
Scalable Array SSA and Array Data Flow

Analysis

Silvius Rus, Guobin He, and Lawrence Rauchwerger

Parasol Lab, Department of Computer Science, Texas A&M University
{silviusr,guobinh,rwerger}@cs.tamu.edu

Abstract. Static Single Assignment (SSA) has been widely accepted as
the intermediate program representation of choice in most modern com-
pilers. It allows for a much more efficient data flow analysis of scalars
and thus leads to better scalar optimizations. Unfortunately not much
progress has been achieved in applying the same techniques to array data
flow analysis, a very important and potentially powerful technology. In
this paper we propose to improve the applicability and scalability of pre-
vious efforts in array SSA through the addition of a symbolic memory
access descriptor for summarizing, in an aggregated and thus scalable
manner, the accesses to the elements of an array over large, interpro-
cedural program contexts. Scalar SSA functionality is extended using
compact memory descriptors and thus provides a unified, scalable SSA
representation. We then show the power of our new representation by
using it to implement a basic data flow algorithm, reaching definitions.
Finally we use this analysis to propagate array constants and obtain
performance improvement (speedups) for real benchmark codes.

1 Introduction

Important compiler optimization or enabling transformations such as constant
propagation, loop invariant motion, expansion/privatization depend on the power
of data flow analysis. The Static Single Assignment (SSA) [9] program represen-
tation has been widely used to explicitly represent the flow between definitions
and uses in a program.

SSA relies on assigning each definition a unique name and ensuring that any
use may be reached by a single definition. The corresponding unique name ap-
pears at the use site and offers a direct link from the use to its corresponding and
unique definition. When multiple control flow edges carrying different definitions
meet before a use, a special φ node is inserted at the merge point. Merge nodes
are the only statements allowed to be reached directly by multiple definitions.

Classic SSA is limited to scalar variables and ignores control dependence rela-
tions. Gated SSA [1] introduced control dependence information in the φ nodes.
This helps selecting, for a conditional use, its precise definition point when the
condition of the definition is implied by that of the use [33]. The first practical
extensions to array variables ignored array indices and treated each array defini-
tion as possibly killing all previous definitions. This approach was very limited in

2 Silvius Rus, Guobin He and Lawrence Rauchwerger

functionality. Array SSA was proposed by [17, 29] to match definitions and uses
of partial array regions. However, their approach lacks a symbolic representa-
tion for array regions. This led to limited applicability for compile-time analysis
and potentially high overhead for derived run-time analysis. Section 5 presents
a detailed comparison of our approach against previous related work.

We propose an Array SSA representation of the program that accurately
represents the use-def relations between array regions and accounts for control
dependence relations. We use the RT LMAD symbolic representation of array
regions, which can represent uniformly memory location sets in a compact way
for both static and dynamic analysis techniques. We present a compact reaching
definition algorithm based on Array SSA that distinguishes between array subre-
gions and is control accurate. The algorithm is used to implement array constant
propagation, for which we present whole application improvement. Although the
Array SSA form that we present in this paper only applies to structured pro-
grams that contain no recursive calls, it can be generalized to any programs with
an acyclic Control Dependence Graph (except for self-loops). We implemented a
program restructuring algorithm that brings programs to structured form (the
only control flow constructs are If and Do). 1

We believe this paper makes the following original contributions:
1. Array SSA form providing accurate, control-sensitive use-def information
at array region level.
2. A control sensitive, precise array region Reaching Definitions algorithm
based on Array SSA.
3. An array constant propagation algorithm based on Array SSA. We ob-
tained up to 20% whole application speedup for four benchmark codes.

2 Array SSA Form

Array SSA is harder to define then its scalar counterpart because array defini-
tions usually kill only a subregion, but not the whole array. This section intro-
duces a general array region representation, presents our proposed Array SSA
design and illustrates its use in a Reaching Definition algorithm.

2.1 Array Region Representation

Consider the code in Fig. 1(a). The first loop defines array A from 1 to 10, while
the second loop uses the values from 1 to 5. It is easy to see that the definition
covers the use, which means constant 0 can be propagated from line 2 to line 5.

We chose the Run-time Linear Memory Access Descriptor (RT LMAD) [27]
as the representation for memory reference sets. The RT LMAD can represent
uniformly any memory reference pattern in a structured Fortran program. It
consists of a triplet-based linear representation, the LMAD [16, 24], and of sym-
bolic operators that describe operations that are not closed on LMADs. The

1 Our compiler has successfully restructured most of the PERFECT and SPEC bench-
mark suites with less than 40% average code expansion.

Scalable Array SSA and Array Data Flow Analysis 3

1 Do i = 1 , 10
2 A(i) = 0
3 EndDo

4 Do i = 1 , 5
5 . . . = A(i)
6 EndDo

Def = [1 : 10]
Use = [1 : 5]

(a)

1 Do i = 1 , 10
2 I f (C(i) .GT. 0)
3 A(i) = 0
4 EndIf

5 EndDo

6 Do i = 1 , 5
7 I f (C(i) .GT. 0)
8 . . . = A(i)
9 EndIf

10 EndDo

Def =
⋃

10

i=1
(C(i).GT.0)#[i]

Use =
⋃

5

i=1
(C(i).GT.0)#[i]

(b)

1 Do i = 1 , 10
2 I f (C(i) .GT. 0)
3 A(i) = 0
4 EndIf

5 EndDo

6 Do i = 1 , 5
7 . . . = A(i)
8 EndDo

Def =
⋃

10

i=1
(C(i).GT.0)#[i]

Use = [1 : 5]

(c)

Fig. 1. Constant propagation scenarios: (a) statically determined and linear reference
pattern, (b) statically determined but nonlinear reference pattern, and (c) dynamic
and nonlinear reference pattern.

LMAD describes strided, multidimensional reference patterns using the follow-
ing notation: start + [stride1 : span1, stride2 : span2, ...]

2. The definition and
use array sections in Fig. 1(a) are expressed as LMADs.

The RT LMAD can be viewed as a tree having LMADs as leaves, and
operands corresponding to nonlinear operations as internal nodes. For the code
in Fig. 1(b), the section of the array defined by the first loop cannot be described
using an LMAD due to the fact that the write to A is controlled by a nonlinear
condition, C(i).GT.0. Using RT LMADs, we can express it using two operators:
predication (#), and expansion (

⋃n
i=1). Using symbolic RT LMAD operations,

we can prove that the use in the second loop is covered by the definition in the
first loop and can propagate constant 0 from line 3 to line 8. Nonlinear reference
patterns are most often due to indirect indexing (index arrays). They cannot
generally be represented using triplet based [13, 24] or linear constraint set rep-
resentations [3, 11, 10, 22, 8, 25]. They can be represented, and operated upon,
using RT LMADs.

Let us consider the case in Fig. 1(c). If we do not know anything about
the values in array C, we cannot propagate the values in A from line 3 to line
7. However, using RT LMADs we can easily generate a run-time test to verify
that Use −Def = ∅. Its result can be used as a guard around a region that is
aggressively optimized based on the assumption of constant propagation.

Unlike triplet-based or linear constraint set representations, the RT LMAD
is closed to all the operations required by our analysis: set intersection, dif-
ference, union, expansion by an iteration space, translation across subprogram
boundaries. This allows us to think in terms of set operations and to hide im-
plementation details in RT LMAD internals.

4 Silvius Rus, Guobin He and Lawrence Rauchwerger

1 A(1)=0
2 I f (x > 0)
3 A(2)=1
4 EndIf

5 Do i = 3 , 10
6 A(i)=3
7 · · ·=A(· · ·)
8 A(i +8)=4
9 EndDo

10 · · ·=A(1)
11 · · ·=A(5)
12 I f (x > 0)
13 · · ·=A(2)
14 EndIf

(a)

A0 : [A0, ∅] = Undefined
1 A1 : A1 (1)=0

A2 : [A2, {1}] = δ(A0, [A1, {1}])
2 I f (x>0)

A3 : [A3, ∅] = π([A2, (x > 0)])
3 A4 : A4[2] = 0

A5 : [A5, {2}] = δ(A3, [A4, {2}])
4 EndIf

A6 : [A6, {1} ∪ (x > 0)#{2}] =
γ(A0, [A2, {1}], [A5, (x > 0)#{2})

5 Do i = 3 , 10
A7 : [A7, [3 : i + 2] ∪ [11 : i + 8]] =

µ(A6, (i = 3, 10), [A9, [3 : i − 1]], [A11, [11 : i + 7]])
6 A8 : A8(i) = 1

A9 : [A9, {i}] = δ(A7, [A8, {i}])
7 · · ·=A9 (· · ·)
8 A10 : A10(i + 8) = 1

A11 : [A11, {i, i + 8}] = δ(A7, [A9, {i}], [A10, {i + 8}])
9 EndDo

A12 : [A12, {1} ∪ (x > 0)#{2} ∪ [3 : 18]] =
η(A0, [A6, {1} ∪ (x > 0)#{2}], [A7, [3 : 18]]

10 · · ·=A12 (1)
11 · · ·=A12 (5)
12 I f (x>0)

A13 : [A13, ∅] = π(A12, (x > 0))
13 · · ·=A13 (2)
14 Endif

(b)

Fig. 2. (a) Sample code and (b) Array SSA form

2.2 Array SSA Definition and Construction

The goal of an SSA representation is to expose the basic dataflow relations within
a program. This information can then be exploited by analyses that search for
more complex dataflow relations such as reaching definitions or liveness analysis.

Array SSA Node Placement

In scalar SSA, pseudo statements φ are inserted at control flow merge points.
These pseudo statements precisely represent how scalar definitions are combined.
[1] refines the SSA pseudo statements in three categories, depending on the type
of merge point: γ for merging two forward control flow edges, µ for merging a
loop-back arc with the incoming edge at the loop header, and η to account for
the possibility of zero-trip loops. The array SSA form proposed in [29] presents
the need for additional φ nodes after each assignment that does not kill the whole
array. These extensions, while necessary, are not sufficient to represent array data
flow because they do not represent array indices. In order to provide a useful
form of Array SSA, it is necessary to incorporate array region information into
the representation.

Our node placement scheme is essentially the same as in [29]. In addition to φ

nodes at control flow merge points, we add a φ node after each array definition.
These new nodes are named δ. They merge the effect of the immediately previous

2 For 1-dimensional LMADs with a stride of 1, we use notation [start : end].

Scalable Array SSA and Array Data Flow Analysis 5

definition with that of all other previous definitions. Each node corresponds to a
structured block of code. In the example in Fig. 2, A2 corresponds to statement
1, A6 to statements 1 to 4, A11 to statements 6 to 8, and A12 to statements 1 to
9. In general, a δ node corresponds to the maximal structured block that ends
with the previous statement.

Accounting for Partial Kills: δ Nodes
In the example in Fig. 2, the array use A(1) at statement 10 could only have

been defined at statement 1. Between statement 1 and statement 10 there are
two blocks, an If and a Do. We would like to have a mechanism that could quickly
tell us not to search for a reaching definition in any of those blocks. We need an
SSA node that can summarize the array definitions in these two blocks. Such a
summary node could tell us that the range of locations defined from statement
2 to statement 9 does not include A(1).

[An, @An] = δ(A0, [A1, @A
n
1], [A2, @A

n
2], . . . , [Am, @A

n
m]) (1)

where @An =
m
⋃

k=1

@A
n
k and @A

n
i ∩ @A

n
j = ∅, ∀ 1 ≤ i, j ≤ m, i 6= j (2)

The function of a δ node is to aggregate the effect of two or more disjoint struc-
tured blocks of code. Equations 1 and 2 present its syntax and properties. 3 SSA
name An merges the array subregions defined by Ak, k = 1,m. The locations
defined by Ak which are not killed before An are represented as @An

k . They al-
low us to narrow down the source of the definition of the data within a specific
set of memory locations. Given a set Use(An) of memory locations read right
after An, equation 1 tells us that Use(An) ∩ @An

k was defined by Ak. The free
term A0 is used to report locations undefined within the block corresponding
to An. Fig. 3(a) shows the way we build δ gates for straight line code. Since
the RT LMAD representation contains built-in predication, expansion by a re-
currence space and translation across subprogram boundaries, the δ functions
become a powerful mechanism for computing accurate use-def relations. Essen-
tially, a δ gate translates the problem of disproving the existence of a use-def
edge into the problem of proving that an RT LMAD is empty.

Returning to our example, the exact reaching definition of the use at line 10
can be found by following the use-def chain {A12, A6, A2, A1}. A use of A12(20)
can be classified as undefined using a single RT LMAD intersection, by following
trace {A12, A0}.

Definitions in Loops: µ Nodes

The semantics of µ for Array SSA is different than those for scalar SSA. Any
scalar assignment kills all previous ones (from a different statement or previous
iteration). In Array SSA, different locations in an array may be defined by various
statements in various iterations, and still be visible at the end of the loop. In
the code in Fig. 2(a), Array A is used at statement 7 in a loop. In case we are

3 A δ function at the end of a Do block is written as η, and at the end of an If block as γ

to preserve the syntax of the conventional GSA form. A δ function after a subroutine
call is marked as θ, and summarizes the effect of a subroutine on the array.

6 Silvius Rus, Guobin He and Lawrence Rauchwerger

only interested in its reaching definitions from within the same iteration of the
loop (as is the case in array privatization), we can apply the same reasoning as
above, and use the δ gates in the loop body. However, if we are interested in all
the reaching definitions from previous iterations as well as from before the loop,
we need additional information. The µ node serves this purpose.

[An,@An] = µ(A0, (i = 1, p), [A1,@An
1], [A2,@An

2], . . . , [Am,@An
m]) (3)

The arguments in the µ statement at each loop header are all the δ definitions
within the loop that are at the immediately inner block nesting level (Fig. 3(c)),
and in the order in which they appear in the loop body. Sets @An

k are functions
of the loop index i. They represent the sets of memory locations defined in some
iteration j < i by definition Ak and not killed before reaching the beginning
of iteration i. For any array element defined by Ak in some iteration j < i, in
order to reach iteration i, it must not be killed by other definitions to the same
element. There are two kinds of definitions that will kill it: definitions (Kills)
that will kill it within the same iteration j and definitions (Killa) that will kill
it at iterations from j + 1 to i− 1.

@A
n
k (i) =

i−1
⋃

j=1

@Ak(j) −

Kills(j) ∪
i−1
⋃

l=j+1

Killa(l)

 (4)

where Kills =
m
⋃

h=k+1

@Ah, and Killa =
m
⋃

h=1

@Ah

This representation gives us powerful closed forms for array region definitions
across the loop. We avoid fixed point iteration methods by hiding the complexity
of computing closed forms in RT LMAD operations. The RT LMAD simplifica-
tion process will attempt to reduce these expressions to LMADs. However, even
when that is not possible, the RT LMADs can be used in compile-time symbolic
comparisons (as in Fig. 1(b)), or to generate efficient run-time assertions (as in
Fig. 1(c)) that can be used for run-time optimization and speculative execution.

The reaching definition for the array use A12(5) at statement 11 (Fig. 2(b)) is
found inside the loop using δ gates. We use the µ gate to narrow down the block
that defined A(5). We intersect the use region {5} with @A7

9(i = 11) = [3 : 10],
and @A7

11(i = 11) = [11 : 18]. We substituted i ← 11, because the use happens
after the last iteration. The use-def chain is {A12, A7, A9}.

Representation of Control: π Nodes

Array element A13(2) is conditionally used at statement 13. Based on its
range, it could have been defined only by statement 3. In order to prove that it
was defined at statement 3, we need to have a way to associate the predicate of
the use with the predicate of the definition. We create fake definition nodes π

to guard the entry to control dependence regions associated with Then and Else
branches: [An, ∅] = π(A0, cond). This type of gate does not have a correspondent
in classic scalar SSA, but in the Program Dependence Web [1]. Their advantage
is that they lead to more accurate use-def chains. Their disadvantage is that
they create a new SSA name in a context that may contain no array definitions.

Scalable Array SSA and Array Data Flow Analysis 7

Such a fake definition A13 placed between statement 12 and 13 will force the
reaching definition search to collect the conditional x > 1 on its way to the
possible reaching definition at line 2. This conditional is crucial when the search
reaches the γ statement that defines A6, which contains the same condition. The
use-def chain is {A13, A12, A6, A5, A4}.

1 A(R1) = . . .
2 A(R2) = . . .
. . .
n A(Rn) = . . .

[A0, ∅] = Undefined
A1(R1) = . . .
[A2, R1] = δ(A0, [A1, R1])
A3(R2) = . . .
[A4, R1 ∪ R2] = δ(A0, [A2, R1 − R2], [A3, R2])
. . .
A2n−1(Rn) = . . .

[A2n,
⋃n

i=1
Ri] = δ(A0, [A2n−2,

⋃n−1

i=1
Ri − Rn], [A2n−1, Rn])

(a) Straight line code.

1 A(Rx) = . . .
2 I f (cond) Then

3 A(Ry) = . . .
4 EndIf

[A0, ∅] = Undefined
A1(Rx) = . . .
[A2, Rx] = δ(A0, [A1, Rx])
I f (cond) Then

[A3, ∅] = π(A2, cond)
A4(Ry) = . . .
[A5, Ry] = δ(A3, [A4, Ry])

EndIf

[A6, Rx ∪ cond#Ry] = γ(A0, [A2, Rx − cond#Ry], [A5, cond#Ry])

(b) If block.

1 Do i =1,n
2 A(Rx(i)) = . . .
3 A(Ry(i)) = . . .
4 EndDo

[A0, ∅] = Undefined
Do i =1,n

[A5, @A5

2
(i) ∪ @A5

4
(i)] = µ(A0, (i = 1, n), [A2, @A5

2
(i)], [A4, @A5

4
(i)])

A1(Rx(i)) = . . .
[A2, Rx(i)] = δ(A5, [A1, Rx])
A3(Ry(i)) = . . .
[A4, Rx(i) ∪ Ry(i)] = δ(A5, [A2, Rx(i) − Ry(i)], [A3, Ry(i)])

EndDo

[A6,
⋃n

i=1
@A5

2
(i) ∪ @A5

4
(i)] = η([A0, ∅], [A5,

⋃n
i=1

@A5

2
(i) ∪ @A5

4
(i)])

(c) Do block. @A5

k(i) = definitions from Ak not killed just before iteration i (Equation 4).

Fig. 3. Array SSA transformation: original code on the left, Array SSA code on the
right. Ak represents an SSA name (and implicitly its definition statement). R represents
an array region (possibly conditional) expressed as an RT LMAD.

Array SSA Construction

Fig. 3 presents the way we create δ, η, γ, µ, and π gates for various program
constructs. The associated array regions are built in a bottom-up traversal of
the Control Dependence Graph intraprocedurally, and the Call Graph interpro-
cedurally. At each block level (loop body, then branch, else branch, subprogram
body), we process sub-blocks in postdominating order.

8 Silvius Rus, Guobin He and Lawrence Rauchwerger

Algorithm SearchRD(An , Use , GivenBlock)
I f An ∈ GivenBlock And Use 6= ∅ Then

− I f (DefinitionSite(An) = Original Statement) Then

1 | ReachDef(An) = ReachDef(An) ∪ (@An ∩ Use)
− Else

// DefinitionSite(An) : [An, @An] = φ(Abefore, . . . , [A1, @An
1
], [A2, @An

2
], . . .)

− I f φ = π(Abefore, cond) Then

| Call SearchRD(Abefore , cond#Use , GivenBlock)
| Else

2 | I f φ = µ(Abefore, (i = 1, p), . . .) Then

| Call SearchRD(Abefore ,
⋃p

i=1
(Use(i) − @An(i)) , GivenBlock)

− ForEach [Ak, @An
k]

3 | Call SearchRD(Ak , Use ∩ @An
k , Block(Ak))

− EndForEach

| Else

2 | Call SearchRD(Abefore , Use − @An , Block(Abefore))
− ForEach [Ak, @An

k]
3 | Call SearchRD(Ak , Use ∩ @An

k , GivenBlock)
− EndForEach

EndIf

EndIf

EndIf

EndIf

Fig. 4. Recursive algorithm to find reaching definitions. An is an SSA name and Use

is an array subregion. Region 1 reports final answers, region 2 continues the search for
undefined locations, and region 3 narrows the block of a reaching definition.

2.3 Reaching Definitions

For each array use Use of an SSA name An, and for a given block, we want
to compute its reaching definition set, {[A1, R1], [A2, R1], . . . , [An, Rn], [⊥, R0]},
in which Rk=ReachDef(Ak) specifies that region Rk of this use is defined by
Ak, and not killed by any other definition before it reaches An. [⊥, R0] means
region R0 is not defined within the given block. Restricting the search to different
blocks produces different reaching definition sets. For instance, for a use within
a loop, we may be interested in reaching definitions from the same iteration
of the loop (block = loop body) as is the case in array privatization. We can
also be interested in definitions from all previous iterations of the loop (block =
whole loop) or for a whole subroutine (block = routine body). Fig. 4 presents
the algorithm for computing reaching definitions. The algorithm is called as Call
SearchRD(Au, Use, GivenBlock) Use is the region whose definition sites we are
searching for, Au is the SSA name of array A at the point at which it is used,
and GivenBlock is the block that the search is restricted to. The set of memory
locations containing undefined data is computed as: @Use− (ReachDef(A1) ∪
ReachDef(A2)∪. . .∪ReachDef(An)). The search paths presented in Section2.2
were obtained using this algorithm.

3 Array Constant Propagation

We present an Array Constant Propagation optimization technique based on
our Array SSA form. Often programmers encode constants in array variables to

Scalable Array SSA and Array Data Flow Analysis 9

set invariant or initial arguments to an algorithm. Analogous to scalar constant
propagation, if these constants get propagated, the code may be simplified which
may result in (1) speedup or (2) simplification of control and data flow which
enable other optimizing transformations, such as dependence analysis.

We define a constant region as the array subregion that contains constant
values at a particular use point. We define array constants are either (1) integer
constants, (2) literal floating point constants, or (3) an expression f(v) which is
assigned to an array variable in a loop nest. We name this last class of constants
expression constants. They are parameterized by the iteration vector of their
definition loop nest. Presently, our framework can only propagate expression
constants when (1) their definition indexing formula is a linear combination of
the iteration vector described by a nonsingular matrix with constant terms and
(2) they are used in another loop nest based on linear subscripts (similar to [36]).
For instance, for the code in Fig. 5, we can propagate the values defined at line
2 to their uses at lines 7 and 9.

1 Do i =1, num
2 IA(i)=(i ∗(i −1))/2
3 EndDo

4 . . .
5 Do i =1, num
6 Do j =1, i
7 i j=IA(i)+ j
8 Do k=1, i
9 k l=IA(k)+1

10 . . .
11 EndDo

12 EndDo

13 EndDo

Fig. 5. Example: TRFD.

1 [A0, ∅] = Undefined
2 A1(1) = 0
3 [A2, {1}] = δ(A0, [A1, {1})
4 I f (x>0)
5 A3 = π(A1, x > 0)
6 A4(1) = 1
7 [A5, {1}] = δ(A3, [A4, {1}])
8 Else

9 A6 = π(A2, x ≤ 0)
10 A7(1) = 1
11 [A8, {1}] = δ(A6, [A7, {1}]
12 EndIf

13 [A9, {1}] = γ(A0, [A5, (x > 0)#{1}], [A8, (x ≤ 0)#{1}])

Fig. 6. Array constant propagation example.

Subroutine s s o r
. . .
Call j a c l d (A)
Call b l t s (A)
. . .
End

Subroutine j a c l d (A)
Do k=2, nz−1, 1
Do j =2, ny−1, 1
Do i =2, nx−1, 1

. . .
A(1 , 2 , i , j , k)=0.0
A(1 , 4 , i , j , k)=0.0
. . .

EndDo

EndDo

EndDo

. . .
End

Subroutine b l t s (A)
Do k=2, nz−1, 1
Do j =2, ny−1, 1
Do i =2, nx−1, 1
Do m=1 , 5 , 1
Do l =1 , 5 , 1
V(m, i , j , k)=V(m, i , j , k)+
A(m, l , i , j , k)∗V(l , i , j , k)
. . .

EndDo

. . .
EndDo

End

Fig. 7. Example extracted from benchmark code Applu (SPEC)

10 Silvius Rus, Guobin He and Lawrence Rauchwerger

3.1 Array Constant Collection

In Array SSA, the reaching definitions of an array use can be computed by call-
ing algorithm SearchRD (Fig. 4). Based on reaching definition set of the use, the
constant regions can be computed by simply uniting the regions of the reaching
definitions corresponding to assignments of the same constant. To do interpro-
cedural constant propagation, we (1) propagate constant regions into routines
at call sites, and (2) compute constant regions for routines and propagate them
out at call sites. We iterate over the call graph until there are no changes.

We define a value tuple [Reg, V al] as the array subregion Reg where each
element stores a copy of V al. Reg is expressed as an RT LMAD and V al is an
array constant. A value set is a set of value tuples. We define the following oper-
ations on value sets. Filter (Equation 5) restricts the value tuple subregions to a
given array region. Intersection (Equation 6) and union (Equation 7) intersect
and unite, respectively, subregions across tuples with the same value.

Filter(V S, R) =
⋃

V Ti∈V S

[Reg(V Ti) ∩ R, V al(V Ti)] (5)

V S1 ∩ V S2 = {V T | ∃ V Ti ∈ V S1, V Tj ∈ V S2, s.t. (6)

V al(V T) = V al(V Ti) = V al(V Tj) and Reg(V T) = Reg(V Ti) ∩ Reg(V Tj)}

V S1 ∪ V S2 = {V T | ∃ V Ti ∈ V S1, V Tj ∈ V S2, s.t. (7)

V al(V T) = V al(V Ti) = V al(V Tj) and Reg(V T) = Reg(V Ti) ∪ Reg(V Tj)}

Fig. 8 shows the algorithm that collects array constants reaching the definition
point of SSA name Ak. The algorithm collects constants either directly from the
right hand side of assignment statements, or by merging constant value sets
corresponding to δ arguments. For loops, constant value sets collected within
an iteration are expanded across the whole iteration space. In order to collect
all the constants from a routine (needed for interprocedural propagation), we
invoke this algorithm with the last SSA name in the routine and its body.

For example in Fig 6, to collect the constants for this code, we call Collect(A9,
1-13) to compute VS(A9). 1-13 is the block of statements 1 to 13. Recursively,
Collect(A5, 5-7) will be called to compute VS(A5) and Collect(A8, 9-11) called
to compute VS(A8). The first Collect returns {[{1}, 1]} and the second returns
{[{1}, 1]}. Then VS(A9)= {[(x > 0)#{1}, 1]} ∪ {[(x ≤ 0)#{1}, 1]}={[{1}, 1]}.

3.2 Propagating and Substituting Constants

A subroutine may have multiple value sets for an array at its entry. Suppose
these value sets are V S1, · · · , V Sm, then V S1 ∩ · · · ∩ V Sm is the incoming
value set for the whole subroutine. The incoming value set can be increased
by subroutine cloning. Let us assume that for an array use Au, its reaching
definitions are {[A0, R0], [A1, R1], [A2, R2], . . . [An, Rn]}. Its value sets for this
use are Filter(V S(Ai), Ri), where V S(A0) is the incoming value set for Au’s
subroutine. In general, V S(Au) =

⋃n
i=0 Filter(V S(Ai), Ri).

The whole program is traversed in topological order of its call graph. Within a
subroutine, statements are visited in lexicographic order. We compute the value

Scalable Array SSA and Array Data Flow Analysis 11

Algorithm Collect(An) → V S(An)
VS(An)=∅
Switch (DefinitionSite(An))
Case assignment statement : An(index) = value

V S(An) = [{index}, value]
Case µ or δ gate : [An, @An] = φ(Abefore, . . . , [A1, @An

1
], [A2, @An

2
], . . . , [A2, @An

m])
V S(An) =

⋃n
k=1

Filter(Collect(Ak), @An
k)

I f (DefinitionSite(An) = µ(i = 1, p) gate) Then

VS(An)=
⋃p

i=1
V S(An)(i)

EndIf

EndSwitch

Return VS(An)
End

Fig. 8. Array Constant Collection Algorithm.

set for each use encountered. Interprocedural translation of constant regions and
expression constants is performed at routine boundaries as needed. For exam-
ple, in Fig 7, during the first traversal of the program, the outcoming set of
subroutine jacld is collected and translated into subroutine ssor at call site call
jacld. In the next traversal, the value set of A at callsite call blts is computed
and translated into the incoming value set of subroutine blts.

After the available value sets for array uses are computed, we substitute the
uses with constants. Since an array use is often enclosed in a nested loop and it
may take different constants at different iterations, loop unrolling may become
necessary in order to substitute the use with constants. For an array use, if its
value set only has one array constant and its access region is a subset of the con-
stant region, then this use can be substituted with the constant. Otherwise, loop
unrolling is applied to expose this array use when the iteration count is a small
constant. Constant propagation is followed by aggressive dead code elimination
based on simplified control and data dependences.

4 Implementation and Experimental Results

We implemented (1) Array SSA construction, (2) the reaching definition al-
gorithm and (3) array constant collection in the Polaris research compiler [2].
We applied constant propagation to four benchmark codes 173.applu, 048.ora,
107.mgrid (from SPEC) and QCD2 (from PERFECT). The speedups were mea-
sured on four different machines (Table 1). The codes were compiled using the
native compiler of each machine at O3 optimization level (O4 on the Regatta).
107.mgrid and QCD2 were compiled with O2 on SGI because the codes compiled
with O3 did not validate).

In subroutine OBSERV in QCD2, which takes around 22% execution time,
the whole array epsilo is initialized with 0 and then six of its elements are reas-
signed with 1 and -1. The array is used in loop nest OBSERV do2, where much
of the loop body is executed only when epsilo takes value 1 or -1. Moreover, the
values of epsilo are used in the inner-most loop body for real computation. ¿From
the value set, we get to know the use is all defined with constant 0, 1 and -1.

12 Silvius Rus, Guobin He and Lawrence Rauchwerger

Machine Processor Speed

Intel PC Pentium 4 2.8 GHz
HP9000/R390 PA-8200 200 MHz
SGI Origin 3800 MIPS R14000 500 MHz
IBM Regatta P690 PowerR4 1.3 GHz

(a)

Program Intel HP IBM SGI

QCD2 14.0% 17.4% 12.8% 15.5%
173.applu 20.0% 4.6% 16.4% 10.5%
048.ora 1.5% 22.8% 11.9% 20.6%
107.mgrid 12.5% 8.9% 6.4% 12.8%

(b)
Table 1. (a) Experimental setup and (b) Speedup after array constant propagation.

We unroll loop OBSERV do2, substitute the array elements with its correspond-
ing values, eliminate If branches and dead assignments. More than 30% of the
floating-point multiplications in OBSERV do2 are removed. Additionally, array
ptr is used in loops HIT do1 and HIT do2 after it is initialized with constants in
a DATA statement. In subroutine SYSLOP, called from within these two loops,
the iteration count of a While loop is determined by the values in ptr. After
propagation, the loop is fully unrolled and several If branches are eliminated.

In 173.applu, a portion of arrays a, b, c, d is assigned with constant 0.0 in
loop JACLD do1 and JACU do1. These arrays are only used in BLTS do1 and
BUTS do1 (Fig. 7), which account for 40% of the execution time. We find that
the uses in BLTS do1 and BUTS do1 are defined as constant 0.0 in JACLD do1
and JACU do1. Loops BLTS do1111 to BLTS do1114 and BUTS do1111 to
BUTS do1114 are unrolled. After unrolling and substitution, 35% of the multi-
plications are eliminated.

In 048.ora, array i1 is initialized with value 6 and then some of its elements
are reassigned with constant -2 and -4 before it is used in subroutine ABC,
which takes 95% of the execution time. The subroutine body is a While loop.
The iteration count of the While loop is determined by i1 (there are premature
exits). Array a1 is used in ABC after a portion of it is assigned with floating-point
constant values. After array constant propagation, the While loop is unrolled and
many If branches are eliminated.

107.mgrid was used as a motivating example by previous papers on array
constant propagation [37, 29]. Array elements A(1) and C(3) are assigned with
constant 0.0 at the beginning of the program. They are used in subroutines
RESID and PSINV, which account for 80% of the execution time. After constant
propagation, the uses of A(1) and C(3) in multiplications are eliminated.

5 Related Work

Scalar SSA Forms. Introduced by [9], scalar SSA was extended several times
by adding new numbering schemes and/or gate information for more accuracy:
control information [1, 5], concurrency [19], pointer dereference [18], and inter-
procedural issues [20].
Array Data Flow. There has been extensive research on array dataflow, most of
it based on reference set summaries: regular sections (rows, columns or points) [4]
linear constraint sets [32, 12, 11, 3, 34, 22, 25, 21, 26, 15, 14, 8, 23, 6, 37, 31, 27, 28],

Scalable Array SSA and Array Data Flow Analysis 13

and triplet based [13, 16]. Most of these approaches approximate nonlinear ref-
erences with linear ones [21, 8, 16].

Nonlinear references are handled as uninterpreted function symbols in [26],
using symbolic aggregation operators in [27] and based on nonlinear recurrence
analysis in [14, 35, 38, 28]. [7] presents a generic way to find approximative solu-
tions to dataflow problems involving unknowns such as the iteration count of a
while statement, but limited to intraprocedural contexts. Conditionals are han-
dled only by some approaches (most detailed discussions are in [34, 21, 13, 16, 23,
27]). Extraction of run-time tests for dynamic optimization based on data flow
analysis is presented in [23, 27].

Array SSA and its use in constant propagation and parallelization. In
the Array SSA form introduced by [17, 29], each array assignment is associated a
reference descriptor that stores, for each array element, the iteration in which the
reaching definition was executed. Since an array definition may not kill all its old
values, a merge function φ is inserted after each array definition to distinguish
between newly defined and old values. This Array SSA form extends data flow
analysis to array element level and treats each array element as a scalar. However,
their representation lacks an aggregated descriptor for memory location sets.
This makes it is generally impossible to to do array data flow analysis when
arrays are defined and used collectively in loops. Constant propagation based
on this Array SSA can only propagate constants from array definitions to uses
when their subscripts are all constant.

By using summaries of memory reference sets represented as RT LMADs
[27], our Array SSA form has larger applicability, it is more scalable, and can
produce cheaper run-time evaluation of data flow edges, that can be used to
implement run-time optimizations efficiently.

[6] defines an Array SSA form for explicitly parallel programs. Their focus
is on concurrent execution semantics, e.g. they introduce π gates to account for
the out-of-order execution of parallel sections in the same parallel block.

Array constant propagation can be done without using Array SSA [37, 30].
However, we believe that our Array SSA form makes it easier to formulate and
solve data flow problems in a uniform way.

6 Conclusions and Future Work

We introduced a powerful form of Array SSA providing accurate, interprocedu-
ral, control-sensitive use-def information at array region level. We used Array
SSA to write a compact Reaching Definitions algorithm that breaks up an array
use region into subregions corresponding to the actual definitions that reach it.
The implementation of array constant propagation shows that our representation
is powerful and easy to use.

We plan to design other optimization techniques based on Array SSA, such
as array privatization, array dependence analysis, and array liveness analysis.

14 Silvius Rus, Guobin He and Lawrence Rauchwerger

References

1. R. A. Ballance, A. B. Maccabe, and K. J. Ottenstein. The Program Dependence
Web: A representation supporting control-, data-, and demand-driven interpreta-
tion of imperative languages. In Proc. of the Conf. on Prog. Language Design and

Impl., pp. 257–271, White Plains, N.Y., June 1990.
2. W. Blume et al. Advanced Program Restructuring for High-Performance Comput-

ers with Polaris. IEEE Computer, 29(12):78–82, Dec. 1996.
3. M. Burke. An interval-based approach to exhaustive and incremental interproce-

dural data-flow analysis. Trans. on Program. Lang. Syst., 12(3):341–395, 1990.
4. D. Callahan and K. Kennedy. Analysis of interprocedural side effects in a parallel

programming environment. In Supercomputing, pp. 138–171, Athens, Greece, 1987.
5. L. Carter, B. Simon, B. Calder, L. Carter, and J. Ferrante. Predicated static single

assignment. In Proc. of the Int. Conf. on Parallel Architectures and Compilation

Techniques, pp. 245, Washington, DC, 1999.
6. J.-F. Collard. Array SSA for explicitly parallel programs. In Proc. of the Int.

Euro-Par Conf., pp. 383–390, 1999.
7. J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy array dataflow analysis. In

Symp. on Principles and practice of parallel prog., pp. 92–101, New York, 1995.
8. B. Creusillet and F. Irigoin. Exact vs. approximate array region analyses. In

Workshop on Lang. and Compilers for Parallel Computing, pp. 86–100, 1996.
9. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and K. Zadeck. An efficient

method of computing static single assignment form. In Symp. on Principles of

Prog. Lang., pp. 25–35, Austin, TX., Jan. 1989.
10. E. Duesterwald, R. Gupta, and M. L. Soffa. A practical data flow framework for

array reference analysis and its use in optimizations. In Conf. on Prog. Language

Design and Impl., pp. 68–77, Albuquerque, N.M., June 1993.
11. P. Feautrier. Dataflow analysis of array and scalar references. Int. J. of Parallel

Prog., 20(1):23–54, 1991.
12. T. Gross and P. Steenkiste. Structured dataflow analysis for arrays and its use in

an optimizing compilers. Software: Practice & Exp., 20(2):133–155, Feb. 1990.
13. J. Gu, Z. Li, and G. Lee. Symbolic array dataflow analysis for array privatization

and program parallelization. In Proc. of Supercomputing , page 47, 1995.
14. M. R. Haghighat and C. D. Polychronopoulos. Symbolic analysis for parallelizing

compilers. ACM Trans. on Prog. Lang. and Systems, 18(4):477–518, 1996.
15. M. H. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, and M. S. Lam. De-

tecting coarse-grain parallelism using an interprocedural parallelizing compiler. In
Proc. of Supercomputing, pp. 49, 1995.

16. J. Hoeflinger. Interprocedural Parallelization Using Memory Classification Analy-

sis. PhD thesis, Univ. of Illinois, Urbana-Champaign, Aug., 1998.
17. K. Knobe and V. Sarkar. Array SSA form and its use in parallelization. In Symp.

on Principles of Prog. Lang., pp. 107–120, 1998.
18. C. Lapkowski and L. J. Hendren. Extended SSA numbering: Introducing SSA

properties to language with multi-level pointers. In Int. Conf. on Compiler Con-

struction, pp. 128–143, 1998.
19. J. Lee, S. P. Midkiff, and D. A. Padua. Concurrent static single assignment form

and constant propagation for explicitly parallel programs. In Int. Workshop on

Lang. and Compilers for Parallel Computing, pp. 114–130, London, UK, 1998.
20. S.-W. Liao, A. Diwan, R. P. B. Jr., A. M. Ghuloum, and M. S. Lam. SUIF explorer:

An interactive and interprocedural parallelizer. In Principles Practice of Parallel

Prog., pp. 37–48, 1999.

Scalable Array SSA and Array Data Flow Analysis 15

21. V. Maslov. Lazy array data-flow dependence analysis. In Symp. on Principles of

Prog. Lang., pp. 311–325, Portland, OR, Jan. 1994.
22. D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array data-flow analysis and

its use in array privatization. In Symp. on Principles of Prog. Lang., pp. 2–15,
Charleston, S.C., Jan. 1993.

23. S. Moon, M. W. Hall, and B. R. Murphy. Predicated array data-flow analysis for
run-time parallelization. In Proc. of the Int. Conf. on Supercomp., July 1988.

24. Y. Paek, J. Hoeflinger, and D. Padua. Efficient and precise array access analysis.
ACM Trans. of Prog. Lang. and Systems, 24(1):65–109, 2002.

25. W. Pugh and D. Wonnacott. An exact method for analysis of value-based ar-
ray data dependences. In 1993 Workshop on Lang. and Compilers for Parallel

Computing, pp. 546–566, Portland, OR, Aug. 1993.
26. W. Pugh and D. Wonnacott. Nonlinear array dependence analysis. Technical

Report UMIACS-TR-94-123, Univ. of Maryland Institute for Advanced Computer
Studies, College Park, MD, 1994.

27. S. Rus, J. Hoeflinger, and L. Rauchwerger. Hybrid analysis: static & dynamic
memory reference analysis. Int. J. of Parallel Prog., 31(3):251–283, 2003.

28. S. Rus, D. Zhang, and L. Rauchwerger. The value evolution graph and its use
in memory reference analysis. In Conf. on Parallel Architecture and Compilation

Techniques, pp. 243–254, Sept. 2004.
29. V. Sarkar and K. Knobe. Enabling sparse constant propagation of array elements

via array ssa form. In Static Analysis Symp., pp. 33–56, 1998.
30. N. Schwartz. Sparse constant propagation via memory classification analysis. Tech-

nical Report TR1999-782, Department of Computer Science, Courant Institute of
Mathematical Sciences, New York University, March, 1999.

31. R. Seater and D. Wonnacott. Polynomial time array dataflow analysis. In Work-

shop on Lang. and Compilers for Parallel Computing, pp. 411–426, 2001.
32. R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of Call statements.

ACM Symp. on Compiler Construction, pp. 175–185, Palo Alto, CA, June 1986.
33. P. Tu and D. Padua. Gated SSA–based demand-driven symbolic analysis for paral-

lelizing compilers. In Proc. of the Int. Conf. on Supercomputing, Barcelona, Spain,
pp. 414–423, Jan. 1995.

34. P. Tu and D. A. Padua. Automatic array privatization. In Workshop on Lang.

and Compilers for Parallel Computing, pp. 500–521, Portland, OR., Aug. 1993.
35. R. van Engelen, J. Birch, Y. Shou, B. Walsh, and K. Gallivan. A unified frame-

work for nonlinear dependence testing and symbolic analysis. In Int. Conf. on

Supercomputing, pp. 106–115, 2004.
36. P. Vanbroekhoven, G. Janssens, M. Bruynooghe, H. Corporaal, and F. Catthoor.

Advanced copy propagation for arrays. In the Conf. on Language, compiler, and

tool for embedded systems, pp. 24–33, New York, NY, USA, 2003.
37. D. Wonnacott. Extending scalar optimizations for arrays. In Int. Workshop on

Lang. and Compilers for Parallel Computing, pp. 97–111, London, UK, 2001.
38. P. Wu, A. Cohen, and D. Padua. Induction variable analysis without idiom recogni-

tion: Beyond monotonicity. In Int. Workshop on Lang. and Compilers for Parallel

Computing, pp. 427–441, Cumberland Falls, KY, 2001.

