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Abstract. With the growing popularity of streaming data model, processing queries over
streaming data has become an important topic. Streaming data has received attention in a
number of communities, including data mining, theoretical computer science, networking, and
grid computing. We believe that streaming data processing involves challenges for compilers,
which have not been addressed so far. Particularly, the following two questions are important:

– How do we transform queries so that they can be correctly executed with a single pass on
streaming data ?

– How do we determine when a query, possibly after certain transformations, can be cor-
rectly executed with only a single pass on the dataset.

In this paper, we address these questions in the context of XML query language, XQuery. Be-
cause of XQuery’s single assignment nature and special constructs for dealing with sequences,
the above questions can be answered more easily than for a general imperative language. How-
ever, we believe our work also forms the basis for addressing these questions for more general
languages.

1 Introduction
Increasingly, a number of applications across computer sciences and other science and engineering disciplines
rely on, or can potentially benefit from, analysis and monitoring of data streams. In the stream model of
processing, data arrives continuously and needs to be processed in real-time, i.e., the processing rate must
match the arrival rate. There are two trends contributing to the emergence of this model. First, scientific
simulations and increasing numbers of high precision data collection instruments (e.g. sensors attached to
satellites and medical imaging modalities) are generating data continuously, and at a high rate. The second
is the rapid improvements in the technologies for Wide Area Networking (WAN), as evidenced, for example,
by the National Light Rail (NLR) proposal and the interconnectivity between the TeraGrid and Extensible
Terascale Facility (ETF) sites. As a result, often the data can be transmitted faster than it can be stored or
accessed from disks within a cluster.

Realizing the challenges posed by the applications that require real-time analysis of data streams, a num-
ber of computer science research communities have initiated efforts. In the theoretical computer science or
data mining algorithms research area, work has been done on developing new data analysis or data mining al-
gorithms that require only a single pass on the entire data [17]. At the same time, database systems community
has been developing architectures and query processing systems targeting continuous data streams [4].

We believe that streaming data processing involves challenges for compilers, which have not been ad-
dressed so far. Particularly, the following two questions are important:

– How do we transform queries so that they can be correctly executed with a single pass on streaming data
?

– How do we determine when a query, possibly after certain transformations, can be correctly executed
with only a single pass on the dataset.

In this paper, we address these questions in the context of XML query language, XQuery. XML is a flex-
ible exchange format that has gained popularity for representing many classes of data, including structured
documents, heterogeneous and semi-structured records, data from scientific experiments and simulations, dig-
itized images, among others. As a result, querying XML documents has received much attention. To query and



process XML data streams, XQuery designed by W3C [7] can be an ideal language, because of its declarative
nature and powerful features. XQuery is a high-level language like SQL, but it also supports more advanced
and complex features such as types and recursive functions. XQuery allows user-defined functions, which are
often key for specifying the type of processing that is required for streaming data.

In this paper, we make the following contributions. In many cases, direct translation of a XQuery query
requires multiple passes on the data, whereas the query can be transformed to correctly execute with only
a single pass. We present techniques for enabling such transformations. We model the dependencies in the
query using a representation we refer to as the stream data flow graph. We apply a series of high-level trans-
formations, including horizontal and vertical fusion. These techniques enable a larger number of queries to
be evaluated correctly on streaming data, and efficiently on any large dataset. Moreover, based on our stream
data flow graph, we present a methodology to determine if a query can be evaluated correctly in a single pass.
This enables us to avoid generating a query evaluation plan that is going to fail, and instead, a user can be
given feedback sooner.

Our transformations are implemented as part of a XQuery compilation system. Our experiments with
eight queries show that our techniques are able to transform them for single-pass execution, whereas naive
execution is very expensive.

The rest of the paper is organized as follows. A motivating application is described in Section 2.3. The
overall problem is described in Section 3. Our analysis, including the stream data flow graph, horizontal and
vertical fusion techniques, and the analysis to determine if the query can be executed correctly on streaming
data are presented in Section 4. Experimental evaluation is presented in Section 5. We compare our work with
related research efforts in Section 6 and conclude in Section 7.

2 Background: XML, XML Schemas, and XQuery

� student �� firstname � Darin � / firstname �� lastname � Sundstrom � /lastname �� DOB � 1974-01-06 � / DOB �� GPA � 3.73 � / GPA �� / student �
...

(a) XML example

Schema Declaration� xs:element name=”student” �� xs:complexType �� xs:sequence �� xs:element name=”lastname” type=”xs:string”/ �� xs:element name=”firstname” type=”xs:string”/ �� xs:element name=”DOB” type=”xs:date”/ �� xs:element name= ”GPA” type=”xs:float”/ �� /xs:sequence �� /xs:complexType �� /xs:element �
(b) XML Schema

Fig. 1. XML and XML Schema

This section gives background on XML, XML Schemas, and XQuery.



2.1 XML and XML Schemas

XML provided a simple and general facility which is useful for data interchange. Though the initial develop-
ment of XML was mostly for representing structured and semi-structured data on the web, XML is rapidly
emerging as a general medium for exchanging information between organizations. XML and related technolo-
gies form the core of the web-services model [13] and the Open Grid Services Architecture (OGSA) [15].

XML models data as a tree of elements. Arbitrary depth and width is allowed in such a tree, which facili-
tates storage of deeply nested data structures, as well as large collections of records or structures. Each element
contains character data and can have attributes composed of name-value pairs. An XML document represents
elements, attributes, character data, and the relationship between them by simply using angle brackets.

Applications that operate on XML data often need guarantees on the structure and content of data. XML
Schema proposals [5, 6] give facilities for describing the structure and constraining the contents of XML
documents. The example in Figure (a) shows an XML document containing records of students. The XML
Schema describing the XML document is shown in Figure (b). For each student tuple in the XML file, it
contains two string elements to specify the last and first names, one date element to specify the date of birth,
and one element of float type for the student’s GPA.

2.2 XML Query Language: XQuery

As stated previously, XQuery is a language recently developed by the World Wide Web Consortium (W3C).
It is designed to be a language in which queries are concise and easily understood, and to be flexible enough
to query a broad spectrum of information sources, including both databases and documents.

XQuery is a functional language. The basic building block is an expression. Several types of expressions
are possible. The two types of expressions important for our discussion are:

– FLWR expressions, which support iteration and binding of variables to intermediate results. FLWR stands
for the keywords for, let, where, and return.

– Unordered expressions, which use the keyword unordered. The unordered expression takes any sequence
of items as its argument, and returns the same sequence of items in a nondeterministic order.

unordered(
for $d in document(”depts.xml”)//deptno

let $e := document(”emps.xml”)//emp[deptno = $d]
where count($e) ��� 10

return� big-dept ��
$d,� headcount � � count($e) � � /headcount � ,� avgsal � � avg($e/salary) � � /avgsal �

�� /big-dept �
)

Fig. 2. An Example Using XQuery’s FLWR and Unordered Expressions

We illustrate the XQuery language and the for, let, where, and return expressions by an example, shown
in Figure 2. In this example, two XML documents, depts.xml and emps.xml are processed to create a new doc-
ument, which lists all departments with ten or more employees, and also lists the average salary of employees
in each such department.

In XQuery, a for clause contains one or more variables, each with an associated expression. The simplest
form of for expression, such as the one used in the example here, contains only one variable and an associated



expression. The evaluation of the expression typically results in a sequence. The for clause results in a loop
being executed, in which the variable is bound to each item from the resulting sequence in turn. In our example,
the sequence of distinct department numbers is created from the document depts.xml, and the loop iterates over
each distinct department number.

A let clause also contains one or more variables, each with an associated expression. However, each
variable is bound to the result of the associated expression, without iteration. In our example, the let expression
results in the variable $e being bound to the set or sequence of employees that belong to the department $d.
The subsequent operations on $e apply to such sequence. For example, ���
	���
����
��� determines the length of
this sequence.

A where clause serves as a filter for the tuples of variable bindings generated by the for and let clauses.
The expression is evaluated once for each of these tuples. If the resulting value is true, the tuple is retained,
otherwise, it is discarded. A return clause is used to create an XML record after processing one iteration of
the for loop. The details of the syntax are not important for our presentation.

The last key-word we explain is unordered. By enclosing the for loop inside the unordered expression, we
are not enforcing any order on the execution of the iterations in the for loop, and in generation of the results.
Without the use of unordered, the departments need to be processed in the order in which they occur in the
document depts.xml. However, when unordered is used, the system is allowed to choose the order in which
they are processed, or even process the query in parallel.

2.3 A Motivating Application

unordered(
for $i in ($minx to $maxx)

for $j in ($miny to $maxy)
let $p := /stream/data/pixel

where(( $p/x = $i) and ($p/y = $j ))
return� pixel �� latitude � � $i � � /latitude �� longitude � � $j � � /longitude �� summary � � accumulate($p) � � /summary �� /pixel �

)

declare function accumulate ($p)
as double�

let $inp := $p[1]
let $NVDI := ( ($inp/band1 - $inp/band0) div

($inp/band1 + $inp/band0)+1) * 512
return

if( fn:empty($p) )
then 0
else

�
fn:max($NVDI, accumulate(fn:subsequence($p,2))) �

�

Fig. 3. Satellite Data Processing Expressed in XQuery

We now describe an application we refer to as satellite data processing [9]. We show how it can be
expressed in XQuery, and the issues involved in transforming and executing it correctly on streaming data.



This application involves processing the data collected continuously from satellites and creating compos-
ite images. A satellite orbiting the Earth collects data as a sequence of pixels. Each pixel is characterized by
the spatial coordinate (the latitude and longitude) and a time coordinate. The satellite contains sensors for
five different bands. Thus, each pixel captured by the satellite stores the latitude, longitude, time, and 16-bit
measurements for each of the 5 bands.

The typical computation on this satellite data is as follows. A portion of Earth is specified through lati-
tudes and longitudes of end points. For any point on the Earth within the specified area, all available pixels
(corresponding to different time values) are scanned and an application dependent output value is computed.
To produce such a value, the application will perform computation on the input bands to produce one output
value for each input value, and then the multiple output values for the same point on the planet are combined
by a reduction operation. For instance, the Normalized Difference Vegetation Index (ndvi) is computed based
on bands one and two, and correlates to the “greenness” of the position at the surface of the Earth. Combining
multiple ndvi values consists of execution a max operation over all of them, or finding the “greenest” value
for that particular position.

XQuery specification of such processing is shown in Figure 3. The code iterates over the two-dimensional
space for which the output is desired. Since the order in which the points are processed is not important, we
use the directive unordered. Within an iteration of the nested for loop, the let statement is used to create a
sequence of all pixels that correspond to the those spatial coordinates. The desired result involves finding the
pixel with the best NDVI value. In XQuery, such reduction can only be computed recursively.

The computations performed to obtain the output value of a given spatial coordinate are often associative
and commutative. In such cases, these computations can be performed correctly on streaming data. When a
pixel is received, we can find the spatial coordinate it corresponds to, and update the output value for that
spatial coordinate.

However, direct translation of the XQuery specification, as we had shown in Figure 3, will require multiple
scans on the entire dataset. It is clearly desirable that the streaming XQuery processor can transform the query
to execute it correctly with only a single pass on the entire dataset. Thus, we have the following challenges:

1. How can we systematically and correctly transform a given XQuery query so that it can be executed on
streaming data, when possible ?
2. How can we determine if a given XQuery query, possibly after our transformations, can be executed cor-
rectly with only a single pass on the entire dataset ?

We address the above two challenges in the rest of this paper.

3 Preliminaries
This section describes our data and evaluation model. We introduce the notion of progressive blocking opera-
tors, and describe the overall problem.

3.1 Evaluation Model
We assume that the length of the incoming XML stream exceeds our capability of storing it. We only investi-
gate the possibility of obtaining exact query results in a single pass. Approximate processing of queries using
a single pass on streaming data has been extensively studied by many researchers, and we do not consider this
possibility here. We limit the number of input streams to be one. Also, we assume that duplicate-preserving is
always used for XPath expressions in the query.

When an incoming tuple is available, it is fetched for evaluation and a series of internal computations are
performed. As a result of this computation, an output tuple may be dispatched. A limited amount of memory
is available for internal buffering, which is much smaller than the entire length of the data stream.

The internal computations can be viewed as a series of linked operators. Each operator receives input from
its parent(s), performs an operation on the input, and sends the output tuples to its children. An operator could
be a pipeline operator or a blocking operator.
Pipeline Operator: A pipeline operator can immediately dispatch the output tuple after processing one input
tuple. In our system, assume that the input of the operator � is

� ����	�
���������� �! �"#�%$&"�'�'�'�"(��)�*
and the output stream is +

	�
,��	�
������-��� .  "(. $ "/'�'�'�"0.21/*



A pipeline operator � has the property:
.435�76%�8�%9;: 3=< "0>��

where, ? is monotonically increasing and > is a bounded size buffered synopsis of �@ �"0��$�"�'�'/'�"(� 9;: 3,<BA! . An
example of a pipeline operator is the selection operation.
Blocking Operator: A blocking operator must receive all its input before generating the output. Using the
above notation for input and output, for a blocking operator we have

� .  "0. $ "/'C'C' . 1 *��D6%�8�  "#� $ "�'E'C'C"#� ) �
An example of a blocking operator is the sort operation.

For our analysis, we introduce a special type of a blocking operator, which we refer to as the progressive
blocking operator. This is based on the observation that not all blocking operators require buffering of the
entire input before generating the output. If the following two conditions hold true, a blocking operator is a
progressive blocking operator.

F + 	�
G��	H
������ F4IJF � �K��	�
������ F (1)

6%�8�! �"#�%$�"�'C'C'C"#��)H�-�76K /�G6%�8�! �"(�%L�"�'C'C'C"#��)KA5 M��"0��)H� (2)

In such cases, the operator can be evaluated as follows. At each step, we only need to buffer the temporary
results and can discard the input. This is because the Equation 2 ensures that the input is no longer necessary
for the later computations. Equation 1 ensures that temporary results can actually be buffered in our evaluation
model. An example of such an operator is the count operation.

3.2 Problem Overview

The analysis we perform in this paper is based on the following key observation. In a system with limited
memory, a query cannot be evaluated using a single pass on the entire data stream to obtain an exact answer
if the following conditions holds true:

– A blocking operator with unbounded input is involved in the query, or
– A progressive blocking operator with unbounded input is involved and its output is used by another

pipeline or progressive blocking operator.

The first condition is straight-forward. Let us consider the second condition. When the final output of
a progressive blocking operator �2 is referred by another operator �;$ , which is either a pipeline or a pro-
gressive blocking operator, �
$ must wait until the computation of �2 finishes. This blocks the pipeline or
progressive blocking computation �
$ defines. Queries that satisfy this propriety are referred to as correlated
aggregates [16], which in most cases can only be evaluated approximately with a single pass.

The dependence between blocking operators and pipeline or progressive blocking operators that prevents
a query from being evaluated in a single pass can either be a control dependence or a data dependence. The
following query, referred to as the Query 1, is an example where data dependence between operators is
involved. Here, pixel contains two elements, x and y.

Query 1:
let $b = count(stream/pixel[x>0])

for $i in stream/pixel
return $i/x idvi $b

4 High-level Analysis
This section describes the high-level analysis done in our system. Our goal is to correctly transform the query
so that it can be processed in a single pass, when it is possible, and also to recognize when single pass analysis
is not possible. Initially, we give an overview of our overall framework.



4.1 Overview
As we had discussed in the previous section, there are two cases in which a query cannot be processed in
a single pass. The first one involves a blocking operator with unbounded input. The second one involves a
progressive blocking operator with unbounded input whose output is used by another pipeline or progressive
blocking operator. The first case is simple to detect. Therefore, for our analysis in this section, we assume that
we only have pipelined or progressive blocking operators in our query, i.e., we do not have a blocking operator
which cannot be evaluated progressively.

Figure 4 shows the key phases in our system. First, we construct the stream data flow graph representing
the data dependence information for the query. Then, we apply a series of high-level transformations to prune
and merge the stream data flow graph. Such techniques not only simplify the later analyses, but most impor-
tantly, they can rewrite some queries to enable single pass processing. After pruning the graph, a single pass
analysis algorithm will be applied to the resulting data flow graph to check if single pass evaluation is possible.
If the answer is no, further processing will not be performed. Otherwise, we apply low-level transformations
and our code generation algorithm, and efficient single pass execution code is generated.

Single−Pass  Analysis 

Recurrsion Analysis   

GNL Generation  

Stream Code Generation 

Data Flow  Graph Construction

High−level Transformations

Low−level Transformations

Aggregation Rewrite   

Horizontal Fusion

Vertical Fusion

Fig. 4. Overview of the Framework

4.2 Stream Data Flow Graph
We introduce the stream data flow graph to represent dependence information and enable high-level analysis
and optimizations on XQuery.

Definition 1 A stream data flow graph is a directed graph in which each node represents a variable in the
original query and the directed edges �N���8OK /"0O;$/� implies that O;$ is dependent on OK .

We introduce nodes for the variables defined in the original query, such as those defined in Let and For
clauses, as well as for output value of a function or an XPath expression that is not explicitly defined in the
original query. We distinguish between nodes that represent a sequence, and nodes which represent atomic
values. This is because dependence relationships between sequences and atomic values are of particular im-
portance. We represent nodes of sequence type (of unbounded length) with rectangles and nodes of atomic
type (or sequences of bounded length) with circles.

The stream data flow graph for the Query 1 described in the previous section is shown in Figure 5. PRQ
is the implicit variable that represents the XPath expression stream/pixel[x � 0]. Similarly, P�L is used
to represent stream/pixel. The output of the aggregate function count() is represented by O�Q . Here S
in the ����T clause is treated as an atom variable to represent each item in the binding sequence.

Lemma 1. The stream data flow graph for a valid XQuery query is acyclic.

Proof:The proof directly follows from the single assignment feature of XQuery [7]. Assume there is a cycle,
then one of the following conditions must hold true: 1) a variable O is defined more than once, or 2) a variable
O is referred to without definition.

Neither of the above are allowed in a valid XQuery query.
We distinguish between two types of dependence relationship among the nodes.



Definition 2 Given two variables OK , O4$ , we say that O;$ is aggregate dependent on OK if: 1) O;$ is dependent
on OK , and 2) OK is a sequence variable, O4$ is an atomic variable, and moreover, O4$ is not used as the iterator
variable for any ���
T expression. In such a case, we denote OK �UVO;$ .

Aggregate dependence typically exists between a progressive blocking operator and its output.

Definition 3 Given two variables O  , O $ , we say that O $ is flow dependent on O  if: 1) O $ is dependent on O  ,
and 2) O;$ is not aggregate dependent on OK . In such a case, we denote OK XWYO;$ .

S1 S2

S1:  Stream/pixel[x>0] 

v1

 b

v1 : count()

The Original Dependence Graph

 i

S2:  Stream/pixel 

Fig. 5. Example of Stream Data Flow Graph

Let us reconsider the Figure 5. We have used dashed arrows to represent aggregate dependence, and solid
arrows for flow dependence.

4.3 High-level Transformations

Let us consider a stream data flow graph. If this graph contains multiple rectangle nodes, the corresponding
query cannot be evaluated in a single pass, if we strictly follow the original syntax and do not allow pipelined
execution. This is because each rectangle node represents a sequence that may have an infinite length, which
cannot be buffered in the main memory.

However, by applying our query transformation and graph pruning techniques, including horizontal and
vertical fusion, many queries can still be evaluated in a single pass.

v1 v2

The Original Dependence Graph

S1:  Stream/pixel[x>0] 

S2:  Stream/pixel/y 
v1 : count()
v2 : sum()

S1 S2

S0

v1 v2

S0:  Stream/pixel 
S1:  [x>0] 
S2:   y 
v1 : count()
v2 : sum()

Dependence Graph after Horizonal Fusion

S1 S2S1 S2

 b
 b

(a) (b)

Fig. 6. Example of Horizontal Fusion

Graph Pruning with Horizontal Fusion Consider a query that involves multiple traversals of a data stream.
If these traversals share a common prefix in their corresponding XPath expressions, we can merge these
traversal into one, and could enable processing in a single pass.

As an example, we consider the following query:



Query 2:
let $b = count(stream/pixel[x>0])

return sum(stream/pixel/y) idvi $b

The original query involves two traversals of the entire stream, and cannot be processed directly without
buffering the stream. However, since the two XPath expressions share a common prefix stream/pixel,
the computation of count and sum can be carried out in a single traversal of stream/pixel.

To fuse multiple traversals together, we first generate a new node representing their common prefix. Then,
for each original sequence node representing the traversal, the label will be changed to the subexpression
obtained by removing the common prefix. A new edge will be added linking this node to the new node. If the
subexpression obtained after removing the common prefix is empty, the corresponding node is deleted, and its
children have an edge from the parent node.

The stream data flow graph for the Query 2 after horizontal fusion is shown in Figure 6. In this example,
a new sequence node P@Z is generated corresponding to the common prefix /stream/pixel. The label of
the two original sequence node are changed to the remaining XPath expressions, which are � �[��Z&* and \&. ,
respectively. Each new node is linked to P�Z .

Sometimes horizontal fusion in a query may lead to incorrect results, because of inter-dependence among
the traversal of sequences. As an example, consider the Query 1. The data flow graph after horizontal fusion
is shown in Figure 7. When we combine the traversal to compute count and the final output together, in each
iteration, the output will be computed using partial result of $b, which is not correct. In our method, we
just apply horizontal fusion irrespective of such inter-dependence. Later, during single pass analysis, such
dependence will be detected and the query will be eliminated from further processing.

For nested queries with pre-defined iteration space, which are common in many scientific data processing
applications, horizontal fusion can be applied after unrolling. Unrolling is a commonly used technique in
traditional compilers. Consider the following simple query:

unordered(
for $i in (1 to 2)
let $b: =//stream/pixel[x=$i]

return count($b))

By unrolling the first for expression, we can generate the following intermediate query:

unordered(
let $b1: =//stream/pixel[x=1]
let $b2: =//stream/pixel[x=2]

return count($b1), count($b2)

Since the XPath expressions generated after unrolling share the same common prefix, horizontal fusion
can be applied to all the sequence node corresponding to the different iterations.

v1

 b

i

S0:  Stream/pixel 

S0

v1 : count()

 

  Query 1 After Horizonal Fusion 

S0

S0:  Stream/pixel 
v1 : count()

i

v1

 b

Dependence Graph after Vertical Fusion(b)(a)

Fig. 7. Horizontal and Vertical Fusion for Query 1

Graph Pruning with Vertical Fusion The stream data flow graph can be further pruned using a technique
called vertical fusion. Vertical fusion exploits the benefits of the pipelined processing, which can remove
unnecessary buffering and simplify the data flow graph.



Consider the following example.

Query 3:
let $b: = for $i in stream/pixel[x>0]

return $i
for $j in $b/y

return $j
where $j = count($b)

In this query, > contains all tuples from the original stream with a positive value of the � coordinate. In a
pipelined fashion, we can further process each tuple in > as soon as it is available without buffering the entire
sequence of > , which is required for unbounded streams.

As described in 3.2, we only need to check dependence between a progressive blocking operator and
a pipeline operator, while dependence among pipeline operators can be ignored. In vertical fusion, we try
to merge multiple pipeline operations on each traversal path into a single cluster in the stream data flow
graph. The cluster obtained after fusion is referred to as a super-node. A super-node is represented in the data
flow graph with a dashed box enclosing all the merged nodes. By doing so, the pipeline operation and the
progressive blocking operations can be separated, and the number of isolated nodes in the data flow graph is
reduced. This significantly simplifies later analysis on their dependence relationships.

Our algorithm does a top-down traversal from each root node, following only the flow dependence edges.
For each node visited during the traversal, it will be fused with the current super-node, if it is not already in
another super-node. Note that not all sequence nodes can be merged by vertical fusion. If a sequence ] is
flow dependent on both the sequence node ^ and the sequence node _ , which normally occurs when ] is the
result of a join between ^ and _ , we will merge ] with either ^ or _ , but not both of them.

The details of the algorithm are shown in Figure 9. ` is the set of the nodes in the graph that do not
have an incoming edge. a denotes the set of nodes that have been inserted in any super-node. ba denotes the
compliment of a , i.e., the nodes in the graph that are not in the set a . The algorithm picks a sequence nodec 3 . It follows the flow dependence edges (denoted as W ) to find nodes that can be fused into a super-node withc 3 . These nodes are put in the set d . Any node that has already been fused into a super-node, (i.e., is not in
ba ) is not inserted in d .

The data flow graph for the Query 1 after vertical fusion is shown in Figure 7(b). The data flow graph
for the Query 3 after vertical fusion is shown in Figure 8 (b).

S2:  /x 
S1:  Stream/pixel 

v:  Avg() 
S2:  /x 
S1:  Stream/pixel 

v:  Avg() 

S1

S2

 i

 j

b

 v

S1

S2

b

 i

 j

 v

(a)The Original Dependence Graph                                                            (b)Dependence Graph after Pruning 

Fig. 8. Example of Vertical Fusion (Query 3)

Vertical fusion simplifies the stream data flow graph for further analysis and optimization. After vertical
fusion, most of the queries that can be processed in a single pass will have only one rectangle node in their
data flow graph.

4.4 Single Pass Analysis

After horizontal and vertical fusion, analyzing whether a query can be evaluated in a single pass becomes
simpler. For our discussion here, we treat all nodes in a super-node after vertical fusion as a single sequence



Vertical Fusion
Input: 1) data flow graph G =(V ,E)

2) root set R

ae�gf
foreach node c 3-hi` �

if c 3 is a sequence node
dj� � c 3 �

do
�
ak�lanmod
Let pD� � O F q �!"��8�ohrds�!tu�8�vWwOK�#�
dj�gdxmy�Gp{z|bar�

� until �Gp[z|bae�}�gf}�
fuse M into super-node

�
end

Fig. 9. Algorithm for Vertical Fusion

node. With this, any stream data flow graph that contains more than one sequence node cannot be evaluated
in a single pass. This is because each such node represents one traversal of a sequence of length ~H�C�l� . If two
sequence nodes are not fused with vertical fusion to apply pipelined execution, two traversals must be used.
Thus, we have the following theorem.

Theorem 1 If a query � with dependence graph ���k���-"#��� contains more than one sequence node after
vertical fusion, � may not be evaluated correctly in a single pass.

However, for queries whose stream data flow graph contains only one sequence node, a single pass eval-
uation may still not be possible. Two types of dependence relationship may prevent the query from being
executed in a single pass. Examples of these two cases are shown in Figure 10.

(a)                               

(1...*)

(1..*)

 (b)

Fig. 10. Stream Data Flow Graphs that Require Multiple Traversals

Theorem 2 Let P be the set of atomic nodes that are aggregate dependent on any sequence node in a stream
data flow graph � . For any given two elements c  �hyP and c $}hyP , if there is a path between c  and c $ , the
query may not be evaluated correctly in a single pass.

Proof:For each c 3�hDP , c 3 can only be computed after the sequence ��3 it depends on is fully scanned.
Assume there is a path from c  to c $ , then the value of c $ must be computed using c  . Thus, the scan of �%$
must follow the scan of � $ . This implies that the query cannot be processed with a single pass.

In addition to the condition associated with the Theorem 2, there is another condition we need to check
for.

Lemma 2. If a stream data flow graph � contains a cycle, it is formed after horizontal or vertical fusion.



Proof:From lemma 1 there is no cycle in the original stream data flow graph. Therefore, the cycle must
be formed by either horizontal fusion or vertical fusion.

Theorem 3 If there is a cycle in a stream data flow graph G, the corresponding query may not be evaluated
correctly using a single pass.

Proof:From the lemma above, the cycle is formed after horizontal or vertical fusion. If the cycle is formed
right after horizontal fusion of c  and c $ , there must be a path between c  and c $ , which implies dependence ofc $ on c  . In this case, horizontal fusion will generate incorrect results, and single pass evaluation is impossible.

If the cycle is formed after vertical fusion, a super-node must be involved in the cycle. Assume the cycle
is O� /"0O;$
"�'�'�'/"(O 1 "0OK , and O
3 is a super-node. Then, it is true that O43=�� is aggregate dependent on the node O43 ,
otherwise, O 3,�� will be fused with O 3 during vertical fusion. Thus, the value of O 3=�@ can only be valid after
the pipelined execution of O 3 is completed. Because a cycle exists, the pipelined execution of O 3 also requires
the value of O;3=�@ . As a result, pipelined execution of O;3 is not possible, and the query cannot be evaluated in
a single pass.

After vertical fusion, stream data flow graphs for both Query 1 and Query 3 contain cycles, and
therefore, these queries cannot be executed with a single pass.

If the conditions corresponding to any of the above three theorems hold true for a query, we cannot
further process the query using a single pass and ensure correct results. If the original graph has � vertex,
the conditions corresponding to Theorems 1, 2, and 3 can be applied in

+
�8�!� ,

+
�8� $ � , and

+
�8�!� time,

respectively.
The next theorem shows that if the conditions corresponding to the Theorems 1, 2, and 3 all hold false,

the query can be processed correctly in a single pass.

Theorem 4 If the results of a progressive blocking operator with an unbounded input are referred to by a
pipeline operator or a progressive blocking operator with unbounded input, then for the stream data flow
graph �s�����-"#��� , at least one of the following three conditions holds true:

1. There are multiple sequence nodes.
2. There is a cycle involved.
3.
q

sequence node c h�� ,
q

atomic nodes �% �h�� , �H$}h�� , �� and �H$ are aggregate dependent on c , and
there is a path from �� to ��$ .

Proof:Assume that the progressive blocking operation is represented in � with a sequence node c and an
atomic node � , such that � is aggregate dependent on c . Assume that there is no other sequence node in � ,
otherwise the first condition holds true.

If the value of � is referred to by another progressive blocking operator to compute �H� , since c is the only
sequence node in � , � � must be aggregate dependent on c . Because � � uses the value of � , there must be a
path ��"0O� /"�'�'�'/"0O 1 "(�K� , ��WwO� /"�'�'�'�"0O 1 Ww��� . Therefore, the third condition holds true.

Now, suppose the value of � is referred by a pipeline operator. Then, there must be a super-node in the
graph, and there is a path ��"0OK /"�'�'�'�"0O 1 " c , such that ��WYOK /"�'/'�'�"0O 1 W c . Since � is aggregate dependent onc , there will be a cycle �%"(O  "�'�'/'�"0O;1�" c "(� in the graph. Then, the second condition holds true.

Finally, it should be noted that like all static analyses, our analysis is conservative in nature. There could
be cases where a query can be processed in a single pass, but our analysis will determine that it cannot be. We
consider the following example:

let $p: = stream/pixel/x
for $i in $p

where $i <= max($p)
return $i

This query has a redundant predicate [3]. Though the predicate always returns true and does not impact
the results from the query, it introduces a cycle in our graph, and disallows processing with a single pass. Our
analysis can be extended to recognize and remove such redundant predicates, but we do not expect them to
arise frequently in real situations.



XMark Query 1
Size Ours Qizx Saxon Galax

1.16M 0.76 1.03 2.46 4.65
5.75M 2.26 3.2 5.57 24.59
30M 9.98 11.23 MO 173.85
120M 13.97 MO MO *
240M 27.59 MO MO *

XMark Query 5
Size Ours Qizx Saxon Galax

1.16M 0.74 1.09 2.46 4.93
5.75M 2.30 3.35 5.55 25.26
30M 10.02 13.9 MO 174.08

120M 13.95 MO MO *
240M 27.87 MO MO *

XMark Query 6
Size Ours Qizx Saxon Galax

1.16M 0.73 1.07 2.42 4.75
5.75M 2.26 3.21 5.39 24.96
30M 9.94 13.68 MO 215.64

120M 13.87 MO MO *
240M 27.81 MO MO *

XMark Query 7
Size Ours Qizx Saxon Galax

1.16M 0.74 1.13 2.44 6.6
5.75M 2.28 3.45 5.53 47.79
30M 9.95 13.96 MO MO

120M 13.70 MO MO MO
240M 27.44 MO MO MO

XMark Query 20
Size Ours Qizx Saxon Galax

1.16M 0.78 1.32 2.57 5.15
5.75M 2.31 3.59 5.93 26.38
30M 10.00 15.77 MO 190.22

120M 14.16 MO MO *
240M 27.81 MO MO *

Satellite Processing
Size Ours Qizx Saxon Galax

0.05M 0.28 5.88 3.08 72.03
0.10M 0.33 20.48 4.45 136.7
0.66M 0.48 945.5 18.76 944.4
10.6M 3.47 * MO MO
100M 28.31 MO MO MO

Virtual Microscope
Size Ours Qizx Saxon Galax

0.05M 0.28 47.51 2.01 18.97
0.10M 0.32 * 2.47 38.98
0.66M 0.44 * 7.66 300.18
2.70M 1.54 * 24.56 MO
10.6M 3.29 * MO MO
100M 27.88 * MO MO

Karp Frequent Item
Size Ours Qizx Saxon Galax

0.05M 0.26 * 4.71 25.09
0.10M 0.32 * 10.66 122.63
0.66M 0.61 * 554.07 MO
2.70M 1.80 * 8302.7 MO
10.6M 5.61 * MO MO
100M 29.41 * MO MO

*: Unable to produce result after 24 hours MO: Out of memory

Fig. 11. Experiments Results for XMark Queries and Real Streaming Applications (All Execution Times in
Seconds)

5 Experimental Results
Our transformations have been implemented as part of a XQuery compilation system that is based on the
open source SAX parser1. In this section, we demonstrate that many XQuery queries can be transformed to
achieve single-pass execution, whereas their naive execution results in much more expensive processing. For
this purpose, we took 8 XQuery queries, and compared our implementation with other well known XQuery
processors which are publically available. Specifically, we use Galax (Version 0.3.1) [11], Saxon (Version
8.0) [19] and Qizx/Open (Version 0.4/ p1) [1]. All these query processors are implemented using a SAX
Parser, which we believe makes the comparison reasonable.

We used two sets of queries for our experiments. The first set comprised the queries 1, 5, 6, 7, and 20 from
the XMark benchmark set [25]. These five queries were chosen because each of them could be processed in
a single pass either directly, or after our transformations. We use datasets of different sizes, which were
generated by the XMark data generator using factors 0.01, 0.05, 0.25, 1, and 2, respectively. The second set
comprised three real applications which involve streaming data. Satellite data processing was described earlier
in Section 2. Virtual microscope is an application to support interactive viewing and processing of digitized
data arising from tissue specimens [12]. Frequent element counting is a well known data mining problem, here
we use the one-pass algorithm by Karp et al. to find a superset of frequent items in a data stream [18]. Each
of these three applications uses recursive functions to perform aggregations. After applying our techniques
and optimizations, including analysis of recursive functions, aggregate rewriting, and horizontal and vertical
fusion, each of these could be processed correctly using only a single pass on the entire data stream. We
generated synthetic datasets of varying sizes to evaluate performance on these applications.

1 http://www.saxproject.org



The results of our experiments are shown in Figure 11. Our experiments were conducted on a 933 MHz
Pentium III workstation, with 256 MB of RAM, and running Linux version 7.1, with JDK V1.4.0. Each of
the systems we compared was executed on this same environment. In the tables in Figure 11, Ours denotes
our basic framework. Because we use compiled Java byte code, the running time shown in the tables excludes
the compilation time for other XQuery systems. All available options for fast execution and optimization
are turned on for each system. Specifically, for Galax, we disable sorting and duplicate removal on Path
expressions, and set the option of projection to be on.

The results show that we consistently outperform other systems. For XMark queries with small datasets,
Qizx is often quite close, but our system is at least 25% faster. There are at least two reasons for this. First, our
static analysis based technique produced operations only on elements that are referred in the query. Second,
we generate imperative code directly, which is more efficient compared with interpreted execution used by
other engines.

For XMark queries with larger datasets, either our system was significantly faster, or other systems had
a memory overflow. It should be noted that none of the other systems have been designed to deal with large
datasets and/or streaming data. They often require in-memory processing. For example, Saxon builds a DOM
tree after retrieving all data in memory, and therefore, cannot process large datasets or streaming data.

For the three real streaming applications, our implementation outperforms other systems by at least one
order of magnitude, and often, much more. None of the other systems was able to execute these applications
with only a single pass on the data, whereas, our techniques and transformations enabled such execution.

6 Related Work
Our work is related to the large body of research in the area of loop transformations. Many loop transfor-
mations, such as loop fusion [27] or data-centric transformations [21] can often help in executing a code
with a single-pass or fewer passes on the input data. However, we are not aware of any previous work on
systematically transforming and analyzing code for single pass analysis on streaming data.

Language and compiler support for streaming data has been considered by the StreamIt effort at MIT [26].
There work also does not consider analysis and transformation to enable single-pass analysis.

There have been many research efforts on efficient evaluation of XPath expressions over streaming data.
Because of the regularity of XPath expressions, automaton based approaches are most popular when predicates
are not present [2, 10, 8]. To deal with predicates and other features, such as closures where buffering of certain
elements is necessary, transducers have been used in XSQ [24] and SPEX [23].

Compared with XPath, XQuery is more expressive, and therefore, involves additional challenges. Cur-
rently, there is limited work on processing XQuery queries over streaming data. Transducer networks have
also been used to handle a subset of XQuery, in which only join and node creation operations are investi-
gated [22]. Without query transformations and rewriting, their techniques will not work on streaming data
when the queries are not strictly written to execute on streaming data. In Flux [20], an intermediate repre-
sentation (IR) extends XQuery with new constructs for event-based processing. XQuery is translated into this
event-based IR and the buffer size is optimized by analyzing the DTD as well as the query syntax. Fusion
of for expressions has been discussed in Flux, but algorithms to systemically perform such optimizations are
not provided. In comparison, we present systematic and powerful techniques for optimizing and transforming
queries that are not specifically written for single-pass processing. For code generation based on SAX events,
we use a similar approach to enable efficient buffering. As we stated earlier, our additional contribution in
code generation is handling user-defined aggregations with the use of GNLs. The BEA/XQRL processor [14]
supports pipelined processing of streams by implementing the iterator model at the expression level. How-
ever, query optimizations specially designed for XML streams are limited in this system, and large documents
cannot be processed.

Algebraic approach for deciding whether a SQL-like query can be evaluated with a single pass on contin-
uous streams has been proposed recently by Babu and Widom [3]. Their approach cannot handle user-defined
aggregates and computations described with binary expressions, which are both frequently used in XQuery.
Unlike SQL, developing an algebra to handle complete XQuery is hard. As an example, user defined functions
allowed as part of XQuery can be very hard to model through such an algebra, and we are not aware of any
existing effort which is able to do this.



7 Conclusions
Our work has been driven by growing popularity of the streaming data model. We have considered the fol-
lowing two questions. First, how do we transform queries so that they can be correctly executed with a single
pass on streaming data. Second, how do we determine when a query, possibly after certain transformations,
can be correctly executed with only a single pass on the dataset.

We have addressed these questions in the context of XML query language, XQuery. However, we believe
our work also forms the basis for addressing these questions for more general languages.
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