A Language for the Compact Representation of Multiple
Program Versions

Sebastien Donadl®, James BrodmdnThomas Roed& Kamen Yoto¥, Denis
Bartholf, Albert Coherd, Maria JesUs GarzarjrDavid Padud, and Keshav Ping&li

1 BULL SA
2 University of Versailles St-Quentin-en-Yvelines
3 INRIA Futurs
4 University of lllinois at Urbana-Champaign
5 Cornell University

Abstract. As processor complexity increases compilers tend to dedivbopti-
mal performance. Library generators such as ATLAS, FFTW3RtRAL over-
come this issue by empirically searching in the space ofiplesprogram ver-
sions for the one that performs the best. Empirical searohatso be applied by
programmers, but because they lack a tool to automate ticegspprogrammers
need to manually re-write the application in terms of sevpasameters whose
best value will be determined by the empirical search in dinget machine.

In this paper, we present the design of an annotation largumagant to be used
either as an intermediate representation within libranyegators or directly by
the programmer. This language that we ealepresents parameterized programs
in a compact and natural way. It provides an powerful optatian framework
for high performance computing.

1 Introduction

Processors and machines in general are becoming incrgasorgplex and it has be-
come extremely difficult even for experts to identify thetéess code sequences and the
sequence of transformations that would optimize a giveresmtjuence [6, 7, 29, 30].
Furthermore, the best code for a particular machine is nesgarily the best for other
machines, even when architectural differences are miBgeause of this complexity,
compilers tend to deliver suboptimal performance and @ogners make limited at-
tempts at manual optimization. The result is that, in marsesaapplications only use
a small fraction of the target machine’s power.

Clearly, an optimization methodology must be developedrtprove the current
situation. Recent studies have shown that a conceptuailylsistrategy, known sam-
pirical search can be a very effective optimization strategy. Empiriedrsh consists
of searching the space of possible program versions, ergceach of them on the
target machine, and selecting the fastest version.

Empirical search has been studied in the context of comjrd@sformations [14]
and library generators. Thus, ATLAS [27], a linear algelibbadry generator, searches
the space of possible forms of matrix-matrix multiplicaticoutines. The different
forms vary in the size of tiles, degree of unrolling, and skthe of operations. The SPI-
RAL [20] and FFTW [10] signal processing library generatearch a space consisting

of implementations of different formulas representingttasform to be implemented.
In the case of library generators, empirical search leag&ttormance improvements
of an order of magnitude over good generic libraries thathast been tuned for a
particular machine.

Empirical search can also be applied manually by a programrhe idea would
be for the programmer to write the application in terms ofesalparameters whose
best value for a particular target machine is to be deterthiyeempirical search. The
parameters could specify values such as degree of unrafiaggiven loop, tile size,
etc. Parameters could also be used to represent compléffeledt ways of carrying
out a computation or part of a computation by numbering tiffergéint strategies and
making this number one of the parameters whose value is toddoified.

In this paper we describe an ongoing effort to design andempht a new language,
X, that could be used by programmers and also serve as an @d&t@ representation
within of library generatorsX is a language to represent parameterized programs nat-
urally and compactly. Programmers would be able to progra directly. Library
generators could be organized as depicted in Figure 1 wh&@assumed that func-
tions of the library are designed in a very high level domaiecific language which
is analyzed, parameterized and translated ¥hpwograms. The availability of would
enable the reuse of a search engine across library gereerator

(X program 6— DSL Translator
High ; : wach Execution
X Translator 3 Level $eeeP HLL Translator ¢ \a:gu;;ee and
\ language 1 : measurement

Search engine

Optimized
program

Fig. 1. Programming adaptive library generators

Our objective is to desigK so that it is easy for the programmer to specify which
transformations to apply, and change the order or the valithe transformations. The
value of the parameters can be determined using empirieatiserchestrated by a
search engine which could use the target machine to evahafgerformance of each
version of the program or rely on analytical models.

Since many programs spend most of their time executing ldopp-based opti-
mizations are the main focus of attention of the transfoimnatwe propose in this
initial version ofX, although non-loop transformations are also possible.

The output of processing could be machine code, which would give programmers
access to low-level optimizations. However, this approachld force the development
of anX translator for each machine. To makeortable, high level language code could
be generated so that each version of the code, that is, eathipthe search space,
would have to be fed to the native compiler. This compilemisiharge of the low-
level optimizations such as register allocation and codegdion of the executable

code. In many occasions, we would like to disable many of {iézations of the
native compiler, but this is not always possible, becauselding all optimizations (-
00) could lead to poor performance. As a result, the transftions represented KX
may or may not be preserved by the native compiler. The onlitisa to this problem
is the search of the best combination of transformationeasturce level that interacts
with the low level compiler.

The rest of the paper is organized as follows: Section 2 fisdanguage require-
ments to ease the design of multiversion programs; SectianaB/zes the multiver-
sionning capabilities of macro or multistage language$ wétspect to these require-
ments; Section 4 presents thdanguage which combines multistage evaluation with
reification and transformation pragmas; Section 5 dethdsdiesign of theX language
source-to-source compiler; Section 6 presents promigisiglts on mimicking the code
generator for DGEMM (matrix-matrix multiplication) in ATAS [27]; and Section 7
compares thX language with related work and results, before we concludesietch
future work.

2 Necessary Features of the Language

In this section, we discuss the features that must be erlibiy any language designed
specifically for the compact representation of multipleewdrsions.

1. Elementary transformations. The first features that ctimmaind are constructs to
generate multiple versions of a statement by applglegnentarjtransformations to
a statement. Elementary transformations are widely usedfiormations that cannot
be conveniently cast in terms of other, simpler transfoiomat For program opti-
mization, the targets of the transformations are usuallgmmund statements and the
transformations typically manipulate the order of exemutind the control structure
of the components. For sequences of assignment statenypits) elementary trans-
formations are statement reordering, replication, andtib#l. Loop transformations
include unrolling, interchanging, stripmining, fusiorgdion, and scalar replacement.
We also consider loop tiling an elementary transformatltdrmagh in theory it can be
represented as a combination of stripmining and intercingn&ome loop schedul-
ing transformations, such as software pipelining, are esicered to be elementary
transformations. The reason is that, although schedulimgbe represented as a se-
quence of simpler transformations, it is usually difficolido so.

doi=1, 100

a(i)=b(i)+c(i)
end do

Unroll

VY

doi=1, 100 do i=1, 100, 2 doi=1, 99, 3
a(i)=b(i)+c(i) a(i)=b(i)+c(i) a(i)=b(i)+c(i)
end do a(i+1)=b(i+1)+c(i+1) a(i+1)=b(i+1)+c(i+1)
end do a(i+2)=b(i+2)+c(i+2)
end do
a(100)=b(100)+¢(100)

Fig. 2. Unroll

Many of elementary transformations require input paramsetich as the degree of
unrolling (Figure 2), tile size, and locations where theg@®to be split in the case of

do =1, 100

S1: a(i)=b(i)+c(i)
S2: c(i)=a(i)+d(i)
S3: e()=a()+e(i-1)
end do

Loop Fission

doi=1, 100 doi=1, 100 doi=1, 100

S1: ai)=b(i)+c(i) S1: a(i)=b(i)+c(i) S1: a(i)=b(i)+c(i)
end do S2: c(i)=a(i)+d(i) end do

doi=1, 100 end do do i=1, 100

S2: c(i)=a(i)+d(i) do i=1, 100 S2: c(i)=a(i)+d(i)
S3: e(i)=a(i)+e(i-1) S3: e(i)=a(i)+e(i-1) end do

end do end do do i=1, 100

s3: e(i)=a(i)+e(i-1)
end do

Fig. 3. Loop Fission

fission (Figure 3). Multiple versions of the initial statem@re obtained by varying
the values of these parameters.

Elementary transformations are used in library generatarsig empirical search.
Thus, ATLAS makes use of tiling, unrolling, and loop schéwaly] FFTW makes use
of scheduling; and SPIRAL applies loop unrolling.

2. Composition of transformations. Usually, the best warsf a statement is the re-
sult of applying several elementary transformations. Tloursexample, ATLAS ap-
plies interchanging, tiling, unrolling and schedulinghe triply nested matrix-matrix
multiplication loop during its empirical search for an apél form of the loop. There-
fore, our language should allow the application of multipdansformations to a single
statement. An example of composite transformatiami®ll&am shown in Figure 4.
This transformation can be implemented by applying an auteoll followed by fu-
sion of the two inner loops. Alternatively, unroll&jam cae implemented by first
stripmining the outer loop, then interchanging the inn@plavith the newly gener-
ated loop, and finally unrolling the innermost loop.

for (i=0; i<n*2; i++)
outer unroll for (j=0; j<m; m++) \ stripmine
a(i) = a(i) + b(j)

for (i=0; i<n*2; i+=2)

for (ii=i; ii<i+2; ii++)
for (i=0; i<n*2; i++) for (j=0; j<m; j++)
for (j=0; j<m; j++) a(ii) = aii) + b(j)
a(i) = a(i) + b()
for (j=0; j<m; j++) l interchange
a(i+1) = a(i+1) + b(j)

for (i=0; i<n*2; i+=2)
for (j=0; j<m; j++)

for (ii=i; ii<i+2; ii++)
for (i=0; i<n*2; i++) a(ii) = a(ii) + b()
fusion for (=0 jem: j++) /inner unroll

a(i) = a(i) + b()
a(i+1) = a(i+1) + b(j)

Fig. 4. Unroll & Jam

An important form of transformation compositiondenditionalcomposition, where

a condition is used to select the transformation or the patarvalue of a transforma-
tion. For example, consider a loop that is to be first stripediand then the resulting
inner loop unrolled. We may want to fully unroll the inner fpbut only when the

size of the strip is less than a certain threshold and plgrtiaroll otherwise.

3. Procedural Abstraction. For composite transformatiisconvenient to have pro-
cedural abstractions to encapsulate new transformatiahtoavoid having to rewrite
sequences of transformations that are applied more than onc

4. A mechanism to define new transformations. This extensienhanism enables
the user to add new transformations that cannot be repezbast composition of
elementary transformations. In particular, programméasukl be able to generate
application-dependent transformations that take intmaetthe semantics of the
computation. The simplest way to represent a transformasiaisingtransforma-
tion ruleswhich are adequate to represent many transformations.rahsfbrmation
rules consist of a code template followed by the form resgléifter modification by
the transformation. For instance, a stripmine transfoionatith a tile of size 4 could
be defined as follows:

for (i =0; i <N i++) { <body> }
->
for (ii =0; ii < (N4)*4; ii +=4)
for (i =ii; i <ii+4; i++) { <body> }
for (i = (N4)*4; i <N i++) { <body> };

Transforming the top code template into the bottom codedsthipmine transforma-
tion, where variablgbody> represents the body of the loop to be stripmined.

As the example illustrates, transformation rules are quotesenient. However, since
transformations rules are not universal, some transfoomstmust be represented
as a program written in, for example, a conventional prognarg language. In this
case, the interface between the source language and tiséotraation routines must
be clearly specified. This interface should contain therabssyntax tree of the code
to be transformed and perhaps other related informatiom asclependence graphs.

5. A mechanism to name statements. When applying a sequét@msformations,
it is often necessary to apply one of the transformationsni® af the components
of the resulting code. For example, to implement unroll&jantolling is applied to
the innermost loop resulting from stripmining. Therefdahe ability to name com-
ponents and subcomponents of statements is necessaryble gr@acomposition of
transformations.

3 Macro Language

Perhaps the simplest approach to implen¥ntould be to use a macro language. As-
suming that the macro language statements are C-like statsrmpreceded by the char-
acter%and that references to macro language variables are alseda® by Figure 5
shows an example where th&or statement produces the body of a loop unrotiéd
times. Thatis, when thi or loop is executed, it produces the sequence of assignments:
s=s+a[i+0]; s=s+a[i+1]; ...;s=s+a[i+%l- 1] . In this this example we assumed
that%l is a sub-multiple of 256 and, for that reason did not includedlean-up code
needed to correctly handle the remainder of2b iterations of the original loop. No-
tice that%l in Figure 5 will be assigned a value at compile-time, and wsllially be
assigned several values in successive compilations darirgmpirical search for the
best version of the program.

sume0;
for (i=0;i<256;i+=%) {
9% or (k=i; k<=i+(%l-1); k++)
s = s + a[i+%];
}

Fig.5. Loop unroll using macro statements.

An implementation based on macro language would producstarsythat relies on
generation rather than transformation. Thus, the coristifuEigure 5 does not trans-
form an initial loop butgenerates loop with the body unrolleéd times. If the macro
language includes procedures, it would be possible to wgéigeration routines that
accomplish the same objectives as any transformation Xéongle, we could conceiv-
ably develop artunrol | -1 oop routine that accepts the body of the loop, the index
variable, and the degree of unrolling as parameters. Thersergtion routines could be
a convenient way to extend the base language with new pagarest statements.

In some cases it is preferable to use the generation appsoabhat the programmer
can produce exactly the transformed code that he desirethiSaeasonX includes a
macro language. However, we have found that the genergtimach has two disad-
vantages:

e The generative approach leads to code that is difficult te@ldgvand understand. If
we want to optimize an existing program it will be necessarynbdify the original
code which may introduce errors. Furthermore, code congenerative statements
is difficult to write and read. Therefore, the generativerapph has disadvantage
even when the parameterized code is to be written from deratc

e Complexity when composing transformations. Since the anogner is directly ma-
nipulating source text, when two or more transformatiomsagplied to a statement,
the macro statements can become complicated. For instdimgethe three loops of
the matrix-matrix multiplication code in Figure 6-(a) wisiguare tiles of sizéi | e
results in the code shown in Figure 6-(b). The varidllel e will be instantiated at
compile time, so that versions of matrix-matrix multiplicen with different tile sizes
can be generated by just changing the value ofttié e variable. The code in Fig-
ure 6-(b) shows the remainder loops whénl e is not divisible byK, and outlines the
additional code that should be written to generate the nedess ofMandN. A pro-
grammer who needs to write all this additional code is likelynake mistakes. This
problem will be less severe if the macro language contaiosgatures, but then there
would be the need to develop a procedure for each combinafitnansformations
or procedures with a cumbersome parameter list. In any tésg,can be obtained
by composing loop stripmine and loop interchange. Unfataly, the programmer
using macro statements cannot take advantage of this.

4 X Language using Pragmas

In this Section, we describe thélanguage that we have designed taking into account
the features described in Sectionusestpr agnas to name loops or portions of code
and to specify the transformations to apply. The syntax efffh agnas used to name
loops or code sections has the form:

#pragma xlang nane <id> { ... }

for (i=0;i<Ni++) { for (i=0;i<(N%ile)*%ile;i+=%ile) {

for (j=0;j<Mj++) { for (j=0;j<(M%ile)*%ile;j+=%ile) {
for (k=0; k<K; k+t) { for (k=0;k<(K/%ile)*%ile; k+=%ile) {
clil[j] +=ali]l[k] * b[Kk]I[j]; for (ii=i;ii<i+%ile;i++) {
1} for (jj=j;jj<j+%ile;j++) {

for (kk=k; kk<k+%ile;kk++) {
(a) c[ii][jj] += a[ii][kk] * b[KkkI[jj];
%t ((K%ile)*%ile)!=K {
for (k=(K/%ile)*%ile; k<K k++) {
for (ii=i;ii<i+%ile;i++) {
for (jj=j;jj<i+%ile;j++) {
for (kk=k; kk<k+%ile; kk++) {
c[iT][7j] += alii][kk] * b[Kk][j];
133339, _
%f ((M%ile)*uile) !=M { ... }
%f (((N%ile)*%uile) !=N { ... }
(b)

Fig. 6. (a)-Matrix multiplication code. (b)-Tiled matrix multiplication code using macro statements.

The{} are only necessary when naming a set of statements, butrdhagtrequired
to name a single statement. These pragmas need to be plgbedefore the code
section to be named. The syntax of #@ agmas to specify transformations has the
form:

#pragma xl ang transform keyword <list-input-par> <list-output-par>

The original source code only needs to be modified with thea¥pmagnas. The
transformépr agmas can be in the same file that the source code or in a different one

Sumeo; sum=0;
#pragma x| ang nane |1 #pragma x| ang nane |1
for (i=0;i<256;i++) { for (i=0;i<256;i+=4) {
s =s +alil]; s =s +alil];

s =s + ai+l];
#pragma x|l ang transformunroll 11 4 s =s + ali+2];

s =s + ali+3];

}
(a) (b)

Fig.7. unrol | example. (a)-Pragmas (b)-Generated code

In X, thel oop unrol | i ng transformation in Figure 2 is specified as shown in Fig-
ure 7.#pragna xl ang name |1 is used to name the loop right after it, whilpr agna
xlang transformunroll |1 4 specifies the transformatiamrol | | 1 4 times.

The stripmine transformation is specifieddmvith #pr agma xl ang transform stri pmine
11 4 13 I1lremas shown in Figure 8-(a). This transformation veillr i pm ne thel 1
loop using a tile size of 4. The generated code is shown inrEi§ub). The new loop
that results of thet ri pni ne transformation is namd. To name the remainder loop,
the example usdslr em Using this postfix notation we can apply the same transferma
tiontol 1 and | 1r emby simply using 1x

Another transformation tha includes is array scalarization. The syntax for this
transformationigpr agma x| ang transform scal ari ze-f unc <array-name> in
[<i d>], wherefunccan bei n, out, -in&out or none. scal ari ze-in is used when
copy-in is needed, that is, when the initial values in theyatrave to be loaded into
the scalar variablescal ari ze- out is used when copy-out is needed, that is, when the
scalar values need to be written back to memory to the cavreipg array locations.

#pragma xl ang name |1 #pragma x| ang name |1

for (i=0;i<Ni++) { for (i=0;i<(N4)*4;i+=4) {
#pragma x| ang nane |2 #pragma x| ang nane |3
for (j=0;j<Mj++) { for (ii=ijii<i+dii++) {
c[i] =alil[j] * b[j]; #pragma x| ang nane |2
for (j=0;j<Mj++) {
#pragma xl ang transformstripmne 11 4 13 |1rem c[ii] =al[ii][j] * b[j];
FH

#pragma xl ang nane | Irem
for (i=(N4)*4;i<Ni++) {
#pragma x|l ang name |2
for (j=0;j<Mj++) {
clii] =a[ii][j] * b[j];
1}

(a) (b)
Fig.8. stri pm ne example. (a)-Pragmas. (b)-Generated code.
scal ari ze-in&out is used when both bothn andout are requiredscal ari ze is

used when norn orout are necessary. The programmer must determine which is the
appropriate scalarize transformation to apply so that #reegated code is correct.

sunx0; doubl e a0, al;
#pragma xl ang name |1 sun¥0;
for (i=0; i<256; i+=2){ #pragma x|l ang nane |1
s =s +alil]; for (i=0; i<256; i+=2){
s =s + ali+l]; #pragma xl ang name | 1.1 oads
{ a0 = a[i];
#pragma x| ang transformscalarize-inainl1l al = a[i+1]; }

#pragma x| ang nane | 1. body
{s=s+a0
s=s +al; }

(a) (b)

Fig.9. scal ari ze-i n example. (a)-Pragmas. (b)-Generated code.

Figure 9-(a) shows an example where $loal ari ze-i n transformation is used to
scalarize the arrag in | 1. The generated code is shown in Figure 9-(b). The gener-
ated code contains the declaration of the new scalar vagablandal, and two new
pragnas that name certain statements of the generated ¢hegna x| ang name
[1.1 oads name the statements that load the array values into thersc@iaagna
Xl ang nane | 1. body name the statements where the array references have been re-
placed with scalars. Notice that the#gr agmas are automatically generated after a
scalarize transformation is applied, without the progranspecifying anything. In the
case of ascal ari ze-out transformation an addition&br agna namingl 1. st or es
would have been generated. Naming these loop sectionssall@programmer to ap-
ply new transformations on the generated code. For exafjgare 10-(a) shows an
example where the load statements of the copy-in phase lemreroved beforel
and the store statements of the copy-out phase have beed magedd 1 as shown in
Figure 10-(b). In this new example, we have ugpdagnma x| ang transform|lift
| 1.1 0ads before | 1and#pragna xlang transformlift |1.stores after |1,
where the syntax of this transformation is
#pragma xlang transformlift <statenent-id><before | after><loop-id>.

Xalso includes transformations for software pipelininge@ifference between the
software pipelining and the loop transformations is théiveare pipelining operates on

for (i=0;i<Ni++) { doubl e c0, cl;

for (j=0;j<Mj++) { for (i=0; i<N;, i++) {
#pragma x| ang nane |1 for (j=0; j<M j++) {
for (k=0;k<K; k+=2) { #pragma x| ang nane | 1.1 oads
c[i][j] += a[i][k] * b{k][j]; {cO=c[i][i]; }
cli][j] += a[i][k+1] * b[k+1][j]; #pragm x| ang nane |1
1 for (k=0; k<K; k+=2) {
#pragma x| ang transformscal arize-out ¢ inl1l #pragma x| ang nane | 1. body
#pragma xlang transformlift |1.1oads before I1 { cO +=a[i][k]*b[k][]];
#pragma xl ang transformlift |1 stores after 11 c0 += a[i][k+1]*b[k+1][j]; }
¥

#pragma xl ang name | 1.stores

{ clillj] =¢c0; }
1}
(a) (b)

Fig.10. scal ari ze-out and|ift examples. (a)-Pragmas. (b)-Generated code.

statements instead of loops. The lower granularity of saféapipelining transforma-
tions makes them more complex, since the programmer neeéstavith movement of
individual statements. The two transformations used fétmsoe pipelining arespl i t
andshi ft. Thesplit transformation is not necessarily a software pipeliniagsfor-
mation. It is used to separate atomic instructions. FigdreHows how an instruction
combining a load and an operation is breaking assignmet@nséants into two state-
ments, one to compute the right hand side and the other tgres computed value
to the left hand side.

for (i=0; i<N, i++) { doubl e tenp[0..K];
for (j=0; j<M j++) { for (i=0; i<N;, i++){
for (k=0; k<K; k+t) { for (j=0; j<M j++){
#pragma x| ang nane statenment stl for (k=0; k<K; k++){
c[il[j] += a[il[k] * b[KI[j]; #pragm x| ang name statement stl
tenp[k] = a[i][k] * b[KI[j];
#pragma x|l ang split stl st2 tenp #pragma x| ang nane statenent st2
c[i1[j] = c[i][j] + temp[k];
1}
(a) (b)

Fig.11. split example. (a)-Pragmas. (b)-Generated code.

Figure 12 shows how to software pipeline a loop with sheft transformation.
We have usedpragma xlang transformshift 11.1 2. The first argumenitl. 1
corresponds to the first statement of Iddpand in general, theoop. <n> notation is
used to designate the sequence of the firstatements in the body of lodmwop. In
the example, the first statement is shifted with respectdgdimaining statements with
a latency of 2, given by the second argument. Applicatiorhefghift transformation
creates a pipeline with multiple stages. The example shbegdsulting code, with
a prolog and a epilog loop. Notice that these loops can belledrasing the pragma
fullunroll as shown in Figure 12-(b).

Defining transformations with respect to existing ones fhes a procedural ab-
straction to theX language. We describe them in Section 5.

5 Implementation

In this section, we describe the implementation of the X leagge translator and present
how transformations are encoded.

for (i=0; i<N, i++) { for (i=0; i<N, i++) {

for (j=0; j<M j++) { for (j=0; j<M j++) {

#pragma x| ang nane |1 #pragma x| ang nane | 1. prol og

for (k=0; k<K; k+t) { for (k=0; k<2; k++) {
tenp[k] = a[i][k] * b[KI[j]; temp[k] = a[i][k] * b[KI[j];

c[i][j] += tenp[k]; }

#pragma xl ang name |1

#pragma shift 11.1 2 for (k=2; k<K k++) {
temp[Kk] = a[i][k] * b[KI[j];

c[i][j] += temp[k-2];

#pragma xl ang name | 1. epilog
for (k=N-1; k<K; k++) {
C}[i][J] += tenp[K];

#pragma xl ang transformfullunroll I1.prolog
#pragma xlang transformfullunroll I1.epilog
(a) (b)

Fig.12. shi ft example (software pipeline). (a)-Pragmas. (b)-Generated code (with unrolling).

5.1 X Translation

The X language is translated in two steps. The frontend pedseveral tasks before
passing the result to the backend. First, the frontend pdteeannotated C program
and builds the associated abstract syntax tree. Next, avatieidentifies the loops
and transformations specified by the X language directiies.marked loops are then
rewritten as series of library calls that represent the domgide the backend. Also,
transformation directives are translated into libraryscdr performing the appropriate
transformations on the annotated loops. After all the aatimis of the C program have
been translated, the remaining code is transformed usingliistagelanguage similar
to the language described in Section 3. Our multistage lagpgalso resembles ‘C [19]
which is a generalization of a macro language with arbitr@gursion and where a
program may generate another program and execute it, hauiftgple program levels
cooperate and share data possibly at run-time. The finall&ia program is then ready
to be processed by the backend.

In the second step, this program is executed: it reads aategdde describing the
optimizations, performs the optimizations and producedittal optimized C code. The
macro language is used to manipulate code expressions amieé@ome optimizations
(such as unroll) in a compact way. Partial evaluation of egpions that contain only %
variables and constants is done in this step: as presentgekiion 3, variable names
such az % are then expanded intn0, c_1,... inthe resulting code.

Finally, all unoptimized code (not prefixed by pragmas) isfed out without any
modification in the final code.

5.2 Defining New Transformations

The definition of transformations X can use pattern rewriting rules and macro code.
A pattern rewriting rule contains two patterns: the first@at is for matching and the
second one is for rewriting. When an input code matches thedattern, the code is
rewritten as indicated by the second pattern. If the pat@nmiting rule is not expres-
sive enough, the user has the possibility to define the codg usacro code directly.
Thus anX program could contain both pragmas and macro statemenfactpit is
possible to define a code generator associated with a pafteodle.

In the current implementation, no dependence analysigegtated yet, so no va-
lidity check is performed for the transformation. We enwisthat, contrary to the com-
piler, validity checks in X only raise warnings to the usénce the user is assumed to
know what he is doing and validity checks may be too consieat

Procedural abstraction enables the writing of complexsfiamations from simpler
ones. Itis an important feature in the definition of transfations. The destination pat-
tern can contain some transform pragmas. For instanceg alich a#pr agma x| ang
transform ful lunroll | 1remcould be added to the destination pattern of stripmine
and would fully unroll the remainder loop.

6 Experimental Results

We study in this section a matrix-matrix multiplication atgloptimization withX lan-
guage. Starting from a very simple implementation, the go&b mimic ATLAS by
performing the same transformations with %keFor this preliminary experiment, the
platform used is a NovaScale 4020 server from Bull featuting 1.3Ghz Itanium 2
(Madison) processors, with a 256KB level 2 cache and a 1.58¢Bl13 cache. Quality
of compiled code is the key to performance on Itanium becafisis explicit paral-
lel assembly and its in-order execution. Scheduling prakleannot be smoothed by
hardware mechanisms. All codes (including ATLAS) are cdetpbusing the Intel C
compiler { cc) version 8.1 with- 03 -f no- al i ases flags.

6.1 Pragmas for MMM

#pragma x| ang nane il oop

for (i =0; i <NB i+t
#pragma xlang nane j|oop
for (j =0;] <NB j+t)

#pragma x| ang name ki oop
for (k =0; k <N kt+) {
}C[I][J]=0[I][J]*a[l][k]*b[k][J]:

#pragma x| ang transform stripmine iloop NU NU oop
#pragma x| ang transform stripmine jloop MJ MJ oop
#pragma x| ang transforminterchange kl oop MJ oop
#pragma xl ang transforminterchange jloop NU oop
#pragma xlang transform interchange kloop NU oop
#pragma xlang transform ful lunroll NU oop
#pragma xlang transform ful lunroll MJ oop
#pragma xlang transform scalarize_in b in ki oop
#pragma xlang transform scalarize_in a in ki oop
#pragma xl ang transform scal arize_in&ut c in kloop
#pragma xlang transform lift ki oop.|oads before kloop
#pragma xlang transform lift kloop.stores after kloop
(a)

#pragma x| ang name il oop

for(i =0; i <NB i++){

#pragma x| ang name j|oop

for(j =0; j <NB j +=4){
#pragma x| ang nanme kloop. | oads
{c_0_0 = c[i+0][j+0]; c_0_1 = c[i+0][j+1];
€_0_2 =c[i+0][j+2]; ¢_0_3 = c[i+0][j+3];

#pragma x| ang nane ki oop
for(k = 0; k < NB; k++) {
{a_0 = a[i+0][K]; a_1 = a[i+0][k];
ali +0] [K]; }
bLkIL]+1];
bIKI[j+3]: }
_0_1=c_0_1+a_1*b_1;
0_3=c_0_3+a_3*b_3; }

#pragma x| ang nane kl oop. stores
{c[i+0][j+0] = c_0_0; c[i+0][j+1] = c_0_1;

c[i+0][j+2] = c_02; c[i+0][j+3] = ¢ 0.3}
.. 1] Remminder code

(b)

Fig. 13. (a) mini-mmm code in X. (b) Code after transformation with MU = 4, NU = 1.

The initial code for matrix-matrix multiply is a triple-nesl loop where the inner
loop contains one floating point multiply-add operatioro@&ing the code for L2 and
L3 cache is key to obtaining high performance. Thereford éaap is tiled three times
usingX pragmas in order to perform the multiplication with blocksrg into registers
and the L2 and L3 caches. Figure 13-(a) shows the mini-MMMectadored for L2
cache, with the pragmas to generate register-blocking.

Note that there is no software-pipeline transformationeithe compiler takes this
optimization in charge better than if it was done at the selsgel.

Note that we do not perform a software pipeline because theiter handles this
optimization better than we can at the source level in thégca

Likewise, basic block scheduling is correctly handled by dompiler. We have
used twost ri pm ne and three nt er change transformations to tile the two nested
loopsi | oop andj | oop. Fig.13-(b) shows a fragment of the resulting code when the
values of blocking are 1 farl oop and 4 forj | oop.

For the L2 and L3 tilings, copies af, b andc are made in order to have all the
elements of the submatrices in a contiguous memory block.

Dgemm
0,7
0,68
//

0,65
g 063I - L% [m Atas
= I —
w).L } A= A XLanguage+Dcopy
$ 06 — @ Xlanguage+Memcpy
E » Xlanguage+MKLcpy
3 0,58

M Dgemm MKL

0,55 m Peak (0.5)

0,53

0,5

128 256 384 512 640 768 896 1024 1152 1280 1408 1536 1664 1792 1920 2048
Matrix Size

Fig. 14. Preliminary results comparing ATLAS to naive code with pragmas for DGEMM

6.2 Optimization Tuning

Expressing the optimization is only one step towards higfopmance code. The other
important step consists of finding the right values for theapeters. Many search
strategies can be applied, such as the search employed b4ATL

For DGEMV, we performed an exhaustive search for the appropriatsitiés around
the expected values.Comparison with the naive code shopessaisup of 80 (for matri-
ces of size 60& 600). Figure 14 shows that code optimized with the X languadper-
forms ATLAS for all matrix sizes when coupling it with a custanemory copy routine
calleddcopy. This routine was automatically produced by a specializsgmbly gen-
erator, the Xemsys Library Generator [28], using hardwamréopmance counters and
static analysis of the assembly code [9].

Coupling our code with the less specialized copy routinéneflhtel Math Kernel
Library (MKL) yields performance on par with ATLAS on aveg@nd using the plain
mencopy subroutine of the C library degrades performance slightly.

These results are very encouraging. Yet the peak architégberformance for
matrix-matrix product on Itanium is.B cycle per fma operation, and the MKL imple-
mentation ofdgemmdoes achieve.85 cycle per fma on average, which is 10% to 15%
faster than ATLAS and the X-language implementation. Oturiiwork includes the
continuation of our X-language experiment to fully reprodor outperform the MKL,
showing that the added productivity in adaptive libraryelepment can translate into
added performance as well (with respect to manual desigaLAS).

7 Related work

It is well known that manual optimizations degrade porigbithe performance of a
C or Fortran code on a given platform does not say much absyteitformance on

different architectures. Several works have successdaltiressed this issue, not by im-
proving the compiler, but through the design of applicatépecific program generators,
a.k.a. active libraries [26]. Such generators often relfeaback-directed optimization
to select the best generation strategy [23], but not exalsj29]. The most popular ex-
amples are ATLAS [27] for dense matrix operations and FFTQ] {ar the fast Fourier
transform. Such generators follow an iterative optimmatcheme. Most optimizations
performed by these generators are classical loop tranat@ns; some of them involve
domain knowledge, from the specialization and interpracalkbptimization of library
functions [3, 8], to application-specific optimizationshuas algorithm selection [17].
Recently, the SPIRAL project [21] pioneered the extensibthis application-specific
approach to a whole domain of programs: digital signal pssicey. This project is
one step forward to bridge the gap between applicationfpgenerators and generic
compiler-based approaches, and to improve the portabiliypplication performance.

Beyond application specific generators, iterative optation techniques prove use-
ful to drive complex transformations in traditional congg. They use the feedback
from real executions of the optimized program to exploredpimization search space
using operations research algorithms [15], machine lagifii7], and empirical experi-
ence [18]. In theory, iterative optimization is fully disooected from the technical im-
plementation of program optimizations. Yet generativerapphes such as multistage
evaluation avoid the pattern-matching limitations of sytic transformation systems,
which improves the structure of the search space and the&apjity of empirical tech-
niques. Indeed, systematic exploration techniques reguirigher degree of flexibility
in program manipulation than traditional compiler frameksy5].

We thus advocate a framework that would allow the domain extpedesign and
express his own transformations, and to meta-program #elsdor optimal perfor-
mance through iterative optimization [4]. This goal is $anto the one ofelescoping
language$3, 13], a compiler approach to reduce the overhead of cpdjeneric library
functions and to enable aggressive interprocedural opditioins, by making the seman-
tical information about these libraries available to thenpder. Beyond libraries, simi-
lar ideas have been proposed for domain-specific optinoizafil6]. These works high-
light the increased need for researchers and developdrs fretd of high-performance
computing to meta-program their optimizations in a poedhkhion.

Another alternative isnultistage evaluatiorMost programming languages support
macro expansionwhere the macro language allows a limited amount of cortrot
recursive, in general) on code parts. Mailtistage evaluatiodenotes the syntactic and
semantic support allowing a program to generate anothgranoand execute it, having
multiple program levels cooperate and share datang-basednultistage languages
support true recursion and cooperation between levelaffartno syntactic guarantees
on the generated code; the most widely used are the vari@lldrilerpreters, and the
current version of th& language is also of this kind. To increase productistyic-
tured multistage languages enforce syntactic correctness ofe¢herated code: e.g.,
C++ expression templates [25], ‘C [19] and Jumbo [12]. TaHar increase productiv-
ity and ease debugging, a few multistage languages guerthrdethe generated code
will not produce any compilation error (syntax, definitiamdanitialization errors, type
checking): e.g., MetaML and its successor MetaOCaml [2,P4¢ added safety is very

valuable to increase the productivity of program generdésigners, but the associated
constraints may also complicate the meta-programming e€ifip optimizations [4].
Up to now, the multistage language and meta-programmingraamity has mostly fo-
cused on general-purpose transformations like in parta@tion, specialization and
simplification. These transformations are useful, in patér to lower the abstraction
penalty, but far from sufficient to adapt a compute-inteasipplication to a complex
architecture. Currently, research on generative progriagnand multistage evaluation
has not much influenced the domain of high-performance cdimgumost application-
specific adaptive libraries being ad-hoc string-basednarmgyenerators.

The TaskGraph library [1] is closely related with telanguage. It combines a
structured multistage evaluation layer built on top of Cxpression templates, with
run-time generation and compilation, and with a transfdarmmnmeoolkit based on SUIF
(1.3) [11] and/or ROSE [22]. It is not a language per se, bugteo§ C++ templates
and classes associated with customizable source-toestrarcsformation capabilities.
As such, it should be understood like the underlying infragtire to build a general-
purpose multiversioning language suchxasVe preferred to redesign our own infras-
tructure for multistage evaluation and source-to-souiaesformation, for the sake of
simplicity, to avoid the memory and code overhead of C++ fateg, and because we
do not currently aim for run-time code generation.

8 Conclusions

We presented the design of tkdanguage, aimed for application experts who wish to
implement adaptive programs without knowledge of compilegrnals. The language
is designed so that it is easy for the programmer to generali@/arsion programs, to
specify which transformations to apply on each program, jgaxd to tune the order or
parameters of the transformations. The parameters dritimgeneration of a specific
version and the application of transformations can be detexd using empirical search
orchestrated by a search engine which could use the targetineato evaluate the
performance of each version of the program or rely on arwlthodels.

TheXlanguage combines the expressive power of multistage &gegwith a flex-
ible pattern-matching and rewriting language to implensr compose custom pro-
gram transformations. Also the language is still in its g we presented promising
results on mimicking the code generator for DGEMM (matrigtrix multiplication)
in ATLAS [27]. This experiment demonstrates vast amountprofiuctivity improve-
ments, compared to the manual implementation of an ad-hde generator in C, as
well as good performance results.

Our future work will include a more thorough experiment wiitle ongoing design
of an active library for adaptive, block-recursive linedgebora computations. For in-
creased productivity, we also plan to provide a more strectmultistage sub-language,
and to integrate the results of pointer and dependencesesahs indicative feedback to
the programmer. Such static analyses should also enabtiesign of smarter (higher-
level) transformation primitives. In the longer term, wsalwish to invest in a more
robust implementation of thé language, based on a run-time compilation framework,
like ROSE [22] or TaskGraph [1], and/or using a more absitade representation in
the polytope model [5]. Our main long-term goal is the admphby application experts
with little interest in compiler design and implementation

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.
26.

27.

28.
29.

30.

O. Beckmann, A. Houghton, P. H. J. Kelly, and M. Mellor. Rime code generation in c++ as a foundation for domain-
specific optimisation. IfProceedings of the 2003 Dagstuhl Workshop on Domain-Spé&iligram Generation2003.

C. Calcagno, W. Taha, L. Huang, and X. Leroy. Implementmgti-stage languages using ASTs, Gensym, and re-
flection. INACM SIGPLAN/SIGSOFT Intl. Conf. Generative Programming @emponent Engineering (GPCE’Q3)
pages 5776, 2003.

. A. Chauhan and K. Kennedy. Optimizing strategies forsed@ing languages: procedure strength reduction and pro-

cedure vectorization. IACM Int. Conf. on Supercomputing (ICS'0gages 92-101, June 2001.

. A. Cohen, S. Donadio, M.-J. Garzaran, D. Padua, and Cntdem. In search for a program generator to implement

generic transformations for high-performance computing.lSt MetaOCaml Workshop (associated with GPCE)
Vancouver, British Columbia, October 2004.

. A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, and/akilache. Facilitating the search for compositions of

program transformations. WtCM Int. Conf. on Supercomputing (ICS'0Boston, Massachusetts, June 2005.

. K. D. Cooper, D. Subramanian, and L. Torczon. Adaptivei®iging Compilers for the 21st CenturyJournal of

Supercomputing23(1):7-22, 2002.

. K. D. Cooper and T. Waterman. Investigating Adaptive Citetipn using the MIPSPro Compiler. IRroc. of the

Symp. of the Los Alamos Computer Science Insfi@¢ober 2003.

. L. De Rose and D. Padua. Techniques for the translatiorat&imprograms into fortran 9&CM Trans. on Program-

ming Languages and Systeri(2):286-323, 1999.

. L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J.-T. Aegiva, and W. Jalby. A new tool for assembler analysis and

optimization on epic architecture. Froc. of the Epic Workshop (in conjunction with CGO’03005.

M. Frigo and S. G. Johnson. FFTW: An adaptive softwaraigacture for the FFT. IProc. of the ICASSP Conf.
volume 3, pages 1381-1384, 1998.

M. Hall et al. Maximizing multiprocessor performancettwthe SUIF compiler. IEEE Computer 29(12):84—-89,
December 1996.

Sam Kamin, Lars Clausen, and Ava Jarvis. Jumbo: run-tiote generation for java and its applications. AGM
Conf. on Code Generation and Optimization (CGO;q®ges 48-56, 2003.

K. Kennedy. Telescoping languages: A compiler strategymplementation of high-level domain-specific program-
ming systems. IfProc. Intl. Parallel and Distributed Processing SymposiiRIPS’00), pages 297-304, 2000.

P. Kisubi, P.M.W. Knijnenburg, and M.F.P. O'Boyle. Th#e€t of Cache Models on Iterative Compilation for Com-
bined Tiling and Unrolling. IrProc. of the International Conference on Parallel Architees and Compilation Tech-
niques pages 237-246, 2000.

T. Kisuki, P. Knijnenburg, M. O’Boyle, and H. Wijshoff.tdrative compilation in program optimization. Rroc.
CPC'10 (Compilers for Parallel Computerg)ages 35-44, 2000.

C. Lengauer, D. Batory, C. Consel, and M. Odersky, eslitbomain-Specific Program GeneratioMumber 3016 in
LNCS. Springer-Verlag, 2003.

X. Li, M.-J. Garzaran, and D. Padua. A dynamically tunedisg library. INnACM Conf. on Code Generation and
Optimization (CGO’04)pages 111-124, San Jose, CA, March 2004.

D. Parello, O. Temam, A. Cohen, and J.-M. Verdun. Towardystematic, pragmatic and architecture-aware pro-
gram optimization process for complex processorsAGM Supercomputing’Q4age 15, Pittsburgh, Pennsylvania,
November 2004.

M. Poletto, W. C. Hsieh, D. R. Engler, and M. F. Kaashodk.ahd tcc: A language and compiler for dynamic code
generationACM Trans. on Programming Languages and Syst@h&):324—-369, March 1999.

M. Puschel, J. Moura, J. Johnson, D. Padua, M. Velosojrigie§ J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code Germndbr DSP TransformsProceedings of the IEEE
To appear 2005. Special issue on “Program Generation, @gatiion, and Adaptation”.

M. Puschel, B. Singer, J. Xiong, J. M .F. Moura, J. JohnBoiPadua, M. M. Veloso, , and R. W. Johnson. SPIRAL: A
Generator for Platform-Adapted Libraries of Signal Preaeg Algorithms.Journal of High Performance Computing
and Applications, special issue on Automatic Performangenig, 18(1):21-45, 2004.

Markus Schordan and Daniel J. Quinlan. A source-toesoarchitecture for user-defined optimizations. Jaint
Modular Languages Conference (JMLC'08plume 2789 ot NCS pages 214-223. Springer-Verlag, August 2003.
M. D. Smith. Overcoming the challenges to feedbacketie optimization. IIACM SIGPLAN Workshop on Dynamic
and Adaptive Compilation and Optimizatigmages 1-11, 2000. (Keynote Talk).

W. Taha.Multi-Stage Programming: Its Theory and Applicatior8hD thesis, Oregon Graduate Institute of Science
and Technology, November 1999.

T. Veldhuizen. Using C++ template metaprogra@s+ Report, 7(4):36—43, 1995.

T. Veldhuizen and D. Gannon. Active libraries: Rethitkthe roles of compilers and libraries. $AM Workshop on
Object Oriented Methods for Inter-operable Scientific amgjiBeering Computingpages 21-23, October 1998.

R. Clint Whaley, Antoine Petitet, and Jack J. Dongarmatofated Empirical Optimization of Software and the ATLAS
Project. Parallel Computing 27(1-2):3-35, 2001. Also available as University of Tessae LAPACK Working Note
#147, UT-CS-00-448, 2000w net | i b. or g/ | apack/ | awns/ | awn147. ps)”.

Caps entrepris@t t p: / / ww. caps- entrepri se. com

K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garaar D. Padua, K. Pingali, P. Stodghill, and P. Wu. A
Comparison of Empirical and Model-driven Optimization.Rroceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementatjmeges 63-76. ACM Press, 2003.

K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingalid P. Stodghill. Is Search Really Necessary to Generate
High-Performance BLASs?Proceedings of the IEEE3(2):358-386, February 2005. Special issue on “Program
Generation, Optimization, and Adaptation”.

