
Compiler Supports and Optimizations for PAC
VLIW DSP Processors ?

Yung-Chia Lin Chung-Lin Tang Chung-Ju Wu Ming-Yu Hung
Yi-Ping You Ya-Chiao Moo Sheng-Yuan Chen Jenq-Kuen Lee

Department of Computer Science
National Tsing-Hua University

Hsinchu 300, Taiwan

Abstract. The Parallel Architecture Core (PAC) is a new VLIW DSP
architecture, featuring a two cluster design, and partitioned, distributed
register files with restricted access ports. Such an irregular processor
poses many challenges in the construction of its compiler. This paper
presents our work in providing the compilation support for PAC, based
on the Open Research Compiler (ORC). We describe the design of the
PAC processor and code generation methods used in coping with its
features. Evaluation results of the compiler/architecture are then given,
demonstrating the effectiveness of our presented methods.

1 Introduction

Current embedded applications and mobile systems are moving towards the con-
flicting requirements of high-performance and low-power consumption. This has
influenced embedded processor design to evolve into a style of large computa-
tion resources combined with restricted and/or specialized datapaths and regis-
ter storage. These architectures rely on the compiler to do much work, statically
orchestrating the generated code to work around the restrictions of the hardware.

In this paper we describe our work in supporting such an embedded DSP
processor. The Parallel Architecture Core (PAC) [3–5] is a new VLIW DSP pro-
cessor designed by the SoC Technology Center, Industrial Technology Research
Institute, Taiwan. It is architecturally designed to meet high-performance and
low power requirements of embedded multimedia in portable devices.

The remainder of this paper is organized as follows. Section 2 describes the
PAC architecture and its related compilation issues. The development of the PAC
compiler based on ORC [1] and its code generation are presented in Section 3. Ex-
perimental benchmark results of the compiler/architecture in its current state are
given in Section 4. Our current experiments show that our scheduling/allocation
methods for PAC’s datapath and register file design are quite effective. Other
? The work was supported in part by NSC under grant no. 93-2220-E-007-019 and

93-2220-E-007-020, by Ministry of Economic Affairs under grant no. 93-EC-17-A-03-
S1-0002 and 94-EC-17-A-01-S1-034, and by MOE research excellent project under
grant no. 94-2752-E-007-004-PAE in Taiwan

transformations such as peephole optimizations, and the higher-level loop-nest
optimizer (LNO), are also put into comparison. Section 5 concludes this paper.

2 The Parallel Architecture Core

The Parallel Architecture Core (PAC) is a fixed-point, 5-way issue VLIW DSP
architecture. PAC contains two Arithmetic Logic Units (ALU), two Load/Store
Units (LSU), and a single Scalar Unit. The ALU and LSU units are organized
into two clusters, each containing a pair of both functional unit (FU) types. The
Scalar Unit executes branch operations, and is also capable of most common
load/store and arithmetic operations. The architecture is illustrated in Fig. 1.

Load / Store Unit

Private Registers (A)

Arithmetic Unit

Public Registers (D)

Public Registers (D)

Private Registers

(AC)

cluster 2

Memory Interface

Private Registers (A)

Arithmetic Unit

Public Registers (D)

Public Registers (D)

Private Registers

(AC)

cluster 1

Load / Store Unit

Program Sequence

Control Unit

Scalar Unit

Private Registers (R)

Fig. 1. The PAC DSP Architecture

The registers of PAC are highly partitioned and distributed. The rationale of
this design is to avoid complete connections to all functional units, thus lowering
register file port counts. This is to avoid the large area, slow access speed, and
high power consumption of a fully connected unified register file, although at
the expense of an irregular architecture.

Examining PAC’s registers, the A and AC register files are private registers,
directly attached to and only accessible by each LSU and ALU respectively.
The R-register file is private to the Scalar Unit. There are four D-register files,
partitioned among the two clusters. Each of the D-register files have only 3 read
ports and 2 write ports (3R/2W). Among them, 1R/1W are dedicated to the
Scalar Unit, leaving only 2R/1W for the cluster FUs to use. The remaining set
of 2R/1W ports are not enough to connect to both cluster FUs simultaneously.
Instead, they are switched between the LSU/ALU: during each cycle, the access
ports of each of the two D-register files (in a single cluster) may be connected to
the LSU or ALU, but not both. This means that access of the two D-register
files are mutually-exclusive for each FU, and each LSU/ALU can access only one
of them during each cycle. The designers of PAC called this a ‘ping-pong register
file’ design, presumably due to the back-and-forth style of register file access.

These port access restrictions makes operand access in the PAC architecture
resource dependent. This makes instruction scheduling and register assignment
inherently inseparable. For example, the short code sequence:

mov TN1, 1
mov TN2, 2

Two move operations that assign a constant to a virtual register: they can only
be scheduled in parallel if TN1 and TN2 are assigned registers from different
D-register files; if both are assigned to the same D-register file, they can only be
scheduled and issued sequentially. We see parallelism restricted by the ping-pong
register in this example.

Adding another operation, the example becomes more complicated. The third
add instruction accesses TN1 and TN2, thus they must be simultaneously ac-
cessible by the add operation to be valid.

mov TN1, 1
mov TN2, 2
add TN3, TN1, TN2

As mentioned above, an operation cannot access both D-register files in the
same cycle. As shown in Fig. 2, a copy operation must be inserted to transfer
TN1 or TN2 to another register file, to generate valid code. This example used
an additional copy with no gain in performance

mov TN1, 1
mov TN2, 2
add TN3, TN1, TN2

TN1, TN2 assigned to

different D register banks

TN1, TN2 both assigned to

one D register bank

M-Unit I-Unit

mov D1, 1

mov D2, 2

M-Unit I-Unit

mov D1, 1 mov D8, 2

add D3, D1, D2

mov A1, D8

add D3, D1, A1

mov TN1, 1
mov TN2, 2
add TN3, TN1, TN2

TN1, TN2 assigned to

different D register banks

TN1, TN2 both assigned to

one D register bank

M-Unit I-Unit

mov D1, 1

mov D2, 2

M-Unit I-Unit

mov D1, 1 mov D8, 2

add D3, D1, D2

mov A1, D8

add D3, D1, A1

2 cycles to execute the first

2 instructions, and 1 cycle to

execute the last instruction

1 cycle to execute the first

2 instructions, but 1

additional instruction

before the last instruction

Fig. 2. An illustration of interference caused by ping-pong register files

Figure 3 shows example of how cross cluster communication works: the
current version of PAC requires explicit cross-cluster copy operations to transfer
data between clusters. Cross cluster data transfer is a high latency operation
requiring many cycles to complete, and can hinder performance if not used with
respect to the overall schedule.

3 Compiling for the PAC Architecture

The design of PAC as an instruction set has made it a hard fit into contemporary
compiler target machine models, affecting our development of its compiler. The

mov TN1, 6

lw TN8, [TN7]

mov TN2, .A

mov TN4, 7

mul TN5, TN3, TN4

mul TN10, TN8, TN9

lw TN3, [TN2]

mov TN7, .B

add TN11, TN6, TN10

sw TN11, [TN12]

mov TN12, .Z

mov TN9, 8

add TN6, TN1, TN5

(,)

(7,8)

6

X A B

Y

Z X Y

=
=
= + •

Vector Dot Product

mov A0, .A mov A8, .B

lw D17, [A8]

mov AC0, 6 mov AC8, 8

mov AC1, 7

mul D18, D17, AC8

mov A1, .Z

sw D4, [A1]

copy D3, D18

mul D1, D0, AC1

add D2, AC0, D1

add D4, D2, D3

lw D0, [A0]

mov A0, .Amov R0, 6 mov A8, .Bmov AC0, 7

copy D8, D17

mul D9, D8, AC1

mul D2, D0, AC0mov A1, .Z

add A2, D1, D2

sw D10, [A1]

lw D0, [A0] lw D17, [A8]copy D1, R0 mov AC1, 8

add D10, A2, D9

Exploiting Parallelism in Two Clusters as Usual

M-Unit M-UnitI-Unit I-UnitB-Unit

Utilizing Ping-pong Registers (1 more instruction, but
may turn-off 1 I-Unit)

Fig. 3. An example of scheduling operations across clusters

porting of the main ORC infrastructure involved filling in many target machine
information fields, and writing code expansion procedures for WHIRL-to-CG
translation. Much of the machine level transformations, however, required rolling
out our own methods. This section will describe some of our work in generating
code for PAC.

3.1 Allocation of Operand Storage

The clustered design and ping-pong register files in PAC, implies the concept
of scheduling has to be extended from functional units, to resources guarding
access of operand storage. The access port restriction of the ping-pong registers
is an example.

Our current method, is a scheduling pass that simultaneously optimizes the
instruction sequencing and resource assignment by simulated annealing (SA).
The design originates from Leupers’ work [9] and our initial implementation [6],
using a combined instruction scheduling/register file assignment algorithm to
iteratively obtain better results.

Leupers’ algorithm operates by first generating a random bi-partitioning of
the operations; a list scheduler (LS) then schedules the partitioned instructions,
inserting/managing cross cluster communications along the way. The LS then
returns the obtained schedule length as the ‘energy’ value used in a simulated
annealing optimization process, representing an evaluation of the current par-
titioning state. This process is repeatedly invoked, and in each iteration, de-
pending on whether improvement is gained or not, the random change may be
retained or discarded. Iteration continues until the energy/evaluation falls under
some threshold, where we are confident that the obtained optimization state is
of sufficient quality.

To adapt this SA method for PAC we need a change in the formulation of
optimized state: instead of a partitioning of operations, we optimize a register
file assignment of the virtual registers. Figure 4 shows the high-level simulated
annealing control. It iteratively runs the scheduler, which does fine-grain se-
quencing of operations, and returns an evaluation of the current optimization
state. Currently, the evaluation consists of just the length of the schedule, as in

Combined Instruction Scheduling and Register File Assignment
by Simulated Annealing

Input: n operations to be scheduled
Output: Schedule of the n instructions and a register file assignment (RFA) map:

V R: set of all virtual registers, RF : set of register files
RFA map = {(v1, f1), (v2, f2), ...} vi ∈ V R, fi ∈ RF

1. Choose a schematic register file placement(e.g. 1 cluster, 2 clusters, ...).
2. Make initial register file assignments: randomly assign each

virtual register to any of the wanted register files, and record in RFA map.
3. Given RFA map, run PAC Scheduler,

and set sched len to the computed total schedule length in cycles.
4. Set initial values for:

threshold: threshold value for the simulated annealing process.
energy: initial energy, larger than threshold.
p test: a probability test value p test (0 < p test < 1).

5. Repeat the following steps while energy > threshold:
5a. Make change in RFA map:

randomly choose a virtual register, and assign it to a different register file.
optionally change the schematic register file placement.

5b. With the new RFA assignment change, run PAC Scheduler again,
and set new sched len to the new count of total schedule length.

5c. Adjust energy, sched len, and RFA map by the following rules:
If new sched len < sched len then

decrease energy, set sched len to new sched len,
and keep the new RFA changes made in step 5a.

If new sched len ≥ sched len, get random number 0 ≤ R ≤ 1:
If R > p test then

decrease energy, set sched len to new sched len,
and keep the changes made in step 5a.

If R ≤ p test then
increase energy and revert changes made in step 5a.

6. Optionally choose another schematic register file placement,
and repeat steps 2–5 to select the better results.

7. Retain the final schedule and RFA map as the output results.

Fig. 4. The high-level simulated annealing algorithm

The PAC Scheduler Algorithm

Input: ReadyList of operations to be scheduled
RFA map, in the form of a function RegisterFile : V R → RF

Output: Schedule of the n instructions, and the schedule length

While ReadyList is not empty:
Select operation Op from ReadyList
Find earliest cycle Cycle we can schedule Op
While Op is not scheduled:

Examine available resources in Cycle, and:
For each register operand oi of Op:

If no resources available to access RegisterFile(oi):
Enumerate possible copy sequences to transfer oi to an accessible register file
For each copy sequence cpseq

If cpseq is schedulable in prior cycles:
Feasible(cpseq) = true

If for each register operand oi of Op we have resources to access RegisterFile(oi),
or we have some c such that Feasible(c):

Schedule Op into Cycle, advance ReadyList
Break from inner loop

else
Increment Cycle

Return length of schedule

Fig. 5. The scheduler/evaluation algorithm

Leupers’ algorithm. We are currently looking at incorporating other statistics
(e.g. register pressure, number of inserted copies) as part of the evaluation. The
assignment of register files will improve progressively throughout the SA itera-
tions, with respect to the evaluation function. A final register allocator is then

run to allocate and assign hardware registers, which is guided by the result reg-
ister file assignments (RFA map). Fig. 5 illustrates the details of the scheduler
algorithm.

3.2 Peephole Optimizations for PAC

The Extended Block Optimizer (EBO) is a collection of peephole optimization
passes performed at the scope of extended basic blocks on the low-level machine
instruction IR in ORC. Our work on EBO not only refines existing optimiza-
tions, but also intend to utilize PAC’s DSP-specific features. Table 1 shows a
comparison of EBO in the original ORC for Itanium, and our PAC port of ORC.

Table 1. Comparison of EBO collections

ORC for PAC DSP
EBO optimization

IA64 compiler

Forward Propagation × ×
Common Subexpression Elimination (CSE) × ×
Constant Folding × ×
Dead Code Elimination (DCE) × ×
Resolve Conditional Branch × -
Condition Redundant × -
Merge Memory Offset - ×
Compound Operation Conversion × ×
Subword Calculation - ×
Dual Operation - ×

Some of the optimizations, specifically constant folding and DCE, are less
affected by the restrictions of PAC. But others, when applied after register al-
location, such as forward propagation and CSE which modify the operation
referenced operands (TNs) may produce invalid code due to register access re-
strictions.

Original code sequence
1: TN186(d1) <- copy_m TN185(a1)
2: TN187(d9) <- copy_m TN186(d1)
3: TN188(d8) <- addi_i TN187(d9) 0x4

After propagation
TN188(d8) <- addi_i TN185(a1) 0x4 ;

An example above illustrates a typical copy propagation: The value from TN185(a1)
is transferred to TN187(d9) in lines 1 and 2, so TN185(a1) should be able to
propagate to the reference of TN187(d9) in line 3, leaving lines 1 and 2 as redun-
dant code that can be eliminated. However, it is invalid under PAC’s architec-
tural restrictions; the operation code addi i is an I-unit (ALU) instruction whose
operand must be in the AC- or D-register files. a1 is not accessible by addi i under
any conditions, and thus not valid code. In order to prevent such errors, we should
utilize the register file assignment map, mentioned in the last section, to guard
against invalid code transformations. We are also working on optimizations that
makes use of PAC’s more sophisticated operations: multiply-accumulate, double-
word load/store, vector operations, post-increment/decrement addressing, etc.

4 Experimental Results

Our experiments were done with the DSPstone benchmark suite [10]. Since the
PAC DSP compiler is still in progress, we have only evaluated some stable opti-
mization combinations to obtain an early assessment of the effectiveness of our
work. All benchmark programs are compiled with three types of option sets: the
traditional register allocation (TRA), TRA with LNO and EBO (LNO+EBO),
and register allocation with simulated annealing scheduling (SARA). TRA refers
to a modification of the original ORC register allocator that assumes full gen-
eral purpose registers, with a post-process pass that forces copy operations to
generate valid code. It is treated as the base reference in our comparison.

0

0.5

1

1.5

2

2.5

3

fir

biq
uad

_o
ne_

se
ct

io
n

biq
uad

_N
_s

ec
tio

ns
lm

s

re
al

_u
pdat

e

co
m

ple
x_

updat
e

m
at

rix
1

m
at

rix
2

n_c
om

ple
x_

updat
es

fir
2d

im

m
at

1x
3

co
m

ple
x_

m
ulti

ply

n_r
ea

l_
updat

es

dot_
pro

duct

co
nvo

lu
tio

n

S
p

ee
d

u
p

Traditional
RA

Traditional
RA + EBO +
LNO

SA RA

Fig. 6. Comparison of speedups under various optimization options

Fig. 6 shows and compares the speedup of the benchmarks with option sets
LNO+EBO and SARA, using TRA as the baseline. As shown in Fig. 6, the
performance gains vary widely across different benchmarks with average speedup
of 1.78 for LNO+EBO and 1.58 for SARA.

Although the LNO+EBO+SARA combination is not yet stable enough for
full testing, the current results show that our methods of scheduling/allocation,
code optimizations, and integration of the LNO phase could yield substantial
improvement in the generated code. Also, the simulated annealing process gives
a potentially exhaustive exploration on how the register usage affects PAC, in-
vestigating architectural parameters. Currently, there is a restriction that data
dependencies across different functional units takes 3 cycles, due to lack of bypass
paths between FUs. This causes significant restrictions in utilizing all functional
units, causing some of the benchmarks, such as biquad one section, less affected
by our optimizations. We should note that these test results have all been used as
feedback for the DSP design team, and we expect an enhanced next generation
PAC to improve on these deficiencies.

5 Conclusion

We have presented our compiler development for PAC, a new VLIW DSP pro-
cessor which features a clustered design and complex, partitioned register files.
We have described methods of code generation for PAC and demonstrated their
viability through several preliminary experiments which were done with the PAC
DSP prototype. We also note that many deficiencies of the first generation PAC
architecture were revealed by our evaluation and we are currently referring to the
experiences and reforming the development of compilers for the next generation
of PAC DSP architecture, which will further extend our current work.

References

1. Roy Ju, Sun Chan, and Chengyong Wu: Open Research Compiler for the Itanium
Family. Tutorial at the 34th Annual Int’l Symposium on Microarchitecture, Dec.
2001

2. Tay-Jyi Lin, Chen-Chia Lee, Chih-Wei Liu, and Chein-Wei Jen: A Novel Register
Organization for VLIW Digital Signal Processors. Proceedings of 2005 IEEE
International Symposium on VLSI Design, Automation, and Test, pages 335–
338, 2005

3. David Chang and Max Baron: Taiwan’s Roadmap to Leader-
ship in Design. Microprocessor Report, In-Stat/MDR, Dec. 2004.
http://www.mdronline.com/mpr/archive/mpr 2004.html

4. Tay-Jyi Lin, Chin-Chi Chang. Chen-Chia Lee, and Chein-Wei Jen: An Efficient
VLIW DSP Architecture for Baseband Processing. Proceedings of the 21th In-
ternational Conference on Computer Design, 2003

5. Tay-Jyi Lin, Chie-Min Chao, Chia-Hsien Liu, Pi-Chen Hsiao, Shin-Kai Chen,
Li-Chun Lin, Chih-Wei Liu, Chein-Wei Jen: Computer architecture: A unified
processor architecture for RISC & VLIW DSP. Proceedings of the 15th ACM
Great Lakes symposium on VLSI, April 2005

6. Cheng-Wei Chen, Chung-Lin Tang, Yung-Chia Lin, and Jenq-Kuen Lee:
ORC2DSP: Compiler Infrastructure Supports for VLIW DSP Processors. Pro-
ceedings of 2005 IEEE International Symposium on VLSI Design, Automation,
and Test, pages 224-227, 2005

7. OMAP5910 Dual Core Processor - Technical Reference Manual, Texas Instru-
ments, Jan, 2003.

8. S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi, and J. D. Owens:
Register organization for media processing. International Symposium on High
Performance Computer Architecture (HPCA), pp.375-386, 2000

9. R. Leupers: Instruction scheduling for clustered VLIW DSPs. In Proc. Int’l Con-
ference on Parallel Architecture and Compilation Techniques, pages 291–300,
Oct. 2000

10. V. Zivojnovic, J. Martinez, C. Schläger and H. Meyr: DSPstone: A DSP-Oriented
Benchmarking Methodology. Proc. of ICSPAT, Dallas, 1994

