Dynamic Compilation for Reducing Energy Consumption of I/O-Intensive Applications

Seung Woo Son, Guangyu Chen, Mahmut Kandemir Dept. of CSE Pennsylvania State University {sson,gchen,kandemir}@cse.psu.edu

Alok Choudhary
Dept. of ECE
Northwestern University
choudhar@ece.northwestern.edu

The 18th International Workshop on Languages and Compilers for Parallel Computing (LCPC 05)

October 20~22, 2005

Outline

- Motivation
- Dynamic Compilation
- Our Dynamic Compilation Framework
 - Dynamic compiler/linker
 - Metadata manager
 - Layout manager
 - High-level I/O library
- Experimental Results
- Conclusion

Motivation

- Tera-scale high-performance computing has enabled scientists to tackle very large and computationally challenging problems
 - Data-intensive, I/O-intensive, and energy consuming
- To cope with larger problems and data sizes, models and applications need to be dynamic in nature

I/O is bottleneck

		Perform Bottleneck	iance	
Processors	Kiloflops	Megaflops	Gigaflops	Teraflops
Archive	Megabyte	Gigabyte	Terabyte	Petabyte
Network/sec	Kilobit	Megabit	Gigabit	Terabit
Memory Size	Kilobyte	Megabyte	Gigabyte	Tecabyte
Calculations	1-D	2-D	3-D	Mulif- Dimensions
	1970's	1980's	1990's	Year 2000

Increased capacity enables applications to scale accordingly in complexity, throughput, and resultant data.

*Source: Terascale Data Management, LLNL.

Energy Consumption?

^{*}Source: Mike Rosenfield, ACEED, February 2003.

Related Work

- Academic/industry-based dynamic compilers
 - Dynamo, DAISY, PIN, DyC, ...
- All efforts focused on enhancing the performance, i.e., their goal is to reduce the execution cycles
- Recently, dynamic voltage/frequency scaling technique proposed using dynamic compilation
 -> focused on reducing processor's energy consumption [MICRO-38]

Our Goal

- To capture high-level dynamic behaviors in the I/O-intensive applications using dynamic compilers
- Propose a dynamic compilation framework for I/O-intensive applications
 - Dynamic compiler/linker, metadata manager, high-level I/O library, and layout manager

Why Dynamic Compilation?

- Dynamic compilation exploits run-time state to generate code that is specific to run-time behavior
- Large-scale scientific applications exhibit the changes in data access patterns
 - Simulation runs, post-processing, and analysis
 - Large quantities of data are generated and frequent data layout changes occur

Application Codes

Application Name	Description	Data Size	Number of public Phase Changes	Energy consumed (J)
AST	Astrophysics	153.3 <i>G</i> B	38	57,322
FFT	Fast Fourier Transform	96.6 <i>G</i> B	19	39,451
Cholesky	Sparse Cholesky Factorization	87.4 <i>G</i> B	27	36,076
Visuo	3D Visualization	95.5 <i>G</i> B	31	42,905
SCF 3.0	Quantum Chemistry	106.1 <i>G</i> B	11	49,518
RSense 2.0	Remote Sensing Database	104.0 <i>G</i> B	46	51,114

10/22/2005

Framework overview

Dynamic Compiler/linker

Optimization Rules

Opt rule	Optimization		
CIO	Collective I/O		
MCIO	Multi-collective I/O		
SP	Sequential Prefetching		
STD	Strided Prefetching		
POL	Replacement Policy Selection		
SSU	Setting Striping Unit		
DW	Data Migration		
DP	Data Purging		
PRE	Prestaging		
SUB	Subfiling		

Optimization Rules

- Collective I/O (CIO)
 - Invoked if access pattern of the data is different from its storage pattern, and multiple processors are used to access the data
- Subfiling (SUB)
 - Invoked if a small subregion of a file is accessed with high temporal locality

Example: CIO

Experiment - application codes

Application Name	Description	Data Size	Number of Phase Changes	Energy consumed (J)
AST	Astrophysics	153.3 <i>G</i> B	38	57,322
FFT	Fast Fourier Transform	96.6 <i>G</i> B	19	39,451
Cholesky	Sparse Cholesky Factorization	87.4 <i>G</i> B	27	36,076
Visuo	3D Visualization	95.5 <i>G</i> B	31	42,905
SCF 3.0	Quantum Chemistry	106.1 <i>G</i> B	11	49,518
RSense 2.0	Remote Sensing Database	104.0 <i>G</i> B	46	51,114

Simulation parameters

- Parallel processors: total 16
 - 1.8 GHz with 2MB 4-way set-associative cache, 1GB main memory
 - Energy consumption measured using Wattch [ISCA'00]
- Parallel disks
 - 8*18GB disks with low-power mode (spin-down)
 - TPM disk power model [ISCA'03]
- Interconnect
 - 2D mesh
 - Infiniband switch/link power model [ISLPED'03]

Architecture Considered

Disk Subsystem

Normalized Energy Consumption

Breakdown of Dynamic Compilation Energy

■ Dynamic Compiler□ Performance Tracer

■ Dynamic Linker■ Steering Unit

Sensitivity Analysis - # of processors

Conclusion

- Proposed a dynamic compilation framework for I/O-intensive applications
 - Composed of four components
 - Employ a set of I/O optimizations
- Reduce energy consumption of I/O-intensive applications

Thank you!

sson@cse.psu.edu