
(such as unroll) in a compact way. Partial evaluation of expressions that contain only %
variables and constants is done in this step: as presented inSection 3, variable names
such asc %i are then expanded intoc 0, c 1,... in the resulting code.

Finally, all unoptimized code (not prefixed by pragmas) is printed out without any
modification in the final code.

5.2 Defining New Transformations
The definition of transformations inX can use pattern rewriting rules and macro code.
A pattern rewriting rule contains two patterns: the first pattern is for matching and the
second one is for rewriting. When an input code matches the first pattern, the code is
rewritten as indicated by the second pattern. If the patternrewriting rule is not expres-
sive enough, the user has the possibility to define the code using macro code directly.
Thus anX program could contain both pragmas and macro statements. Infact, it is
possible to define a code generator associated with a patternof code.

In the current implementation, no dependence analysis is integrated yet, so no va-
lidity check is performed for the transformation. We envision that, contrary to the com-
piler, validity checks in X only raise warnings to the user, since the user is assumed to
know what he is doing and validity checks may be too conservative.

Procedural abstraction enables the writing of complex transformations from simpler
ones. It is an important feature in the definition of transformations. The destination pat-
tern can contain some transform pragmas. For instance, a line such as#pragma xlang
transform fullunroll l1rem could be added to the destination pattern of stripmine
and would fully unroll the remainder loop.

6 Experimental Results
We study in this section a matrix-matrix multiplication andits optimization withX lan-
guage. Starting from a very simple implementation, the goalis to mimic ATLAS by
performing the same transformations with theX. For this preliminary experiment, the
platform used is a NovaScale 4020 server from Bull featuringtwo 1.3Ghz Itanium 2
(Madison) processors, with a 256KB level 2 cache and a 1.5MB level 3 cache. Quality
of compiled code is the key to performance on Itanium becauseof its explicit paral-
lel assembly and its in-order execution. Scheduling problems cannot be smoothed by
hardware mechanisms. All codes (including ATLAS) are compiled using the Intel C
compiler (icc) version 8.1 with-03 -fno-aliases flags.

6.1 Pragmas for MMM

#pragma xlang name iloop
for (i = 0; i < NB; i++)
#pragma xlang name jloop
for (j = 0; j < NB; j++)

#pragma xlang name kloop
for (k = 0; k < NB; k++) {
c[i][j]=c[i][j]+a[i][k]*b[k][j];

}
#pragma xlang transform stripmine iloop NU NUloop
#pragma xlang transform stripmine jloop MU MUloop
#pragma xlang transform interchange kloop MUloop
#pragma xlang transform interchange jloop NUloop
#pragma xlang transform interchange kloop NUloop
#pragma xlang transform fullunroll NUloop
#pragma xlang transform fullunroll MUloop
#pragma xlang transform scalarize_in b in kloop
#pragma xlang transform scalarize_in a in kloop
#pragma xlang transform scalarize_in&out c in kloop
#pragma xlang transform lift kloop.loads before kloop
#pragma xlang transform lift kloop.stores after kloop

(a)

#pragma xlang name iloop
for(i = 0; i < NB; i++){
#pragma xlang name jloop
for(j = 0; j < NB; j += 4){
#pragma xlang name kloop.loads
{c_0_0 = c[i+0][j+0]; c_0_1 = c[i+0][j+1];
c_0_2 = c[i+0][j+2]; c_0_3 = c[i+0][j+3];

}
#pragma xlang name kloop
for(k = 0; k < NB; k++){

{a_0 = a[i+0][k]; a_1 = a[i+0][k];
a_2 = a[i+0][k]; a_3 = a[i+0][k];}

{b_0 = b[k][j+0]; b_1 = b[k][j+1];
b_2 = b[k][j+2]; b_3 = b[k][j+3];}

{c_0_0=c_0_0+a_0*b_0; c_0_1=c_0_1+a_1*b_1;
c_0_2=c_0_2+a_2*b_2; c_0_3=c_0_3+a_3*b_3;}
...

}
#pragma xlang name kloop.stores
{c[i+0][j+0] = c_0_0; c[i+0][j+1] = c_0_1;
c[i+0][j+2] = c_0_2; c[i+0][j+3] = c_0_3;}

} }
... // Remainder code

(b)

Fig. 13. (a) mini-mmm code in X. (b) Code after transformation with MU = 4, NU = 1.

The initial code for matrix-matrix multiply is a triple-nested loop where the inner
loop contains one floating point multiply-add operation. Blocking the code for L2 and
L3 cache is key to obtaining high performance. Therefore each loop is tiled three times
usingX pragmas in order to perform the multiplication with blocks fitting into registers
and the L2 and L3 caches. Figure 13-(a) shows the mini-MMM code tailored for L2
cache, with the pragmas to generate register-blocking.

Note that there is no software-pipeline transformation since the compiler takes this
optimization in charge better than if it was done at the source level.

Note that we do not perform a software pipeline because the compiler handles this
optimization better than we can at the source level in this case.

Likewise, basic block scheduling is correctly handled by the compiler. We have
used twostripmine and threeinterchange transformations to tile the two nested
loopsiloop andjloop. Fig.13-(b) shows a fragment of the resulting code when the
values of blocking are 1 foriloop and 4 forjloop.

For the L2 and L3 tilings, copies ofa, b andc are made in order to have all the
elements of the submatrices in a contiguous memory block.

Fig. 14. Preliminary results comparing ATLAS to naive code with pragmas for DGEMM.

6.2 Optimization Tuning

Expressing the optimization is only one step towards high performance code. The other
important step consists of finding the right values for the parameters. Many search
strategies can be applied, such as the search employed by ATLAS.

ForDGEMM, we performed an exhaustive search for the appropriate tilesizes around
the expected values.Comparison with the naive code shows a speed-up of 80 (for matri-
ces of size 600×600). Figure 14 shows that code optimized with the X languageoutper-
forms ATLAS for all matrix sizes when coupling it with a custom memory copy routine
calleddcopy. This routine was automatically produced by a specialized assembly gen-
erator, the Xemsys Library Generator [28], using hardware performance counters and
static analysis of the assembly code [9].

Coupling our code with the less specialized copy routine of the Intel Math Kernel
Library (MKL) yields performance on par with ATLAS on average, and using the plain
memcopy subroutine of the C library degrades performance slightly.

These results are very encouraging. Yet the peak architectural performance for
matrix-matrix product on Itanium is 0.5 cycle per fma operation, and the MKL imple-
mentation ofdgemm does achieve 0.55 cycle per fma on average, which is 10% to 15%
faster than ATLAS and the X-language implementation. Our future work includes the
continuation of our X-language experiment to fully reproduce or outperform the MKL,
showing that the added productivity in adaptive library development can translate into
added performance as well (with respect to manual designs like ATLAS).

7 Related work

It is well known that manual optimizations degrade portability: the performance of a
C or Fortran code on a given platform does not say much about its performance on

different architectures. Several works have successfullyaddressed this issue, not by im-
proving the compiler, but through the design of application-specific program generators,
a.k.a. active libraries [26]. Such generators often rely onfeedback-directed optimization
to select the best generation strategy [23], but not exclusively [29]. The most popular ex-
amples are ATLAS [27] for dense matrix operations and FFTW [10] for the fast Fourier
transform. Such generators follow an iterative optimization scheme. Most optimizations
performed by these generators are classical loop transformations; some of them involve
domain knowledge, from the specialization and interprocedural optimization of library
functions [3, 8], to application-specific optimizations such as algorithm selection [17].
Recently, the SPIRAL project [21] pioneered the extension of this application-specific
approach to a whole domain of programs: digital signal processing. This project is
one step forward to bridge the gap between application-specific generators and generic
compiler-based approaches, and to improve the portabilityof application performance.

Beyond application specific generators, iterative optimization techniques prove use-
ful to drive complex transformations in traditional compilers. They use the feedback
from real executions of the optimized program to explore theoptimization search space
using operations research algorithms [15], machine learning [17], and empirical experi-
ence [18]. In theory, iterative optimization is fully disconnected from the technical im-
plementation of program optimizations. Yet generative approaches such as multistage
evaluation avoid the pattern-matching limitations of syntactic transformation systems,
which improves the structure of the search space and the applicability of empirical tech-
niques. Indeed, systematic exploration techniques require a higher degree of flexibility
in program manipulation than traditional compiler frameworks [5].

We thus advocate a framework that would allow the domain expert to design and
express his own transformations, and to meta-program the search for optimal perfor-
mance through iterative optimization [4]. This goal is similar to the one oftelescoping
languages[3, 13], a compiler approach to reduce the overhead of calling generic library
functions and to enable aggressive interprocedural optimizations, by making the seman-
tical information about these libraries available to the compiler. Beyond libraries, simi-
lar ideas have been proposed for domain-specific optimizations [16]. These works high-
light the increased need for researchers and developers in the field of high-performance
computing to meta-program their optimizations in a portable fashion.

Another alternative ismultistage evaluation. Most programming languages support
macro expansion, where the macro language allows a limited amount of control(not
recursive, in general) on code parts. Yetmultistage evaluationdenotes the syntactic and
semantic support allowing a program to generate another program and execute it, having
multiple program levels cooperate and share data.String-basedmultistage languages
support true recursion and cooperation between levels, butoffer no syntactic guarantees
on the generated code; the most widely used are the various shell interpreters, and the
current version of theX language is also of this kind. To increase productivity,struc-
tured multistage languages enforce syntactic correctness of thegenerated code: e.g.,
C++ expression templates [25], ‘C [19] and Jumbo [12]. To further increase productiv-
ity and ease debugging, a few multistage languages guarantee that the generated code
will not produce any compilation error (syntax, definition and initialization errors, type
checking): e.g., MetaML and its successor MetaOCaml [2, 24]. The added safety is very

valuable to increase the productivity of program generatordesigners, but the associated
constraints may also complicate the meta-programming of specific optimizations [4].
Up to now, the multistage language and meta-programming community has mostly fo-
cused on general-purpose transformations like in partial evaluation, specialization and
simplification. These transformations are useful, in particular to lower the abstraction
penalty, but far from sufficient to adapt a compute-intensive application to a complex
architecture. Currently, research on generative programming and multistage evaluation
has not much influenced the domain of high-performance computing, most application-
specific adaptive libraries being ad-hoc string-based program generators.

The TaskGraph library [1] is closely related with theX language. It combines a
structured multistage evaluation layer built on top of C++ expression templates, with
run-time generation and compilation, and with a transformation toolkit based on SUIF
(1.3) [11] and/or ROSE [22]. It is not a language per se, but a set of C++ templates
and classes associated with customizable source-to-source transformation capabilities.
As such, it should be understood like the underlying infrastructure to build a general-
purpose multiversioning language such asX. We preferred to redesign our own infras-
tructure for multistage evaluation and source-to-source transformation, for the sake of
simplicity, to avoid the memory and code overhead of C++ templates, and because we
do not currently aim for run-time code generation.

8 Conclusions
We presented the design of theX language, aimed for application experts who wish to
implement adaptive programs without knowledge of compilerinternals. The language
is designed so that it is easy for the programmer to generate multiversion programs, to
specify which transformations to apply on each program part, and to tune the order or
parameters of the transformations. The parameters drivingthe generation of a specific
version and the application of transformations can be determined using empirical search
orchestrated by a search engine which could use the target machine to evaluate the
performance of each version of the program or rely on analytical models.

TheX language combines the expressive power of multistage languages with a flex-
ible pattern-matching and rewriting language to implementand compose custom pro-
gram transformations. Also the language is still in its infancy, we presented promising
results on mimicking the code generator for DGEMM (matrix-matrix multiplication)
in ATLAS [27]. This experiment demonstrates vast amounts ofproductivity improve-
ments, compared to the manual implementation of an ad-hoc code generator in C, as
well as good performance results.

Our future work will include a more thorough experiment withthe ongoing design
of an active library for adaptive, block-recursive linear algebra computations. For in-
creased productivity, we also plan to provide a more structured multistage sub-language,
and to integrate the results of pointer and dependence analyses as indicative feedback to
the programmer. Such static analyses should also enable thedesign of smarter (higher-
level) transformation primitives. In the longer term, we also wish to invest in a more
robust implementation of theX language, based on a run-time compilation framework,
like ROSE [22] or TaskGraph [1], and/or using a more abstractcode representation in
the polytope model [5]. Our main long-term goal is the adoption by application experts
with little interest in compiler design and implementation.

References
1. O. Beckmann, A. Houghton, P. H. J. Kelly, and M. Mellor. Run-time code generation in c++ as a foundation for domain-

specific optimisation. InProceedings of the 2003 Dagstuhl Workshop on Domain-Specific Program Generation, 2003.
2. C. Calcagno, W. Taha, L. Huang, and X. Leroy. Implementingmulti-stage languages using ASTs, Gensym, and re-

flection. InACM SIGPLAN/SIGSOFT Intl. Conf. Generative Programming and Component Engineering (GPCE’03),
pages 57–76, 2003.

3. A. Chauhan and K. Kennedy. Optimizing strategies for telescoping languages: procedure strength reduction and pro-
cedure vectorization. InACM Int. Conf. on Supercomputing (ICS’04), pages 92–101, June 2001.

4. A. Cohen, S. Donadio, M.-J. Garzaran, D. Padua, and C. Herrmann. In search for a program generator to implement
generic transformations for high-performance computing.In 1st MetaOCaml Workshop (associated with GPCE),
Vancouver, British Columbia, October 2004.

5. A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, and N.Vasilache. Facilitating the search for compositions of
program transformations. InACM Int. Conf. on Supercomputing (ICS’05), Boston, Massachusetts, June 2005.

6. K. D. Cooper, D. Subramanian, and L. Torczon. Adaptive Optimizing Compilers for the 21st Century.Journal of
Supercomputing, 23(1):7–22, 2002.

7. K. D. Cooper and T. Waterman. Investigating Adaptive Compilation using the MIPSPro Compiler. InProc. of the
Symp. of the Los Alamos Computer Science Institute, October 2003.

8. L. De Rose and D. Padua. Techniques for the translation of matlab programs into fortran 90.ACM Trans. on Program-
ming Languages and Systems, 21(2):286–323, 1999.

9. L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J.-T. Acquaviva, and W. Jalby. A new tool for assembler analysis and
optimization on epic architecture. InProc. of the Epic Workshop (in conjunction with CGO’05), 2005.

10. M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for the FFT. InProc. of the ICASSP Conf.,
volume 3, pages 1381–1384, 1998.

11. M. Hall et al. Maximizing multiprocessor performance with the SUIF compiler. IEEE Computer, 29(12):84–89,
December 1996.

12. Sam Kamin, Lars Clausen, and Ava Jarvis. Jumbo: run-timecode generation for java and its applications. InACM
Conf. on Code Generation and Optimization (CGO’03), pages 48–56, 2003.

13. K. Kennedy. Telescoping languages: A compiler strategyfor implementation of high-level domain-specific program-
ming systems. InProc. Intl. Parallel and Distributed Processing Symposium(IPIPS’00), pages 297–304, 2000.

14. P. Kisubi, P.M.W. Knijnenburg, and M.F.P. O’Boyle. The Effect of Cache Models on Iterative Compilation for Com-
bined Tiling and Unrolling. InProc. of the International Conference on Parallel Architectures and Compilation Tech-
niques, pages 237–246, 2000.

15. T. Kisuki, P. Knijnenburg, M. O’Boyle, and H. Wijshoff. Iterative compilation in program optimization. InProc.
CPC’10 (Compilers for Parallel Computers), pages 35–44, 2000.

16. C. Lengauer, D. Batory, C. Consel, and M. Odersky, editors. Domain-Specific Program Generation. Number 3016 in
LNCS. Springer-Verlag, 2003.

17. X. Li, M.-J. Garzaran, and D. Padua. A dynamically tuned sorting library. InACM Conf. on Code Generation and
Optimization (CGO’04), pages 111–124, San Jose, CA, March 2004.

18. D. Parello, O. Temam, A. Cohen, and J.-M. Verdun. Towardsa systematic, pragmatic and architecture-aware pro-
gram optimization process for complex processors. InACM Supercomputing’04, page 15, Pittsburgh, Pennsylvania,
November 2004.

19. M. Poletto, W. C. Hsieh, D. R. Engler, and M. F. Kaashoek. ‘C and tcc: A language and compiler for dynamic code
generation.ACM Trans. on Programming Languages and Systems, 21(2):324–369, March 1999.

20. M. Puschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code Generation for DSP Transforms.Proceedings of the IEEE,
To appear 2005. Special issue on “Program Generation, Optimization, and Adaptation”.

21. M. Puschel, B. Singer, J. Xiong, J. M .F. Moura, J. Johnson, D. Padua, M. M. Veloso, , and R. W. Johnson. SPIRAL: A
Generator for Platform-Adapted Libraries of Signal Processing Algorithms.Journal of High Performance Computing
and Applications, special issue on Automatic Performance Tuning, 18(1):21–45, 2004.

22. Markus Schordan and Daniel J. Quinlan. A source-to-source architecture for user-defined optimizations. InJoint
Modular Languages Conference (JMLC’03), volume 2789 ofLNCS, pages 214–223. Springer-Verlag, August 2003.

23. M. D. Smith. Overcoming the challenges to feedback-directed optimization. InACM SIGPLAN Workshop on Dynamic
and Adaptive Compilation and Optimization, pages 1–11, 2000. (Keynote Talk).

24. W. Taha.Multi-Stage Programming: Its Theory and Applications. PhD thesis, Oregon Graduate Institute of Science
and Technology, November 1999.

25. T. Veldhuizen. Using C++ template metaprograms.C++ Report, 7(4):36–43, 1995.
26. T. Veldhuizen and D. Gannon. Active libraries: Rethinking the roles of compilers and libraries. InSIAM Workshop on

Object Oriented Methods for Inter-operable Scientific and Engineering Computing, pages 21–23, October 1998.
27. R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated Empirical Optimization of Software and the ATLAS

Project.Parallel Computing, 27(1–2):3–35, 2001. Also available as University of Tennessee LAPACK Working Note
#147, UT-CS-00-448, 2000 (www.netlib.org/lapack/lawns/lawn147.ps)”.

28. Caps entreprise.http://www.caps-entreprise.com.
29. K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzarán, D. Padua, K. Pingali, P. Stodghill, and P. Wu. A

Comparison of Empirical and Model-driven Optimization. InProceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, pages 63–76. ACM Press, 2003.

30. K. Yotov, X. Li, G. Ren, M. Garzarán, D. Padua, K. Pingali, and P. Stodghill. Is Search Really Necessary to Generate
High-Performance BLASs?Proceedings of the IEEE, 93(2):358–386, February 2005. Special issue on “Program
Generation, Optimization, and Adaptation”.

