Testing Speculative Work in a

Lazy/Eager Parallel Functional Language

Alberto de la Encina, Ismael Rodriguez, and Fernando Rubio
Facultad de Informatica

Universidad Complutense de Madrid

‘Indexl

. Introduction

. The Language Eden

. The Debugger Hood

. Scheme for observing unnecessary speculation
. Example: LinSolv

. Conclusions

‘ Motivation I

— Sequentially lazy (Haskell)

i

— Eager parallel computation

(outputs of processes are always demanded)

e Eagerness = Risk of unneeded work
= Need of profiling tools

e Functional language = Fast development but difficult profiling
= no state!!

THE LANGUAGE HASKELL

‘The Language Haskelll

functional (without side effects)
polymorphic

length (1:2:3:[]) or length (’a’:’b’:’c’:[])
> 3

lazy (only demanded things are evaluated)
fx=17
f (3/0)
> 7

higher order (functions are first class citizens)

map f xs

THE LANGUAGE EDEN

‘The language Edenl

Eden = Haskell 4+ syntactical extensions for creating process topologies

+ eager evaluation of some expressions

+ eager process instantiations

e Process abstractions:
p :: Process (t1, ..., tm) (t}, ..., t.)
p = process (i1,...,iym) -> (€1, ..., €,)

where equations

e Process instantiations:

(#) :: Processab->a->b
€1 # €92

EDEN SKELETONS

‘What 1S a Skeleton?l

A skeleton is a parallel problem solving scheme
The aim is to reuse a parallel structure for many problems
It consists of:

1. A functional specification

2. One or more implementations. For each one:

e A parallel algorithm

e A cost model predicting the parallel execution time

EDEN SKELETONS

‘Skeletons In Edenl

Main idea: Processes are first class citizens in a higher-order language

4

Processes can receive/be parameters

Functional specifications: Written in Haskell

Parallel algorithms: Written in Eden itselt = extensible

EDEN SKELETONS

‘ Parallel map I

map :: (a -> b) -> [a] -> [b]

map f xs = [f x | x <- xs]

A simple parallel version creates one process per list element:

map_par :: (a -> b) -> [a] -> [b]
map_par f xs = [pf # x | x <- xs] ‘using‘ spine

where pf = process x -> f x

EDEN SKELETONS

‘Parallel map — farml

A better approach creates a fix number of processes:

map_farm :: Int -> (Int -> [a] -> [[al]l) -> ([[bl] -> [b]) ->
(a -> b) -> [a] -> [b]
map_farm np unshuffle shuffle f tasks
= shuffle (map_par (map f) (unshuffle np tasks))

Different strategies provided that: shuffle (unshuffle np xs) == xs

DEBUGGER HOOD

‘Introduction to Hoodl

e In imperative programs debugging is simple. Intermediate values and
the final result can be shown.

e Hood allows the programmer to observe the intermediate structures.

natural = reverse . map (‘mod‘¢ 10)

. takeWhile (/= 0) . iterate (‘div‘ 10)
natural 3408
> 3:4:0:8:[]

-- after iterate 3408:340:34:3:0:_
-- after takeWhile 3408:340:34:3:[]
-- after map 8:0:4:3: []

DEBUGGER HOOD

‘Introduction to Hoodl

observe: String — a — a

e observe s a = a

e as a side effect, the value of a associated to s is saved in a file.

natural = reverse

observe "after map" . map (‘mod® 10)
observe "after takeWhile" . takeWhile (/= 0)

observe "after iterate" . iterate (¢div‘ 10)

observe "sum" sum (4:2:5:[])
—— sum { \ (4:2:5:[]1) -> 11 }

observe "length" length (4:2:5:[])
-- length { \ (_:_:_:[1) -> 3}

TESTING SPECULATION

‘Observing communication of processes — an examplel

e Process for generating infinite primes > n:

pprimes = process n -> outputs
where outputs = generatePrimes n
generatePrimes x = if (isPrime x) then x : restOfPrimes
else restOfPrimes

where rest0fPrimes = generatePrimes (x+1)

e Process for computing the shortest list of consecutive primes from

initialNumber such that its multiplication is > threshold:

myComputation initialNumber threshold = take neededNumber primes
where primes = pprimes # initialNumber
products = scanl (%) 1 primes
neededNumber = length (takeWhile (< threshold) products)

TESTING SPECULATION

‘Observing communication of processes — an examplel

e Process for generating infinite primes > n:

pprimes = process n -> (observe "outsFromProcess" outputs)

where outputs = generatePrimes n
generatePrimes x = if (isPrime x) then x : restOfPrimes
else restOfPrimes

where rest0fPrimes = generatePrimes (x+1)

e Process for computing the shortest list of consecutive primes from

initialNumber such that its multiplication is > threshold:

myComputation initialNumber threshold = take neededNumber primes
where primes = pprimes # initialNumber
products = scanl (%) 1 primes
neededNumber = length (takeWhile (< threshold) products)

TESTING SPECULATION

‘Observing communication of processes — an examplel

e Process for generating infinite primes > n:

pprimes = process n -> (observe "outsFromProcess" outputs)

where outputs = generatePrimes n
generatePrimes x = if (isPrime x) then x : restOfPrimes
else restOfPrimes

where rest0fPrimes = generatePrimes (x+1)

e Process for computing the shortest list of consecutive primes from

initialNumber such that its multiplication is > threshold:

myComputation initialNumber threshold = take neededNumber primes

where primes = observe "insFromProcess" (pprimes # initialNumber)

products = scanl (%) 1 primes
neededNumber = length (takeWhile (< threshold) products)

TESTING SPECULATION

‘The general casel

outsToF1rocess XV XXX
7]] e]] HEIDIEHIDIDIEJDI

\\'-«..
[Py
Invoker Process [5][][=]

msToFrocess

mskFromFProcess

Instantiated Process
:\

! Y - [y
(]]]] 5 e [5] i i]
A XA A XA outsFromProcess

TESTING SPECULATION

‘The general casel

e processObs: function to run a given function as a new process

processObs f = process ins -> outs
where outs = f ins’

ins’ = ins

o ##: (dummy) function to instantiate a process

p ## actualParameters =

p # actualParameters

TESTING SPECULATION

‘The general casel

e processObs: construction to observe the instantiated process

processObs f = process ins -> (observe "outsFromProcess" outs)

where outs = f ins’

ins’ = observe "insToProcess" ins

o ##: (dummy) function to instantiate a process

p ## actualParameters =

p # actualParameters

TESTING SPECULATION

‘The general casel

e processObs: construction to observe the instantiated process

processObs f = process ins -> (observe "outsFromProcess" outs)

where outs = f ins’

ins’ = observe "insToProcess" ins

e #i#: construction to observe the invoker process

p ## actualParameters =

observe "insFromProcess"

(p # (observe "outsToProcess" actualParameters))

TESTING SPECULATION

‘The general casel

outsToF1rocess XV XXX
7]] e]] HEIDIEHIDIDIEJDI

\\'-«..
[Py
Invoker Process [5][][=]

msToFrocess

mskFromFProcess

Instantiated Process
:\

! Y - [y
(]]]] 5 e [5] i i]
A XA A XA outsFromProcess

LINSOLV EXAMPLE

‘ LinSolv Scheme I

Exact solution arbitrary precision integers

%de Ax = b where A€ Z"*" . be Z",n €N

Multiple homomorphic images approach:

S

LU-decomp and fwd/bwd subst l

] e map the input data into several homo-

morphic images
compute the solution in each image

combine the results of all images to a

result in the original domain.

LINSOLV EXAMPLE

‘LinSolvz To Speculate or not To Speculatel

How much speculation should be included in LinSolv?

e mapfarm: hundreds of useless messages

e on demand: No speculation at all Bottleneck!!!

e maprw: 15 useless messages Controlled

LINSOLV EXAMPLE

‘LinSolv: Results on a Beowulf I

LinSolv: Speedup

8 10 12 14
Processors

CONCLUSIONS

‘Conclusions and Future Workl

Profiling tool reporting speculative work

— Rewriting Hood to parallelize it

— Rewriting basic Eden constructions
Rewriting the skeletons library

Application to a real example

Graphical interface
Application to more examples

Formal semantics

