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MotivationMotivation
– Making the right fusion choices is a non-

trivial task
• Optimal fusion known to be NP-complete
• Profitability depends on the underlying 

architecture
– Conflict misses
– Resource Constraints

• Exploiting inter-loop nest locality is not enough



L1: doj = 1, N                                     
doi = 1, M
b(i,j) = a(i,j)+a(i,j-1)+a(i,j-2)          

enddo
enddo

L2: doj = 1, N
doi = 1, M
c(i,j) =  b(i,j) + d(i,j)

enddo
enddo

outer loop reuse in a()

loop-crossing reuse in b()

lost reuse in a()

saved loads for b()

L12: doj = 1,N 
doi = 1, M 
b(i,j) = a(i,j)+a(i,j-1)+a(i,j-2)
c(i,j) =  b(i,j) + d(i,j)

enddo
enddo
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Related WorkRelated Work
– Heuristic algorithms to find good fusion 

solutions
• Gao et. al. [92], Kennedy [00], Lim and Lam 

[01], 
– Approaches that aim to reduce bandwidth

• Ding and Kennedy [01], Song et. al. [01]
– Main distinction from previous work

• Use of architecture specific information
• Empirical tuning of fusion parameters
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HierarchicalHierarchical ReuseReuse
– Use the concept of reuse level as a way to 

quantify reuse at each level of the memory 
hierarchy

– Associate with each reference a value that 
expresses the level at which the reuse is 
exploited

Reuse Level = smallest k such that
Reuse Distance ≤ Capacity(Lk)
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Hierarchical ReuseHierarchical Reuse

– Obtain benefit from reuse of r only if

Reuse Level(r)pre > Reuse Level(r)post

– Perform this check for every reused 
reference

– Account for miss access cost for each level 
of memory
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Conflict Miss ModelConflict Miss Model
– Use a probabilistic model to predict when a 

conflict miss might occur
• Derived from Hill & Smith model for 

associativity [HS:IEEE89]
– Ask the question:

If m distinct cache lines are accessed between 
references to the same cache line r what is the 
probability that n of them are going to land in 
the line occupied by r?
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Effective Cache CapacityEffective Cache Capacity
– Effective cache capacity is the maximum 

reuse distance for which we can expect a 
reused value to still be in cache

– We adjust the definition of reuse level 
based on the definition of effective cache 
capacity

Reuse Level = smallest k such that
Reuse Distance ≤ ECC(Lk)
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Evaluation of Conflict Miss Model: Evaluation of Conflict Miss Model: 
erlebachererlebacher
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Evaluation of Conflict Miss Model: Evaluation of Conflict Miss Model: 
arraysweeparraysweep
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Resource ConstraintsResource Constraints

– Need to constrain resource demands of 
fused loop

Register Pressure(Lfused) < Register Set Size
Instructions(Lfused) < I-Cache Capacity

– Easy to incorporate into a constrained 
weighted fusion algorithm  
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Parameterizing the ModelParameterizing the Model

– Parameters amenable to tuning
• Effective Cache Capacity
• Register Set Size
• I-Cache Capacity
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Parameterizing the ModelParameterizing the Model

– Use a tolerance factor to determine how 
much of a resource we can use at each 
tuning step

Effective Registers = T x Register Set Size 
[0 < T ≤ 1]

Effective Cache Capacity = E(a, s, T)
[0.01 ≤ T ≤ 0.20]
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Tuning Fusion ParametersTuning Fusion Parameters

– Start off conservatively with a low tolerance
value and increase tolerance at each step

– Each tuning parameter constitutes a single 
search dimension

– Search is sequential and orthogonal
• stop when performance starts to worsen
• use reference values for other dimension when 

searching a particular dimension
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Experimental Setup Experimental Setup 
– Four different strategies

• ccfm, simple, mips-pro, no-fuse

– Four benchmarks
• advect3d, erlebacher, livermore18, mgrid

– Platform 
• SGI R12K
• 2-level cache hierarchy
• Primary L1 I-Cache,  Unified L2
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Performance Improvement SummaryPerformance Improvement Summary
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ConclusionsConclusions
– Detailed cache effect analysis combined 

with empirical search can lead to better 
fusion choices

– Overall memory performance can be 
further improved by considering fusion and 
tiling interactions 
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Memory Performance Memory Performance 
Comparison: Comparison: advect3dadvect3d
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Memory Performance Memory Performance 
Comparison: Comparison: erlebachererlebacher
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Memory Performance Memory Performance 
Comparison: Comparison: livermore18livermore18
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Memory Performance Memory Performance 
Comparison: Comparison: mgridmgrid
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Experimental ResultsExperimental Results on on advect3dadvect3d
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Experimental Results on Experimental Results on erlebachererlebacher

SpeedupGraduated 
Loads

L2D MissesL1D MissesCycle CountFusion 
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Evaluation of Conflict Miss Model : Evaluation of Conflict Miss Model : 
randaccessrandaccess
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Putting It All Together Putting It All Together 
– Use hierarchical reuse analysis and conflict 

miss model to assign weights between 
fusible loops

– Use weights to drive a resource
constraint-based fusion algorithm

– Empirically tune for effective cache 
capacity and other parameters


