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Abstract. Compilers employ system models, sometimes implicitly, to make code
optimization decisions. These models are analytic; they reflect their implemen-
tor’s understanding and beliefs of the system. While their decisions can be made
almost instantaneously, unless the model is perfect their decisions may be flawed.
To avoid exercising unique characteristics of a particular machine, such models
are necessarily general and conservative. An alternative is to construct an empiri-
cal model. Building an empirical model involves extensive search of a parameter
space to determine optimal settings. But this search is performed on the actual
machine on which the compiler is to be deployed so that, once constructed, its
decisions automatically reflect any eccentricities of the target system. Unfortu-
nately, constructing accurate empirical models is expensive and, therefore, their
applicability is limited to library generators such as ATLAS and FFTW. Here
the high up-front installation cost can amortized over many future uses. In this
paper we examine a hybrid approach. Active learning in an Explanation-Based
paradigm allows the hybrid system to greatly increase the search range while
drastically reducing the search time. Individual search points are analyzed for
their information content using an known-imprecise qualitative analytic model.
Next-search-points are chosen which have the highest expected information con-
tent with respect to refinement of the empirical model being constructed. To eval-
uate our approach we compare it with a leading analytic model and a leading
empirical model. Our results show that the performance of the libraries generated
using the hybrid approach is comparable to the performance of libraries gener-
ated via extensive search techniques and much better than that of the libraries
generated by optimization based solely on an analytic model.

1 Introduction

Application of high-level program transformations such as loop unrolling, array tiling,
and software pipelining is critical in optimizing the performance of compiled code.
Deciding how to apply these transformations can be exceedingly challenging. These
decisions must balance subtle interactions among characteristics of the underlying ar-
chitecture, the source code, other compilation decisions, and so on. Every optimizing
compiler, therefore, embodies a decision procedure either explicitly or implicitly to re-
solve these choices. Intuitions (confirmed by decision theory) tell us that resolving such
difficult choices satisfactorily requires a great deal of information.

Most commonly, this information is supplied explicitly via prior performance mod-
els. Such models are extremely efficient, generating solutions almost instantaneously.



But the information they embody comes entirely from their designer’s formal idealiza-
tion of the process to be optimized. It excludes phenomena that the designer believes to
be negligible or too complex to analyze.

By contrast, an empirical approach collects information directly from the system
on which the compiler is deployed. This results in first-hand information which can
be more accurate than that of a prior performance model. For example, many versions
of a loop with different tilings crossed with various loop unrolling amounts might be
generated and executed. It then selects the combination with the best measured per-
formance. Unfortunately, searching through combinations of parameter values can be
hugely expensive. As a result, this approach cannot service the real-time requests of a
compiler as can the prior performance model. But it is well suited to library generation
where the high cost of optimal configuration decisions can be paid once. Well-known li-
brary generators that employ empirical optimization include FFTW [12], ATLAS [17],
PhiPAC [3] and SPIRAL [19].

An alternative decision procedure is an adaptive hybrid which includes only the
prior information from the designer which he or she is most confident of. The rest is then
filled in empirically. The prior partial model might answer some optimization questions
directly but might instead suggest which measurements are likely to be most informative
and so guide and limit the empirical searches. The accuracy of this decision procedure
is rooted in first-hand measurement of the actual system to be optimized. But it might
be efficient enough to make real-time optimization decisions or be automatically re-
invoked when necessary to react to changing situations.

The possibility of adaptive models is the motivation and the subject of our current
research which we offer as the first tentative steps along a lengthy but, we believe,
promising path. We employ an Explanation-Based Learning paradigm [10]. Empirical
results are treated as illustrations or manifestations of a deeper pattern to be discovered.
They areexplainedin terms of the existing partial model and therefore serve to refine
the model and reduce the need for future empirical searches.

To evaluate our adaptive approach we compare it directly with a leading analytic
model and a leading empirical optimization approach. Methodologically, these three
approaches must be compared on equal footing. They be applied to the same optimiza-
tion task in as similar a setting as possible. To this end we use the matrix multiplication
framework of ATLAS as our experimental platform but without its hand-tuned additions
whose influences could be conflated with the behaviors we wish to monitor.

ATLAS produces an optimized Basic Linear Algebra Subroutine (BLAS) library
including a module for optimized matrix multiplication. The generated code (referred to
in this paper as the mini-MMM code) is compiled and executed to measure its observed
performance. ATLAS finds parameter values that maximize the performance of mini-
MMM code (in MFLOPs) using a routine that performs a near-exhaustive sampling of
a region of the parameter space. It is this module that we replace in our experiments.
In one experimental condition it is replaced by a leading analytic model [20], in a
second it is replaced by our adaptive system, and in a third the original ATLAS routine
is employed. In all three cases the remainder of the MMM generation code is unchanged
as are the routines to measure MMM performance.



Our results confirm that the the adaptive approach can perform better than the ana-
lytic model and is much more efficient than the empirical approach. The analytic model
is based on an architectural idealization that cannot perfectly capture the actual ma-
chine to be optimized. On the other hand, the ATLAS routine samples broadly from a
large but limited region of the parameter space that, on occasion does not contain the
optimal configuration. The adaptive approach only samples those points deemed to be
informative given the results of previous samples. This can greatly increase the range
of parameter values it entertains, but it only does so when there is an expectation of
optimization improvement.

In library installation efficiency is less crucial since cost can be amortized over
the lifetime of the machine. But even here there are at least four situations in which
efficiency can be important.

1) Adaptation may have to be applied at runtime, in which case an extensive search
is not possible, and prior models (when available) may not be accurate enough. This
type of search involves measuring the performance of various versions of pre-compiled
code during the sampling phase of the executing, and then using the best version dur-
ing the (much longer) production phase [11]. Note that runtime searching tailors the
optimization system to the requirements of the user not available at library installation
time (for instance, small blocking parameter values will be selected if the user only
multiplies small matrices).

2) Efficient adaptation can be applied at the time of compilation. [16] describes a
compile-time optimization framework that employs empirical search which receives
performance feedback from a fast estimator.

3) The space of possible versions can be too large even for once-in-a-life time installa-
tion. Empirical search complexity grows exponentially with the number of interacting
optimization parameters.

4) An interesting application of library routines is as a benchmark to evaluate alter-
native machine designs. More efficient adaptation can enable a wider exploration of
possible designs.

The paper is organized as follows: we describe the search module of ATLAS in
Section 2. The model approach to optimization is discussed in Section 3. Our hybrid
approach is presented in Section 4. Finally, experimental results are shown in Section
5.

2 ATLAS

ATLAS is a system that employs empirical search to generate highly-tuned BLAS li-
braries [17]. In this paper, we focus on the optimization of the matrix-matrix multipli-
cation (MMM) routine. This is the key routine in BLAS since many other kernel oper-
ations use it as a primitive. ATLAS contains a generator search module and a multiple
implementations search module. The generator search contains a code generator that
outputs a kernel based on input parameters. This module searches the inputs that result
in the best performing kernel. The multiple implementation module searches among



hand-written codes for MMM kernels. ATLAS selects the best-performing kernel out
of both modules. ATLAS also records results from previous installations on the target
platform and can reduce the installation time by using these instead of the empirical
search.

In this work, we focus on the generator search module. The search is used during
the installation procedure to find the optimal values of code transformation parameters
(amount of tiling, unrolling, etc.). It consists of: (1) generating the versions of matrix
multiplication with the parameter values to be tested, (2) compiling and executing them,
and (3) selecting the version that perform best.

ATLAS is not a restructuring compiler, but the code generated by ATLAS can be
seen as the result of applying a sequence of compiler transformations. We first examine
these code transformations (Section 2.1). Then, we explain how ATLAS searches for
the most appropriate parameter values of these transformations (Section 2.2).

2.1 Transformations

for (j = 1; j <= M ; j + +)
for (i = 1; i <= N ; i + +)
for (k = 1; k <= K; k + +)
C[i][j] = C[i][j] + A[i][k] ∗ B[k][j]

Fig. 1. Matrix Multiplication Code

The code implementing a MMM is shown in Figure 1. Yotov et al [20,21] and
Cooper et al [8] found that computing this matrix multiplication using the library gener-
ated by ATLAS results in higher performance than that obtained when the naive MMM
implementation in Figure 1 is compiled using a general purpose compiler. The reason
for this performace gap is that compilers do not apply the appropriate transformations
and/or they do not use the correct parameter values for these transformations [8,20,21].

The code generated by ATLAS can be seen as the result of applying well-known
compiler transformations to the code in Figure 1. To increase the locality ATLAS uses
blocking, while to increase Instruction Level Parallelism (ILP) ATLAS uses pipeline
scheduling. Next, we examine these transformations.

• Blocking: This transformation converts matrix multiplication into a sequence of
smaller matrix multiplications. Blocking can be accomplished by a loop transforma-
tion called tiling, which was introduced by Wolfe [18]. ATLAS applies blocking at
the cache and the register level:

- Cache Blocking: ATLAS uses blocking to decompose the matrix multiplication of
large matrices into the multiplication of smaller sub-blocks. The size of each sub-
block isNB× NB, whereNB is an optimization parameter that needs to be chosen
so that the working set of the sub-blocks being multiplied fits in the cache [4,7,18].
We call the resulting code mini-MMM.



- Register blocking: The mini-MMM code itself is blocked and then unrolled to op-
timize the utilization of the registers. The resulting code, that we call micro-MMM,
multiplies a column ofMU elements of matrixA by a row ofNU elements of ma-
trix B and stores the result into aMU × NU sub-matrix ofC. MU and NU are
optimization parameters that must be chosen so thatMU + NU + MU × NU fit in
the registers of the processor [2].

To improve register allocation, ATLAS uses scalar replacement [5]: each element
of A, B and C that is accessed in the unrolled micro-MMM code is assigned to a scalar.
The array accesses in the micro-MMM code are replaced by these scalar variables.
ATLAS expects that the compiler will assign registers to these scalars. Also, ATLAS
copies theNB× NB sub-matrices to consecutive memory locations. This reduces the
number of cache and TLB misses. Additional transformations such as loop unrolling
and load scheduling applied in ATLAS are described in detail in [17,20,21].

2.2 Search

ATLAS does an almost exhaustive search of the parameter values presented in the pre-
vious Section. Since ATLAS searches for several parameters, when searching for one
parameter, ATLAS needs to assign values to the other parameters it has not yet opti-
mized. These values are initially assigned based on results obtained from the execution
of benchmarks. These benchmarks estimate characteristics of the platform on which
ATLAS is being installed, such as cache size and number of registers. After a parame-
ter is optimized, the value that obtains the best performance is used for the search of the
subsequent parameters. Parameter values are searched in the same order that appears in
our explanation below.

1. L1 cache blocking (NB× NB): ATLAS generates versions of the mini-MMM code
with a matrix sizeNB× NB, whereNB varies from 16 to the minimum of (80 and√

L1 Size), in steps of 4.

2. Register blocking (MU andNU): ATLAS exhaustively searches for the best values
of MU andNU. All possible combinations ofMU andNU satisfyingMU×NU+MU+
NU+Latency≤Number Of Registersare tried, and the best performing combination
is selected.

3. Loop unrolling, instruction scheduling parameters, etc. are described in [17,20]

More details about ATLAS can be found in [17,20].

3 Model

Yotov et al. [20,21] challenged the notion that empirical optimization is more effec-
tive than model-driven optimization by demonstrating that a model-based optimization
strategy can calculate near-optimal parameter values without incurring the sampling
cost of empirical search. We use Yotov’s model as our initial guess of the parameter
values. We also compare the experimental results obtained by our approach with the



results obtained by Yotov’s model. Thus, in this Section we summarize it. A further
description of the model can be found in [20,21].

The model depends on accurate estimates of machine parameters that include the
L1 cache and line size, the number of registers, the latency of the multiply instruction,
the existence of a fused multiply-add instruction, and the number of functional units.

1. L1 cache blocking (NB× NB): The idea of the model is to compute the value of
NB that optimizes the use of the L1 data cache. The model is based on the memory
access trace of the mini-MMM, and takes into account the loop order, L1 cache and
line size, and the LRU replacement strategy of caches. This analysis finds that for a
JIK order, the optimal value forNB is the maximum value ofNB that satisfies the
inequality below:

⌈
NB2

L1 Line Size

⌉
+ 3 ∗ ⌈

NB
L1 Line Size

⌉
+ 1 ≤ L1 Size

L1 Line Size

Notice that the model in [21] is more accurate that the one just discussed. In fact, the
model in [21] also considers interactions between the L1 cache and the register file
and avoids the need for micro-MMM cleanup code by choosing the value ofNB so
that it is a multiple ofMU andNU. We started the work reported in this paper before
the model was improved and we are using the simpler model from [20]. In any case
the value found using the more elaborate model in [21] is close to the value found by
the model described above and presented in [20].

2. Register blocking (MU andNU): To estimate the appropriate values of the register
blocking parameters, the model takes into account how the ATLAS generator allo-
cates registers to variables, and the need ofLatencyadditional registers to hold the
temporary results of the multiplication. With all this, the model picks the maximum
values ofMU andNU such thatNU≈MU andMU×NU+MU+NU+Latency≤ Num-
ber Of Registers.

The model just presented mimics ATLAS in that it computes a blocking value for
the L1 cache. However, sensitivity analysis reported in [20,21] shows that in some ma-
chines blocking values that overflow the L1 cache obtain better performance. The con-
jecture is that, in these machines, the large block size that results in the best performance
corresponds to the block size that fits in the L2 cache. Blocking for L2 may result in
higher performance than blocking for the L1 cache because in out-of-order processors,
which have a deep pipeline, the latency of accessing the L2 cache can usually be hidden
without stalling the processor. The rationale is that the processor can continue executing
instructions that do not depend on the missed data. A larger block size also increases the
opportunity for higher ILP and for the compiler to reorder instructions [6]. Notice that
tiling for L2 may not always be the best choice, because large tiles can result in more
time spent in the cleanup code, which can degrade performance for some of the codes
calling the MMM library generated by ATLAS [1]. However, it has been shown that in
some cases it is necessary to tile for L2 [1], and this is confirmed by our experiments
(Figure 5) where the MMM library generated by ATLAS is evaluated in the contex of
matrix-matrix multiplication.

Given that for some behavioral profiles it may be advantageous to block for the L2
cache, we would like to extend the model from [20,21] to estimate an appropriate L2



blocking parameter value. The inequality above used to compute the L1 cache blocking
factor cannot be used to compute the L2 cache blocking factor because it does not
take conflict misses into account. Ignoring conflict misses in the L1 cache is safer than
ignoring conflict misses in the L2 cache because the difference in latencies between the
L1 and L2 caches is much smaller than the difference in latencies between the L2 cache
and the main memory.

To compute the L2 blocking factor we use a conservative approach that ensures that
NBxNB blocks of data from all three matricesA, B, andC fit in the L2 cache. This
happens when the combined size of these three blocks (3 ∗NB2) is equal to the size of
the L2 cache.

4 Adaptive Modeling
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Fig. 2. Performance as a function of cache block sizeNB (complete instruction cache unroll:
KU=NB)

Our adaptive approach combines the information embedded in the model from Sec-
tion 3 with feedback information obtained from the execution of versions of the mini-
MMM code. Both types of information are used to search for the maximum of the
mini-MMM performance function. The approach determines the shape of this function
through experimentation. Each experiment consists of generating, compiling, and exe-
cuting mini-MMM code. The mini-MMM code is generated by ATLAS’s code genera-
tion module, ensuring that the space of available transformations is the same for ATLAS
search and the adaptive approach. The parameter values for transformations, however,
are determined by our algorithm. The feedback provided by each experiment (in form of
mini-MMM performance) is used to design subsequent experiments to maximize infor-
mation about the location of performance-maximizing parameter values. Maximizing
performance can be done either via a local search (e.g., by performing hill climbing)
or by modeling the whole performance function globally via appropriately chosenre-
gression curves. Experiments that provide the best feedback about the shape of the
regression function are preferred. The location of the maximum in this scenario is de-
termined indirectly from the shape of the regression function. Prior knowledge obtained
from the model is used to indicate to the family of regression curves that the maximum
performance is going to be located in the neighborhood of the model-predicted values.



In our experiments, we focus on optimizing the cache blocking parameter(NB):
This is done by analyzing the general shape of the plot of mini-MMM performance as a
function of the cache blocking parameters. Figure 2, for example, shows sampled data
collected on two different machines. In each plot, the points show the performance of
the mini-MMM code (Y-axis) for different values of cache block size (X-axis). As these
sampled points are being collected, a regression curve is fitted to the data (this curve is
shown in Figure 2 as well). The shape of the curve is adjusted with each newly collected
sample point. The best values of the optimization parameters can be determined directly
from the location of the maximum point on the regression curve.

Certain characteristics of the shape of the plot can be guessed before any data is
collected. For example, we expect the peak in the curve of Figure 2-(a) to coincide with
the optimal cache blocking (NB) factor predicted by the model. This is the point where
the L1 cache is fully utilized. Further increase in the block size results in L1 cache over-
flow that results in performance degradation. We expect to see a phenomenon similar
to this on most of the architectures under consideration. Information about the shape of
the performance curve that is available before any data is collected is known as prior
information. In statistics, prior information is captured by a probability distribution in
the space of optimization parameters. We use the model from Section 3 to construct
such a distribution.

Optimization requires a sophisticated algorithm because multiple levels of the cache
hierarchy introduce multiple local maxima in the performance function. For example
Figure 3 shows the performance obtained by the mini-MMM code as the tile size in-
creases. On Pentium III, the figure shows two distinct peaks, each corresponding to
blocking factors for L1 and L2 caches. Our optimization algorithm is described in de-
tail in Section 4.1.
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Fig. 3. Complete sampled performance curves on two machines. The vertical lines correspond to
the blocking factors for L1 and L2 as predicted by the model

4.1 Cache blocking parameters

The adaptive approach constructs a nonlinear regression curve representing the sampled
performance of the mini-MMM code as a function of tile size, with register blocking
parameters being held constant. Figure 2 shows examples of such curves fitted to the
data collected on the platforms that we evaluate in Section 5.2.



The optimal tile size is calculated directly from the fitted regression function. Thus
each point provides global information about the location of the maximum by affecting
the shape of the regression curve. A set of regression curves that could fit the data
sample is hard-coded and available before any data is collected. In this work, we use
a double-peaked family of regression curves, each peak corresponding to a blocking
factor for one of the caches.

The details of our estimation algorithm are described in subsequent sections.

Model as prior information A typical performance profile is presented in Figure 3-(a).
We expect performance to improve until the L1 cache is fully utilized. At that point, it
drops off, but begins to improve again as the tile size increases until it reaches the point
where L2 cache is fully utilized. The regression curves where the maxima are located at
the model-predicted locations are initially favored. As more data is collected, the pref-
erence of the system is shifted towards the regression curves that fit the data best. This
trade-off is governed by the size of the collected sample. The Bayesian framework de-
termines precisely how to quantify this trade-off. The optimal regression curve chosen
by the algorithm represents a balance between respecting the data and respecting the
model-based prior information.

Instead of taking the model-predicted cache blocking factors for granted, we im-
pose a probability distribution on the space of tile sizes that defines, for each set of
tile sizes [l1,l2] the probability that the first peak occurs atl1, while the second peak
occurs atl2. Initially, this probability is maximized at model-predicted cache block-
ing factorsL1 and L2 described in Section 3, and shown in the plots in Figure 2.
In our setup, we use the Normal probability distribution (N ) centered atL1 andL2:

π(l1, l2) = N(
[

L1

L2

]
,

[
σ2

1 0
0 σ2

2

]
), whereσ2

1 andσ2
2 are user-controlled parameters rep-

resenting one’s confidence in the model’s prediction.
Let β = (w; l1, l2) be the complete set of parameters defining the regression curve.

β includes the tile sizesl1, l2 and all the other parametersw necessary to completely
specify the regression curve. The Bayesian (maximum a posteriori) approach to esti-
mation involves updating the probability distribution overβ after we see the sampleD
using Bayes’ rule as follows:P (β|D) = P (D|β)π(β)/P (D) ∝ P (D|β)π(l1, l2) and
picking the regression curvêβ that maximizesP (β|D) [14]. Notice that maximizing
the posterior involves a trade-off between fitting the data (P (D|β)) and respecting the
prediction of the model (π(l1, l2)).

P (D|β) = ( 1√
2πσ2 )ne

−
n∑

i = 1
(performancei−β(tile sizei))

2/(2σ2)

is the distribution ofn
data points(tile size1, performance1)... (tile sizen, performancen) in the sample
D with respect to the regression curveβ assuming independent identically distributed
gaussian noise. This term depends on the total squared error∑

(performancei−β(tile sizei))2 . It favors the curvesβ that fit the data well.π(β),
on the other hand, favors the curves that agree with the model. As the sample size in-
creases, more points contribute to the total squared error and penalize the curves that
do not fit the data more heavily, whileπ(β) remains unchanged. Thus, the system con-



verges to the best regression curve in the limit even if the prior information is inaccurate,
but this convergence happens much faster when the model is good.

Active Sampling The search performs a dual function. First of all, prior knowledge
may be inaccurate. Figure 3-(b) shows an example of a peak that does not coincide
with any of the predicted blocking factors. Search can verify the tile sizes that fully
utilize the caches and adjust them empirically. Second of all, prior knowledge alone
does not indicate which cache (L1 or L2) to tile for (see Figure 3-(a)). Search resolves
this problem by empirically determining which peak is the dominant one. Moreover,
the adaptive search produces a statistical measure of confidence in its estimate that is
not available with either pure model or ATLAS search.

As the search is conducted, each sample point is generated by 1) selecting some pa-
rameter values for optimization parameters, 2) generating a mini-MMM program based
on those parameters, 3) compiling the program, and 4) measuring the program’s execu-
tion time. The main source of efficiency of the search comes from its ability to select
informative sample points intelligently. This process, known as active sampling, repre-
sents a major deviation from the philosophy of ATLAS and other empirical optimization
engines - the system uses feedback from conducted experiments to adjust its sampling
strategy, while ATLAS samples at pre-determined locations.

In doing so, it must take into account conflicting objectives: reducing the time to
collect the sample and selecting the most informative points. The first objective directs
the system to sample points close to the origin, because the sampling time increases
with increasing tile sizeNB due mainly to the significant increase in the amount of
time required to compile the program.3 The second objective is to select the points that
provide more information about the location of the peak of the function.

To reconcile these objectives, a heuristic that simulates potential fields is used. It
places a negative charge at each sample point to discourage oversampling in the same
region and a positive charge at the origin to encourage less time-consuming data points
(since programs generated with smaller values of cache blocking/unrolling take less
time to compile). Positive charges encourage sampling in the region around them, neg-
ative charges have the opposite effect. The point that minimizes the potential field is
selected for sampling. A positive charge is also imposed on regions contributing infor-
mation about the highest peak. This charge is proportional to the estimated probability
that the peak that appears to be the highest actually is the highest.

An example of the heuristic can be seen in Figure 4. The potential fieldU(x) is a
function of the tile sizex. Tile sizes with low potentials experience the least amount of
repulsive force and the greatest amount of attractive force. The system computesU(x)
for every tile sizex and chooses the tile size with minimum potential energy for sam-
pling. The potential field is calculated as a sum of contributing factors. Each previously
sampled tile sizey contributes ν

(x−y)2 to the potential field atx, creating a repulsive
force that increases at tile sizesx close to the sampled pointy. The attractive field at the
origin contributesξ ∗ (x− 0)2 to the potential field atx, resulting in an attractive force

3 With bigger tile sizes, the size of the completely unrolled register loop nest increases, forcing
the optimizing compiler to spend more time on instruction scheduling. Increasing the cache
block size from 40 to 400 on the SGI machine increases compilation time from 4 seconds to 4
minutes.



that decreases with increasing tile size.ν andξ are user-defined constants controlling
the strengths of the forces creating the field. The advantage of using this heuristic is its
efficiency in combining multiple objectives.
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Examples of application of this heuristic are
presented in Figure 2. In Figure 2-(a), a two-
peaked function is used to fit the data. The first
peak (blocking for the L1 cache) is the dominant
one. The location of the L1 peak is estimated by
the system from the sampled data. The L2 peak
is predicted from the intersection of the regres-
sion function that fits the data and the location
of the L2 blocking factor determined by the prior
knowledge. The uncertainty of the estimated re-
gression curve parameters is used to calculate the
probability that blocking for the L1 peak yields
better performance than blocking for L2. This
probability, in turn, forces the sampling heuristic
to direct its attention to the points that contribute
information about the L1 peak. This, in conjunc-
tion with the fact that smaller block sizes corre-
spond to less expensive sample points (in terms
of compilation time), prompts the system to di-
rect its attention to the region around the L1 blocking factors.

In Figure 2-(b), a different performance profile results in a different sampling be-
havior. In this architecture, the optimal cache block size must take advantage of the L2
cache. After the system determines that the dominant peak lies beyond the L1 satura-
tion point, it attempts to collect as much information as possible to ascertain how to
take advantage of the L2 cache, even at the expense of incurring a higher sampling cost.
It does not make any sense to sample at lower tile sizes if these points do not provide
any information about the predicted optimal peak of the model.

5 Experimental Results

In this section, we evaluate the adaptive optimization algorithm. The environmental
setup used for our experiments is discussed in Section 5.1 and performance results are
shown in Section 5.2. Our experiments demonstrate the feasibility of application of our
approach by showing that the adaptive model can achieve performance comparable to
(and sometimes exceeding that of) ATLAS and outperform the analytic model, while
requiring many fewer experiments than an exhaustive search.

5.1 Environmental Setup

Our experiments were performed on two different architectural platforms: Ultra Sparc
III and SGI R12000). Table 1 lists the salient architectural parameters of each platform4.

4 ATLAS compiler and options are the defaults that ATLAS selects in each target platform



Sparc SGI

CPU Ultra Sparc III R12000

Frequency 750 MHz 300 MHz

L1d/L1i Cache 64 KB/32 KB 32 KB/32 KB

L2 Cache 8 MB 2 MB

Memory 4 GB 512 MB

OS SunOS 5.8 IRIX64 v6.5

ATLAS Compiler Workshop cc v5.0 MIPSPro cc v7.30

ATLAS Compiler -dalign -fsingle -O3 -64 -OPT:Olimit=15000 -TARG:platform=IP30

Options -xO2 -native -LNO:blocking=OFF -LOPT:alias=typed

Table 1.Test Platforms

The following algorithms were executed on each platform:

1) Model: We use the model from [20] described in Section 3. The model assumes that
tiling for the L1 cache is usually optimal.

2) ATLAS search: This is the search strategy using the code generator as described in
Section 2. ATLAS assumes that tiling for the L1 cache is optimal for these architec-
tures, and performs a near-exhaustive search of the cache tile space from 16 to the
minimum of (80 and

√
L1 Cache Size), in steps of 4.

3) Adaptive: This is the approach we present in this paper, as described in Section 4.
The search for the optimal cache blocking parameter values terminates after collecting
20 points.

All of the search strategies are integrated with ATLAS version 3.4.1. Each search
strategy optimizes performance by generating versions of code (mini-MMM) with the
parameter values under test, compiling and executing them. Once the optimal transfor-
mation parameter values are found, a library is generated that uses the discovered values
to multiply user-provided matrices. While it is plausible that optimal mini-MMM per-
formance will translate into good performance when multiplying arbitrary matrices, this
is not guaranteed. In this Section we generate libraries for multiplying double-precision
floating point numbers. For each algorithm and each platform under test, the following
measurements are made:

– The amount of time needed to find the optimal parameter values.
– Performance of mini-MMM code generated with the values found to be the optimal.
– Performance of the generated library on a wide range of matrix sizes.

5.2 Experimental Results

Table 2 lists the optimal cache block size chosen by each strategy. Table 4 presents
the amount of time required for each search strategy to complete. The model performs
simple calculations and, therefore, takes a negligible amount of time to complete. The
adaptive search, while slower than the model, is three-four times faster than ATLAS
search.



Model AdaptiveATLAS

Sparc 88 60 68
SGI 62 170 64

Table 2. Selected Block Size
(NB)

Model AdaptiveATLAS

Sparc376.66 851.04 832.63
SGI 499.81 553.15 505.4

Table 3. Mini-MMM Perfor-
mance (in MFLOPs)

Model AdaptiveATLAS

Sparc 0:00 3:12 8:59
SGI 0:00 14:02 59:00

Table 4. Time To Complete
Search (in minutes)

The measured performance of each strategy appears in Table 3. As expected, the
model is outperformed by ATLAS on these two platforms since the model, while ex-
tremely fast, is brittle due to its lack of feedback. ATLAS, on the other hand, requires
an extensive sample size to achieve superior performance. The adaptive optimization
outperforms both the model and ATLAS after collecting a small sample of points. Its
performance gain over ATLAS is most significant on the SGI machine, where it chooses
to tile for the L2 cache, not considered for optimization by ATLAS.

On the Sparc machine, while it appears that the adaptive strategy significantly out-
performs the model, most of the performance gain is due to the optimal setting of the
MU , NU , andLatency parameters which are not considered in this work. The perfor-
mance gain due to the adaptive search for the optimalNB value is only∼10%. All the
reported results for this machine are also affected by the-native flag that we are us-
ing in thecc compiler of the Sparc machine (Table 1) and that is automatically selected
by ATLAS. The-native flag should direct the compiler to optimize the code for the
current machine, but apparently the code generated when using this flag corresponds
to that of an older architecture. If instead of-native we use the flag-xarch=v9a
which corresponds to the architecture of the target Sparc machine, we found that the
performance results of the code generated by Model were very similar to those in Table
3 for ATLAS or Adaptive.

Figure 5 shows the performance of the libraries generated using the parameters
in Table 2 for each of the optimization algorithms under study. Figure 5 shows the
performance of each library as the size of the matrices being multiplied increases from
100× 100 to 3000× 3000. The Figure demonstrates that there is a strong correlation
between mini-MMM performance and performance of the final generated library, the
metric that the end user of the system is interested in.

6 Conclusions and Related Work

Machine learning has been applied to construct adaptive compiler optimizers before.
Cooper et. al., for example, use genetic algoithms to search through sequences of opti-
mizing code transformations [9]. Using genetic algorithms (and other machine learning
optimization algorithms) can be time-consuming in a large space of possible optimiza-
tions.

These techniques have also been extended to search for entire versions of algo-
rithms, as opposed to just code transformations. Li et. al. [13] present a two-phase
algorithm for optimizing sorting. The first (offline) phase performs a search to con-
struct a mapping from the parameters of a sorted array (its data entropy and size) to
the best-performing sorting algorithm. The second (online) phase uses that mapping to
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Fig. 5. Library Performance Comparison for ATLAS Search, Model, and Adaptive Search.

apply the best sorting algorithm to the given array at runtime. A similar framework was
applied by Thomas et. al. to optimize parallel matrix multiplication [15].

An important feature which distinguishes our approach to searching is explicit in-
tegration of information from the analytic model to guide the search, thereby reducing
its time. We believe that adaptive intelligent modeling represents a promising and im-
portant direction in code optimization. The defining motivation is to integrate all rel-
evant information into a hybrid model which can both resolve optimization decisions
and guide further information collection. The challenge is combining information from
different sources that come in radically different forms. In this first proof of concept
research, the forms include a general but approximate prior analytical model and em-
pirical measurements of code samples taken directly on the system to be optimized. In
our narrow but important test domain of mini-MMM optimization, our adaptive model
is much more efficient than the empirical optimization approach. We believe our most
significant research contribution is to open a new direction for code optimization. The
principle of adaptive intelligent modeling is to actively seek out information that can be
used as evidence for refining and restructuring itself so that the optimization decisions
are always the best they can be. Our end goal is to expand the applicability of feedback-
directed search in the online optimization setting, where both accuracy and speed are
crucial.
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