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Network Processors

e Advantages
— More flexible than ASICs/custom design
—Higher performance on packet processing
— Lower development cost

 Unfortunately, difficult to program
— Complicated hardware
— Limited resources
— Low level programming languages
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PDomainispecific language:
Baker

e Handle programming challenges in compiler
— Eliminate need for assembly programming
— Automate resource management
— Perform domain-specific optimizations in compiler

e Assist portable application development
— Protocol stack component modularity

— Abstracted programming model hiding underlying
hardware details

— Build-in language types and libraries for network
applications
— Packet type

 Big headache: still achieve high performance
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Packet accesses critical to
perfermance

 Key factors of performance

— Strict instructions budget per packet
— 700 cycles on IXP2400

— Constrained memory bandwidth
— 2 DRAM accesses on IXP2400

 Characteristics of packet accesses
— Consist of dozens of instructions
— Need memory reference per access
— Occur frequently in applications
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threading

Data memory

» 640 words of local memory
* No cache

 Explicit memory instructions
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13_switch_modul &}

13 switch.12 clsfr.ppf( ether pkt t * pkt )

T ——_1

int is_arp = ( pkt->type == ETH_TYPE_ARP );
int forward = ( pkt->dst ==
mac_addrs[pkt->metadata.rx.port] );

iIf( is_arp ){
channel put( arp_cc, packet copy( pkt ));
}

1T( forward ){
ipv4_pkt_t * i1pkt = packet_decap( pkt );
channel_put( 13_forward_cc, ipkt );

}

else{
channel _put( 12 _bridge _cc, pkt );

e - e e e - -
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Packetprimitives in Baker
and Implementation

header header ayload
Packet handle packet - — b
Packet access \\h//p‘t  offset

DeC ap/En Cap Metadata Tail pointer

t~E’acket handle

-0

Protocol construct ievaover

Ethernet

User-defined meta data

void A._process(ether_packet t* iIn_pkt){
ipv4 packet t* p;
mac_addr_t mac;
mac = 1In_pkt->dst;
1T(fwd){
p = packet decap(in_pkt);

protocol ether {
dst : 48;
sSrc - 48;

type : 16;
demux{ 14 };
}:

channel put(13_fwdr_chnl,p);
1}

LCPC 2005




Packetiaccess combining

. e Assumptions
combined read
— HW can perform very

wide memory accesses

.
.

— Packet pointers are
4 ” unique
» Algorithm
. - — Select the best
packet write candidate to combine
/ — Keep cached data in

registers
— Ensure data
k dependence by data
flow analysis

-
*

packet read B read register
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Compllergenerated packet
caching (static)

IPv4 over = o  Packet flow analysis
o [T - oeoroceauans e
packet tasks analysis
— Estimate the cache range

— Annotate info onto packet
primitives
Cached packet

B
T oy — Preload & write back cache

fragment
— Generate efficient packet
access code according to
annotations

p->dst_ip — Remove unneeded packet
p->src_ip primitives
p->checksum

. p->ttl
p->src
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Compllergenerated packet
caching (dynamic)

MPLS over . .
Ethernet CEmECIN 2 2 ipv4 ipv4
acket header = £ header payload
p ]\ ‘I A
|

AN A
] I
I

_____ Looooood

fall through to
original packet
primitives

-—>------>

offset w | I

___> e | S’ = ] e = = o ol o o o = w0

 Packet primitives dynamically resolve field offsets and alignments
 Packet flow analysis

— Estimates the cache range with profiling
e Code generator

— Variable and run-time instructions to resolve offset and alignments
dynamically

— Run-time offset check to guarantee correctness
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EXperingental setup

_  Radisys ENP2611* board
@ Radisys

% ENP2611* — IXP2400

— 8MB SRAM, 64MB DRAM

— 3 X 1Gbps optical ports
optical links e [XP2400 runtime system
%HDD — Linux on Intel XScale®

D .
IXIA packet — Language runtime system
generator

* Benchmarks
— L3-Switch®™ — L2 bridge & L3 routing using dest IP
— MPLST — Fast routing using label stack
— Firewall — WAN / LAN isolation

T Evaluated using Network Processor Forum traces

* Third party brands/names property of their respective owners
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ES=-Switeh forwarding rate *

Max performance

limited by DRAM
bandwidth A
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Performance tests and ratings are measured using specific computer systems and/or

* m | n-s | Zed 64B p acC ketS components and reflect the approximate performance of Intel products as measured by
those tests. Any difference in system hardware or software design or configuration may

affect actual performance.
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MPLS & Eirewall Performance
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Packet'access count and
aggregate access size

DRAM Aggregate | Instruction
Access Access Size Count
Count (Bytes)
| 3- BASE 29 696 AVCK)
SWltCh PAC . loYaYa M| 1190
PAC & CGPC has approximate
CGPC instruction count due to MPLS 770
consisting of many dynamic
MPLS BASE o packet-accesses 1851_
PAC reduce packet DRAM 1428
accesses, aggregate memory
CGPC access size and instruction 48 1485_
Firewall |BASE count 1742
PAC 4.4 140 572
CGPC 32 375
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PErfiormance summary

e All benchmarks exhibit similar trends and
performance curves

— CGPC shows 5.8x performance speedup

* PAC & CGPC can efficiently reduce aggregate
memory access Size and instruction count

— PAC: reduce 70% memory access size
— CGPC: Reduce 90% memory access size

e CGPC is also effective to reduce dynamic packet
accesses
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Conclusions

* Packet access optimizations are critical to the
performance of high-level programming
environments

— Performance is limited by instruction count and memory
bandwidth

— Efficiently relieve memory bandwidth contention and
reduce instruction count

* PAC and CGPC are effective on performance
Improvement

— Reduce aggregate memory access size and improve
performance by 5.8x

— With CGPC, achieve 2Gbps line rate on three typical
network applications on IXP2400
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