
A Domain-Specific Interpreter for Parallelizing a

Large Mixed-Language Visualisation Application

Karen Osmond, Olav Beckmann, Anthony J. Field, and Paul H. J. Kelly

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2AZ, United Kingdom

p.kelly@imperial.ac.uk

Abstract. We describe a technique for performing domain-specific opti-
misation based on the formation of an execution plan from calls made to
a domain-specific library. The idea is to interpose a proxy layer between
the application and the library that delays execution of the library code
and, in so doing, captures a recipe for the computation required. This
creates the opportunity for a “domain-specific interpreter” to analyse the
recipe and generate an optimised execution plan. We demonstrate the
idea by showing how it can be used to implement coarse grained tiling and
parallelisation optimisations in MayaVi, a 44,000-line visualisation appli-
cation written in Python and VTK with no change to the MayaVi code
base. We present a generic mechanism for interposing a domain-specific
interpreter in Python applications, together with experimental results
demonstrating the technique’s effectiveness in the context of MayaVi.
For certain visualisation problems, in particular the rendering of iso-
surfaces in an unstructured mesh fluid flow simulation, we demonstrate
significant speedups from improved memory hierarchy performance, and
from both SMP and distributed-memory parallelisation.

1 Introduction

Key objectives in engineering high-quality software are the need for high perfor-
mance and protecting existing investment. The work we present in this paper
illustrates how the use of domain-specific libraries can make it difficult to bridge
these requirements. In response to this we propose domain-specific interpreters as
a design pattern for addressing this problem. We show an example of a domain-
specific interpreter implemented in Python and demonstrate that this can be
used to achieve transparent parallelisation of large-scale visualisation tasks.

Software systems are being built from increasingly large and complex domain-
specific libraries. Using such domain-specific libraries (DSLs) often dominates
and constrains the way a software system is built just as much as a programming
language. To illustrate the increasing size and complexity of DSLs, consider the
following three examples:

– The Legacy BLAS 1, 2 and 3 libraries [1] are very successful libraries, domain-
specific to dense linear algebra, with a total number of around 150 functions.



user-program

vtkContourFilter

vtkPolyDataMapper

vtkActor

Render

Domain-specific libarary

...

...

...

...

(a) User program is processed by a standard compiler or interpreter. DSL code is
mixed with other code. No domain-specific optimisation is performed.

user-program

Domain-specific libarary

vtkContourFilter

vtkPolyDataMapper

vtkActor

Render

vtkContourFilter

vtkPolyDataMapper

vtkActor
Render

vtkContourFilter

vtkPolyDataMapper

vtkActor
Render

C
ap

tu
re

Optimise

(b) User program is compiled or interpreted by an unmodified language compiler or
interpreter. All calls to the DSL are captured and recorded in an execution plan.

Domain-specific optimisations are applied to the execution plan before it is executed.

Fig. 1. Domain-specific library use: (a) typical use and (b) domain-specific interpreter.

– MPI is a slightly later, but equally successful library which is domain-specific
to message-passing communication. MPI-1 [2] included over 100 functions,
MPI-2 over 200 functions.

– VTK (Visualisation Toolkit) [3, 4] is a large C++ visualisation library. The
total number of classes and methods is hard to count; the user’s guide is 325
pages long, and additional documentation is found in a 500-page book.

Using domain-specific libraries and abstractions often introduces domain-
specific semantics into a software system in a manner similar to a programming
language. The problem is that the base-language compilers or interpreters have
no knowledge of these domain-specific semantics, and in particular, of domain-
specific optimisations that might be possible. Furthermore, calls to DSLs are
typically mixed with other, non-domain-specific code, which might make it hard
for a conventional compiler to infer the exact sequence of calls that will be made
to the DSL. This is illustrated in Figure 1(a).



1.1 Domain-Specific Interpreter Design Pattern

We propose a “domain-specific interpreter” as a design pattern for overcoming
the problem described above. The idea is illustrated in Figure 1(b): The applica-
tion program is still processed by a standard compiler or interpreter. However,
calls to the DSL are captured by a proxy layer which records an execution plan
consisting of the operations to be performed. We then have the opportunity to
apply restructuring optimisations to the execution plan before it is executed.

Applicability. The applicability of domain-specific interpreters depends on being
able to capture reliably all calls that are made to the DSL, and, on having ac-
curate data-flow information available. The latter means knowing whether the
data which is processed by the DSL can also be modified by the intervening
non-domain-specific code, and being able to derive an accurate data-flow graph
by inspection of the execution plan. As discussed in Section 3, both these re-
quirements are met for visualisation applications built on VTK and Python.

Profitability. The likely benefit of using a domain-specific interpreter depends on
whether we have domain-specific semantic information available, and on whether
opportunities for cross-component optimisation exist. For our case-study, the
optimisations we discuss are parallelisation and a form of tiling. Semantic infor-
mation is, for the time being, supplied by hand.

1.2 Visualisation of Large Scientific Datasets

Visualising large scientific datasets is a computationally expensive operation,
which typically involves processing a “visualisation pipeline” of domain-specific
data analysis and rendering components: before the rendering step various fea-
ture extraction or data filtering computations may be executed, such as iso-
surface calculation, interpolation of a regular mesh or flow-lines integration.
Modular visualisation environments (MVEs), such as the Python/VTK-based
open-source MayaVi tool [4–6], present end-users with an interface for assem-
bling such components. This effectively defines a high-level graphical program-
ming language for visualisation pipelines. Such a dynamic-assembly architecture
forms the core of many software frameworks, and is essential for their flexibility.
As discussed in Section 1, it unfortunately also presents a barrier to conventional
compile-time optimisation.

We describe the implementation of a domain-specific interpreter that allows
us to apply restructuring optimisations, specifically parallelisation, to visualisa-
tion pipelines specified from MayaVi. Our approach requires no changes to the
MayaVi code. We achieve this by intercepting DSL calls at the Python-VTK
binding interface. This allows us to build up a “visualisation plan” of the un-
derlying VTK routines applied to the dataset without actually executing those
routines. We partition the dataset off-line using a tool such as METIS [7], and
then apply the captured visualisation plan in parallel on each partition where
that is consistent with the semantics of the data analysis components.



The work described in this paper was motivated by the visualisation require-
ments of ocean current simulations using adaptive, unstructured (i.e. tetrahe-
dral) meshes. Even small runs generate multi-gigabyte datasets. Each stage of
such a visualisation pipeline can be a computationally very expensive operation
which is typically applied to the entire dataset. This can lead to very significant
delays before any visual feedback is offered to an application scientist who is
trying to compose and parameterise a visualisation pipeline.

1.3 Contributions

The main contributions of this paper are as follows.

– We present our experience of performing cross-component optimisation in a
challenging, dynamic, multi-language context.

– We present a domain-specific interpreter which intercepts DSL calls at the
Python/C++ interface, and we show how this allows a data-flow graph for
the required computation to be extracted at runtime while avoiding many
complex dependence issues (Section 3).

– We discuss how applying visualisation pipelines one partition at a time, even
on a uniprocessor, can lead to performance improvements due to better use of
the memory hierarchy. We refer to this optimisation as “tiling”1 (Section 4).

– We present parallelisation strategies for visualisation pipelines captured by
the domain-specific interpreter, for both shared- and distributed-memory
architectures (Sections 5–6).

– We present results from performance experiments that show encouraging
speedups for tiling and both types of parallelisation (Sections 5–6).

This paper builds on our earlier work [8] where we restructured the MayaVi
source code by hand to improve response time. Apart from changing the MayaVi
source code, this earlier work also did not achieve parallelisation.

The remainder of this paper is structured as follows. In Section 2, we place
this work in the context of ongoing research into optimisation techniques for
dynamically composed assemblies of high-level software components. In Sec-
tion 3, we present an implementation of the domain-specific interpreter pattern
in Python for optimising the use of VTK. In Section 4, we present results for
the tiling optimisation mentioned above. In Section 5 we discuss parallelisation
of visualisation pipelines for shared memory, and in Section 6, we discuss par-
allelisation for distributed memory platforms. Section 7 concludes and describes
our plans for future work.

2 Background and Related Work

Modular visualisation environments (MVEs) present end-users with a GUI rep-
resenting an analysis and rendering pipeline [9]. MayaVi is one of many MVEs

1 This is not tiling in the classical sense of non-linear transformations of loops over
dense arrays — however, it does represent a re-ordering of the iteration space over
a large dataset for the purpose of improving memory hierarchy utilisation.



MayaVi 
written in Python, interpreted

Python VTK Bindings

VTK
 written in C++, compiled

OpenGL / XGL etc.

(a) Software architecture of Ma-
yaVi in terms of languages and li-
braries.

(b) VTK visualisation pipeline in
MayaVi’s pipeline browser for the
visualisation in Figure 3.

Fig. 2. MayaVi software architecture (a) and pipeline browser (b).

implementing this general model. Other examples from image processing include
Adobe Photoshop or the Gimp, via its scripting mechanism. The MVE architec-
ture offers the potential to integrate visualisation with simulation and computa-
tional steering [10,11] and this is finding broader application in the Grid [12,13].
To make MVEs work interactively on very large datasets, execution needs to be
demand-driven, starting from a volume-of-interest (VOI) control, which specifies
the 3-dimensional region where high resolution is required [14].

However, this paper is not about visualisation itself, but rather about the
performance optimisation challenge raised by MVE-like software structures: how
can we extend optimising and restructuring compiler technologies to operate on
dynamically-composed assemblies of high-level components? This issue is part
of a wider programme of research into cross-component optimisation issues: our
DESO (delayed evaluation, self-optimising) parallel linear algebra library [15,16]
uses carefully constructed metadata to perform cross-component parallel data
placement optimisation at runtime, and the Désormi project has resulted in a
generalised framework for deploying runtime optimisation and instrumentation
in Java programs [17]. Optimising component-based applications is also one of
the research challenges addressed by the Grid effort [18].



Fig. 3. MayaVi screenshot, showing the main MayaVi GUI, the GUI for configuring a
specific visualisation module (IsoSurface) and the render window, showing an isosurface
of the x component of the velocity vectors in a turbulent flow simulation.

2.1 MayaVi’s Modular Visualisation Environment Architecture

In Figure 2(a), we illustrate the software architecture of MayaVi in terms of
programming languages and libraries used: MayaVi is written in the interpreted
language Python. The core of VTK [3, 4] is written in C++ and is compiled;
however, VTK has a complete set of bindings for Python, Tcl/Tk and Java.
VTK in turn uses different graphics libraries such as OpenGL for 3D rendering.

2.2 Object-Oriented Visualisation in VTK

The VTK design distinguishes between the graphics model, an object-oriented
representation of 3D computer graphics and the visualisation model, which is
essentially a model of data-flow.

The VTK graphics model is described in detail in [4]. The key concepts
that are relevant to this paper are the following. A RenderWindow represents a
window on the display. A Renderer is an object that is responsible for rendering
a region of such a window. Actors are objects that are rendered within the
scene. In Figure 3, we show an isosurface visualisation of a turbulent flow. Such
an isosurface corresponds to one Actor. Actors consist of Mappers, representing
geometric structure (in the case of the isosurface in Figure 3, this is a set of
polygons), Properties, representing colour, texture etc., and Transforms, which
are 4 × 4 matrices that describe the usual transformations on homogeneous
coordinates used in 3D computer graphics.



The VTK visualisation pipeline is an object-oriented representation of a di-
rected data-flow graph, consisting of data and processes, which are operations
performed on the data. Process objects can be sources, representing inputs, fil-

ters, which can be many-to-many operations on data, and mappers, representing
outputs from the data-flow graph that are then used by the graphics model
for rendering. The VTK visualisation pipeline can represent complex data-flow
graphs, including graphs with cycles (time-stamps are used to control looping).
The VTK design provides for data-flow graphs to be executed in either a demand-

driven or a data-driven manner.

In Figure 2(b), we show the VTK visualisation pipeline for the isosurface vi-
sualisation from Figure 3, as represented by MayaVi’s pipeline browser tool. Note
in particular the source (vtkUnstructuredGridReader), a filter that extracts one
of the components of the velocity vector (vtkExtractVectorComponents) and the
output of the pipeline that is passed to the mapper (vtkPolyData, representing
a polygon collection). There are several instances of the vtkExtentTranslator
process: this can be used to calculate a structured extent (i.e. a bounding box)
for an unstructured dataset.

3 A Domain-Specific Interpreter for VTK in Python

In Section 1, we outlined our proposal for a domain-specific interpreter as a
means of overcoming barriers to restructuring optimisation in the use of domain-
specific libraries. In this section, we present an implementation of this design
pattern in Python, using VTK as a domain-specific library.

The key observation is that when a MayaVi visualisation is rendered, the
data flow happens entirely on the C++ side of the Python/VTK interface. This
implies that all nodes in the data flow graph have to be created via calls through
the VTK Python bindings. Therefore, we are able to capture an accurate repre-
sentation of the visualisation pipeline, which represents the data-flow graph of
the computation to be performed, if we intercept calls made though this inter-
face.

When visualisation is “forced”, i.e. when an image has to be rendered, we
can perform optimisations on this pipeline before it is executed. The next four
sections explain how this is done.

3.1 Building the Proxy Layer

We rename the original vtkpython.py file which implements VTK’s Python
bindings to vtkpython real.py. We implement a new file vtkpython.py, which
is shown in Listing 1.1. This file dynamically creates a new, initially empty class
definition for every class in the original vtkpython interface. The key point is
that these empty classes are all derived from a new class ProxyObject; thus,
the absence of methods in the dynamically created empty classes means that all
method calls will be deferred to the superclass.



Listing 1.1. Implementation of a proxy layer for intercepting calls through the
VTK Python binding interface

1 import os

2 if ("new_vtk" in os.environ): # Control the DS interpreter via the environment
3 import vtkpython_real # Import the original VTK Python bindings
4 from parallel import proxyObject

5 from parallel import setPartitionInfo

6 from parallel import setParameters

7 from parallel import setScalar

8 for className in dir(vtkpython_real): # For all classes in vtkpython real
9 # Create a class with the same name and no methods (yet),

10 # derived from ‘‘ProxyObject’’.
11 exec "class " + className + "(proxyObject): pass"

12 else:

13 # default behaviour: fall−through to the original VTK Python bindings
14 from vtkpython_real import *

Listing 1.2. A sample portion of a visualisation plan or recipe

1 [’construct’, ’vtkConeSource’, ’vtkConeSource_913’]
2 [’callMeth’, ’vtkConeSource_913’, ’return_926’, ’SetRadius’, ’0.2’]
3 [’callMeth’, ’vtkConeSource_913’, ’return_927’, ’GetOutput’, ’’]
4 [’callMeth’, ’vtkTransformFilter_918’, ’return_928’, ’SetInput’, "self.ids[’return_927’]"]
5 [’callMeth’, ’vtkTransformFilter_918’, ’return_929’, ’GetTransform’, ’’]
6 [’callMeth’, ’return_929’, ’return_930’, ’Identity’, ’’]

3.2 Creating Skeleton Classes

MayaVi uses a dynamic lookup of method signatures in Python VTK classes as
well as __doc__ strings to create some GUI components on the fly, including for
example the Pipeline Browser tool shown in Figure 2(b). We have to make sure
therefore that the interface of the classes in the proxy layer matches the original
VTK Python classes in terms of method signatures and __doc__ strings. This is
done by adding skeleton methods and __doc__ strings on the fly following a dy-
namic lookup of class interfaces (using Python’s built-in reflection mechanism).
This adds a few seconds to program startup time when the tool is launched.

The only action performed by the skeleton methods is to call the proxyCall

method from the proxyObject superclass, passing the name of the class, the
name of the method and the list of actual parameters as arguments (more on
this below).

3.3 Representing Execution Plans

We have implemented a Python data structure called Code which holds the in-
formation representing one call through the Python VTK interface. A CodeList



Listing 1.3. Code which creates an entry in the visualisation plan.

218 def proxyCall(self, callName, callArgs): # Add an entry to a recipe
219

220 # Check whether we have reached a ”force point”
221 if(globals()["codeList"].numPartitions > 0 and callName == "Render"):

222 return forcePointReached()

223

224 result = proxyObject_return() # Create an identifier for the result
225 code = Code(result,self,callName,callArgs)

226 # Construct ”Code” object which represents one method call
227 globals()["codeList"].add(code) # Add to the visualisation plan

Listing 1.4. Code snippet of recipe application for a method call

1 def callMeth(self, objId, retId, methName, argString):

2 object = self.ids[objId]

3 retobj = None

4 retobj = eval(’object.’ + methName + ’(’ + argString + ’)’)

5 self.ids[retId] = retobj

6 return retId

maintains the whole visualisation plan (or “recipe”). A symbol table for looking
up identifiers is also maintained.

Listing 1.2 gives an example of what a part of a recipe may look like. The first
item in the list is always callMeth or construct and signifies whether the recipe
component is a constructor or an ordinary method call. If it is a constructor, the
following items give the name of the class of the object to be constructed, the
name of the identifier for the returned object, and (optionally) any arguments.
If it is an ordinary method call, the following items give the object the method
is to be called on, the name of the identifier for the returned object or value, the
name of the method to be called and finally, the argument list. In the argument
list, any names of identifiers for objects are converted into the a symbol table
lookup of the form self.ids[identifier].

Listing 1.3 shows part of the implementation of the proxyCall method, which
creates entries in the visualisation plan, and which is called for every method
invocation, via the skeleton methods in the proxy layer.

3.4 Forcing Execution

Listing 1.3 shows that when we call Render, we reach a force point, i.e. we force
evaluation of the visualisation plan.

Listing 1.4 gives a code snippet (slightly simplified for clarity) of the function
which applies a method call when a visualisation plan is executed. Again, the
symbol table ids is used to map names of identifiers to real objects.



In Sections 4–6, we now present the performance benefits that accrue from
applying two kinds of optimisation (tiling and parallelisation) to a VTK execu-
tion plan.

4 Coarse Grained Tiling of Visualisation Pipelines

Our case study is an ocean circulation model developed by our collaborators
in the Department of Earth Science and Engineering at Imperial College. The
datasets that result from such simulations are multi-gigabyte unstructured meshes.
We use the METIS tool [7] to partition these datasets. The results presented in
this paper are for a sample dataset representing a fluid flow around a heated
sphere. This dataset is 16MB in size, and we have used a 2-,4-,8- and 16-way
partitioning of this dataset. Note that VTK does have a built-in mechanism
for handling partitioned datasets (“parallel unstructured grid storage format”);
however, for the unmodified MayaVi, using such a dataset does not change the
way the data is processed — the partitions are simply ‘glued together’ after
loading from disk, resulting in a single monolithic dataset.

The first optimisation we study is coarse grained tiling. By coarse grained
tiling, we mean that we apply the visualisation plan to one partition of the
dataset at a time, rather than following the default behaviour where the parti-
tions would be merged to form one monolithic dataset which is then processed.
Note that this has strong similarities with classical tiling optimisations in that
we are effectively restructuring the execution order (iteration space) in order to
make better use of the memory hierarchy.

Experimental Setup. The MayaVi GUI has the capability of being run from
a Python script, and this was of immense benefit for performance evaluation.
Python’s built-in time module was used to take wall-clock time measurements.
Each test was repeated three times (error bars are shown in all graphs). Two
hardware platforms were used in testing:

– Intel Pentium 4 2.8GHz with hyperthreading (one physical processor), cache
size 512KB, 1GB physical memory. We used this architecture both as a
uniprocessor and in a cluster of four such processors.

– Athlon MP 1600+, cache size 256KB, 1GB physical memory. We used this
architecture both as a uniprocessor and as a 2-way SMP.

In each case, the benchmarks were applied to a version of MayaVi that uses the
unmodified Python/VTK library and to “MayaVi+DSI”, the version that uses
our domain-specific interpreter for Python/VTK.

Use Case. The following usage scenario was used for evaluation: The dataset
is loaded, and the IsoSurface module added to the visualisation pipeline. The
contour value is changed seven times (0.00, 0.15, 0.30, 0.45, 0.60, 0.75 and 0.90),
and the time taken for each change is recorded. When calculating an IsoSurface,
the number of polygons generated, as well as computation time, varies widely
with contour value.



Results for Tiling. Table 1 includes results for the tiling optimisation on unipro-
cessors. This indicates that in some cases, we can achieve a speedup of nearly a
factor of 3 by this optimisation. The likely explanation for this speedup is that
the isosurface algorithm produces intermediate data which is traversed repeat-
edly, and which fits more favourably into the memory hierarchy when processing
one partition at a time.

5 Shared-Memory Parallelisation

It is apparently a simple extension of tiling to spawn one Python thread per parti-
tion. Unfortunately, with this basic approach, the threads always run sequentially
due to Python’s Global Interpreter Lock (GIL), which prevents Python threads
from running simultaneously. Any C code called from within the Python pro-
gram is subject to this same limitation. To allow C code called from the VTK
Python interface to be run in parallel, this lock must be explicitly claimed and
dropped from within the C code.

Python wrapper classes for VTK are generated by a special-purpose C pro-
gram (vtkWrapPython.c). Adding code to deal with the GIL within the wrapper
generator requires minimal modification (2 lines): At every point that a VTK
wrapped function is called, the function call is surrounded by code to drop and
reclaim the lock. However, since not all of VTK is thread-safe, it is necessary
to restrict parallel operation to certain parts of VTK only. In particular, no
operations on the shared Renderer and RenderWindow occur in parallel.

Table 1 shows results for SMP parallelisation using the method outlined
above on a dual-processor machine. This shows very encouraging results: a max-
imum speedup of around 6 for parallel execution of the visualisation pipeline
over 16 partitions. We spawn one thread per partition, rather than per proces-
sor, these results show the combined effects of tiling and SMP parallelisation.
This explains the superlinear speedup which is seen for some IsoSurface values.
Our data indicate that on a 2-way SMP, a significant part of the overall speedup
is already obtained by tiling alone.

Some readers may wonder where the “parallel loop” for our parallelisation
is. The answer is that this is in the domain-specific interpreter. It is the task of
this interpreter to execute the recipe that has been captured. This is done by
applying the entire recipe, which could be a multi-stage computation, to each
partition separately.

6 Distributed Memory Parallelisation

To allow for an easier implementation of distributed processing, a Python library
called ‘Pyro’ was used, which provides Java RMI-like features. Pyro allows any
pickleable2 object to be transferred across the network. A class which needs to be

2 A ‘pickleable’ object is one which can be serialised using Python’s built-in ‘pickle’
module



Athlon 1600+ SMP

2 Partitions 4 Partitions 8 Partitions 16 Partitions

Base Tiling SMP Base Tiling SMP Base Tiling SMP Base Tiling SMP

IsoSurface Time Time S’up Time S’up Time Time S’up Time S’up Time Time S’up Time S’up Time Time S’up Time S’up

0 4.73 5.12 0.92 4.9 0.97 3.32 3.96 0.84 3.63 0.92 3.16 5.21 0.61 4.92 0.64 3.01 3.84 0.78 2.53 1.19
0.15 1.62 0.88 1.84 0.67 2.43 1.41 0.92 1.53 0.79 1.79 1.48 0.92 1.62 0.71 2.08 1.43 0.94 1.53 0.74 1.94
0.3 1.77 1.66 1.07 1.02 1.74 1.64 1.58 1.04 1.06 1.55 1.67 1.35 1.24 1 1.67 1.74 1.33 1.31 1 1.74

0.45 3.65 3.49 1.04 2.13 1.71 3.21 2.83 1.13 1.82 1.76 3.22 1.72 1.87 1.34 2.41 3.36 1.61 2.09 1.22 2.76
0.6 7.7 6.91 1.11 4.78 1.61 6.98 5.42 1.29 3.6 1.94 7.46 3.27 2.28 2.65 2.81 7.28 2.6 2.8 1.84 3.96

0.75 15.44 13.48 1.14 10.71 1.44 15.56 11 1.41 8.07 1.93 15.06 6.89 2.18 5.77 2.61 15.27 4.45 3.43 2.9 5.27
0.9 27.5 22.53 1.22 19.47 1.41 24.78 20.48 1.21 16.82 1.47 25.92 12.55 2.07 10.88 2.38 25.24 6.58 3.83 4 6.31

Pentium 4 2.8 GHz Cluster

2 Partitions 4 Partitions 8 Partitions 16 Partitions

Base Tiling Parallel Base Tiling Parallel Base Tiling Parallel Base Tiling Parallel

IsoSurface Time Time S’up Time S’up Time Time S’up Time S’up Time Time S’up Time S’up Time Time S’up Time S’up

0 4.91 4.56 1.08 6.6 0.74 3.55 2.96 1.2 4.18 0.85 3.23 3.28 0.99 4.18 0.77 3.14 3.29 0.95 1.9 1.65
0.15 0.65 0.73 0.89 0.83 0.78 0.65 0.67 0.97 0.64 1.01 0.66 0.65 1.02 0.57 1.16 0.68 0.66 1.03 0.6 1.12
0.3 1.33 1.47 0.9 1.32 1.01 1.25 1.29 0.97 0.92 1.36 1.27 1.02 1.24 0.81 1.57 1.32 0.97 1.36 0.72 1.82

0.45 2.64 3.21 0.82 2.31 1.14 2.35 2.38 0.99 1.23 1.91 2.37 1.27 1.86 1.11 2.13 2.45 1.23 2 1.01 2.43
0.6 5.35 5.9 0.91 4.3 1.24 5.02 4.5 1.12 2.57 1.95 5.08 2.41 2.1 2.01 2.53 5.18 2.12 2.45 1.45 3.57

0.75 10.82 10.54 1.03 8.69 1.24 10.43 8.64 1.21 5.66 1.84 10.49 4.79 2.19 4.14 2.53 10.6 3.77 2.81 2.11 5.03
0.9 18.28 17.24 1.06 14.39 1.27 18.6 14.72 1.26 10.21 1.82 16.92 8.48 2 7.38 2.29 17.04 5.83 2.92 2.79 6.1

Table 1. IsoSurface Benchmark on Dual Athlon 1600+ SMP with 256 KB L2 cache and 1GB physical RAM (above) and cluster of four
Pentium 4 2.8 GHz HT with 512 KB L2 cache and 1 GB physical RAM (below). Results for the Tiling columns only use one processor
in both cases.



 0

 1

 2

 3

 4

 5

 6

16 Parttions8 Parttions4 Parttions2 Parttions

S
pe

ed
up

Number of Partitions

Range of Speedups Obtained over all IsoSurface Values

Athlon Tiling only
Athlon SMP Parallel

Pentium 4 Tiling only
Pentium 4 DMP Parallel

Fig. 4. Summary of speedups obtained through our optimisations: For each experi-
ment, we show for all degrees of partitioning the average, smallest and largest speedup
obtained over all IsoSurface values in our use case. The details for these figures are
contained in Table 1.

remotely accessible is subclassed from Pyro.core.ObjBase. In addition, there
is a Pyro.core.SynchronizedObjBase class, which automatically synchronises
remote access to the class methods.

Unfortunately, VTK pipeline components and data objects are not pickleable,
and, as such, cannot be transferred using Pyro. Data objects may, however,
be read and written to temporary files using VTK’s data reading and writing
classes, and these files are written by servers and read by clients to transfer input
and output data. MayaVi includes some pickling capabilities for VTK pipeline
components, although it is not complete enough as not all attributes are pickled.
Therefore, in order to propagate the pipeline structure, the client needs to cache
and transfer all calls and arguments needed to recreate the visualisation pipeline.

A limitation of the data transfer implementation is that files are not explicitly
transferred between server and client, but rather to a shared file system. A
direct transfer between local disks would be more flexible and may give better
performance.

Table 1 shows the performance of our distributed memory parallelisation
scheme. This shows that the speedup obtained from distributed memory paral-
lelisation for most calculations (in particular, the slowest ones) outperforms the
benefit of tiling on a uniprocessor. The key overhead involved with distributed



memory parallelisation is the saving and loading of resultant data (the imple-
mentation of returning results involves the server writing VTK data to a file,
which the client then has to read in). So, it is indeed expected that the perfor-
mance gains will be best when the decrease in computation time can outweigh
this overhead (this, in turn, is smallest when the computation results are small).

In Figure 4, we summarise our experimental results. Since the computation
time in our use case varies greatly with the IsoSurface value, we show speedups
as box-and-whisker plots, giving the average, minimum and maximum speedup
over all IsoSurface values. This shows that tiling is almost always beneficial:
we obtain a speedup of around a factor 2 for larger numbers of partitions on
both architectures. Furthermore, for the computationally more expensive oper-
ations, combining tiling with parallelisation can lead to significant performance
improvements (up to a factor 6 for both a dual-processor Athlon SMP and a
4-processor Pentium 4 cluster).

7 Conclusions and Future work

We have presented an overview of a project which is aimed at applying tra-
ditional restructuring compiler optimisations in the highly dynamic context of
modular visualisation environments. The challenge is that a computationally ex-
pensive pipeline of operations is constructed by the user via interactions with
the GUI and then executed. Our approach is based on intercepting the construc-
tion of the visualisation pipeline, assembling a visualisation plan, on which we
can then perform optimisations such as tiling before it is executed. The MayaVi
modular visualisation environment enabled us to reliably capture the construc-
tion of the visualisation pipeline by intercepting all calls that pass through the
Python/C++ VTK interface. We have presented results for tiling on a unipro-
cessor, as well as shared- and distributed-memory parallelisation.

We are currently exploring how we can build on the infrastructure we have
described.

– Using VTK Streaming Constructs. As stated in Section 2.2, VTK itself pro-
vides various constructs for data streaming and parallel execution using MPI
that could be exploited from within our framework; we are planning to in-
vestigate this.

– Interaction with the Underlying Simulation. We are interested in investigat-
ing the possibility of pushing the scope for cross-component restructuring
optimisations further back into the simulation software that generates the
datasets which are visualised by MVEs such as MayaVi. In particular, we are
interested in extending demand-driven data generation into the simulation
model: if a higher level of detail is required for a small VOI of the dataset,
how much of the simulation has to be re-run?

We see this work as part of a wider programme of research into optimising
component-based scientific software frameworks.



References

1. BLAST Forum: Basic linear algebra subprograms technical forum standard. (2001)
Available via www.netlib.org/blas/blas-forum.

2. Message Passing Interface Forum: MPI: A Message Passing Interface Standard.
University of Tenessee, Knoxville, Tenessee. (1995) Version 1.1.

3. Kitware, Inc.: The VTK User’s Guide: VTK 4.2. (2003)
4. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit: An Object-

Oriented Approach To 3D Graphics. 3rd edn. Kitware, Inc. (2002)
5. Ramachandran, P.: MayaVi: A free tool for CFD data visualization. In: 4th Annual

CFD Symposium, Aeronautical Society of India. (2001) mayavi.sourceforge.net.
6. van Rossum, G., Fred L. Drake, J.: An Introduction to Python. Network Theory

Ltd (2003)
7. Karypis, G., Kumar, V.: Multilevel algorithms for multi-constraint graph parti-

tioning. In: Supercomputing ’98, IEEE Computer Society (1998) 1–13
8. Beckmann, O., Field, A.J., Gorman, G., Huff, A., Hull, M., Kelly, P.H.J.: Over-

coming barriers to restructuring in a modular visualisation environment. In Cox,
A., Subhlok, J., eds.: LCR ’04: Languages, Compilers and Runtime Support for
Scalable Systems. (2004) ACM Digital Library.

9. Cameron, G.: Modular visualization environments: Past, present, and future. Com-
puter Graphics 29 (1995) 3–4

10. Parker, S.G., Johnson, C.R.: SCIRun: A scientific programming environment for
computational steering. In: Proceedings of Supercomputing 1995. (1995)

11. Wright, H., Brodlie, K., Brown, M.: The dataflow visualization pipeline as a prob-
lem solving environment. In: Virtual Environments and Scientific Visualization
’96. Springer-Verlag, Vienna, Austria (1996) 267–276

12. Johnson, C.R., Parker, S.G., Weinstein, D.: Large-Scale Computational Science
Applications Using the SCIRun Problem Solving Environment. In: ISC 2000: In-
ternational Supercomputer Conference, Mannheim, Germany (2000)

13. Foster, I., Vöckler, J., Wilde, M., Zhao, Y.: Chimera: A virtual data system for
representing, querying, and automating data derivation. In: 14th International Con-
ference on Scientific and Statistical Database Management (SSDBM’02). (2002)

14. Cignoni, P., Montani, C., Scopigno, R.: MagicSphere: An insight tool for 3D data
visualization. Computer Graphics Forum 13 (1994) C/317–C/328

15. Beckmann, O., Kelly, P.H.J.: Efficient interprocedural data placement optimisation
in a parallel library. In: LCR98: Languages, Compilers and Run-time Systems for
Scalable Computers. Number 1511 in LNCS, Springer-Verlag (1998) 123–138

16. Liniker, P., Beckmann, O., Kelly, P.H.J.: Delayed evaluation self-optimising soft-
ware components as a programming model. In: Euro-Par 2002: Proceedings of the
8th International Euro-Par Conference. Number 2400 in LNCS (2002) 666–673

17. Yeung, K.C., Kelly, P.H.J.: Optimising Java RMI programs by communication re-
structuring. In: Proceedings of the ACM/IFIP/USENIX International Middleware
Conference 2003, Rio De Janeiro, Brazil, 16–20 June 2003. LNCS (2003)

18. Furmento, N., Mayer, A., McGough, S., Newhouse, S., Field, T., Darlington, J.:
Optimisation of component-based applications within a grid environment. In: Su-
percomputing 2001. (2001)


