Optimizing Packet Accesses for a
Domain Specific Language on
Network Processors

Tao Liut, Xiao Feng Li?, Lixia LiuZ,
Chengyong Wul, Roy Ju?

1. Institute of Computing Technology, China Academy of Sciences
2. Intel China Research Center
3. Microprocessor Technology Labs, Intel Corporation

LCPC 2005 141;:

Outline

* Motivation

e System Overview

 Packet accesses optimizations
 Experimental results

LCPC 2005

Network Processors

e Advantages
— More flexible than ASICs/custom design
—Higher performance on packet processing
— Lower development cost

 Unfortunately, difficult to program
— Complicated hardware
— Limited resources
— Low level programming languages

LCPC 2005

PDomainispecific language:
Baker

e Handle programming challenges in compiler
— Eliminate need for assembly programming
— Automate resource management
— Perform domain-specific optimizations in compiler

e Assist portable application development
— Protocol stack component modularity

— Abstracted programming model hiding underlying
hardware details

— Build-in language types and libraries for network
applications
— Packet type

 Big headache: still achieve high performance

LCPC 2005

Packet accesses critical to
perfermance

 Key factors of performance

— Strict instructions budget per packet
— 700 cycles on IXP2400

— Constrained memory bandwidth
— 2 DRAM accesses on IXP2400

 Characteristics of packet accesses
— Consist of dozens of instructions
— Need memory reference per access
— Occur frequently in applications

LCPC 2005

Outline

* Motivation

e System overview

 Packet accesses optimizations
 Experimental results

LCPC 2005

Intel I)@i’.%OO network

PrOCESSOT

LCPC 2005

External Media

Network Interface

SRAM Controller 0
SRAM Controller 1

« Muhti<processor and Multi-
threading

Data memory

» 640 words of local memory
* No cache

 Explicit memory instructions

L3=Switehwritten in the

Bak

/’_____l_____________‘\
e N
: '

LCPC 2005

er

13_switch_modul &}

13 switch.12 clsfr.ppf(ether pkt t * pkt)

T ——_1

int is_arp = (pkt->type == ETH_TYPE_ARP);
int forward = (pkt->dst ==
mac_addrs[pkt->metadata.rx.port]);

iIf(is_arp){
channel put(arp_cc, packet copy(pkt));
}

1T(forward){
ipv4_pkt_t * i1pkt = packet_decap(pkt);
channel_put(13_forward_cc, ipkt);

}

else{
channel _put(12 _bridge _cc, pkt);

e - e e e - -

\———————————————————————————————————’

Outline

* Motivation

e System overview

 Packet accesses optimizations
 Experimental results

LCPC 2005

Packetprimitives in Baker
and Implementation

header header ayload
Packet handle packet - — b
Packet access \\h//p‘t offset

DeC ap/En Cap Metadata Tail pointer

t~E’acket handle

-0

Protocol construct ievaover

Ethernet

User-defined meta data

void A._process(ether_packet t* iIn_pkt){
ipv4 packet t* p;
mac_addr_t mac;
mac = 1In_pkt->dst;
1T(fwd){
p = packet decap(in_pkt);

protocol ether {
dst : 48;
sSrc - 48;

type : 16;
demux{ 14 };
}:

channel put(13_fwdr_chnl,p);
1}

LCPC 2005

Packetiaccess combining

. e Assumptions
combined read
— HW can perform very

wide memory accesses

.
.

— Packet pointers are
4 ” unique
» Algorithm
. - — Select the best
packet write candidate to combine
/ — Keep cached data in

registers
— Ensure data
k dependence by data
flow analysis

-
*

packet read B read register

LCPC 2005

Compllergenerated packet
caching (static)

IPv4 over = o Packet flow analysis
o [T - oeoroceauans e
packet tasks analysis
— Estimate the cache range

— Annotate info onto packet
primitives
Cached packet

B
T oy — Preload & write back cache

fragment
— Generate efficient packet
access code according to
annotations

p->dst_ip — Remove unneeded packet
p->src_ip primitives
p->checksum

. p->ttl
p->src

LCPC 2005 13q

Compllergenerated packet
caching (dynamic)

MPLS over . .
Ethernet CEmECIN 2 2 ipv4 ipv4
acket header = £ header payload
p]\ ‘I A
|

AN A
] I
I

_____ Looooood

fall through to
original packet
primitives

-—>------>

offset w | I

___> e | S’ =] e = = o ol o o o = w0

 Packet primitives dynamically resolve field offsets and alignments
 Packet flow analysis

— Estimates the cache range with profiling
e Code generator

— Variable and run-time instructions to resolve offset and alignments
dynamically

— Run-time offset check to guarantee correctness
LCPC 2005 13’3

Outline

* Motivation

e System overview

 Packet accesses optimizations
 Experimental results

LCPC 2005

EXperingental setup

_ Radisys ENP2611* board
@ Radisys

% ENP2611* — IXP2400

— 8MB SRAM, 64MB DRAM

— 3 X 1Gbps optical ports
optical links e [XP2400 runtime system
%HDD — Linux on Intel XScale®

D .
IXIA packet — Language runtime system
generator

* Benchmarks
— L3-Switch®™ — L2 bridge & L3 routing using dest IP
— MPLST — Fast routing using label stack
— Firewall — WAN / LAN isolation

T Evaluated using Network Processor Forum traces

* Third party brands/names property of their respective owners
LCPC 2005 151

ES=-Switeh forwarding rate *

Max performance

limited by DRAM
bandwidth A

—&— BASE (L3-switch)
—+—PAC (L3-switch)
—¥— CGPC (L3-switch)

/N
?:Dm
.—+Q‘
'U'Q
HL’D
<)
BG.)
~
O«l—’
LT_‘@

(o

Performance tests and ratings are measured using specific computer systems and/or

* m | n-s | Zed 64B p acC ketS components and reflect the approximate performance of Intel products as measured by
those tests. Any difference in system hardware or software design or configuration may

affect actual performance.

LCPC 2005 19!

MPLS & Eirewall Performance

—e— BASE (MPLS)
—+—PAC (MPLS)
—%— CGPC (MPLS)

Forwarding Rate(2Gbps)

—o— BASE (Firewall)
—+—PAC (Firewall)
—x¥— CGPC (Firewall)

»
o
O
)
N
~—
(<]
+—
10
o
(@]
=
=)
—_
[
=
o
LL

LCPC 2005

Packet'access count and
aggregate access size

DRAM Aggregate | Instruction
Access Access Size Count
Count (Bytes)
| 3- BASE 29 696 AVCK)
SWltCh PAC . loYaYa M| 1190
PAC & CGPC has approximate
CGPC instruction count due to MPLS 770
consisting of many dynamic
MPLS BASE o packet-accesses 1851_
PAC reduce packet DRAM 1428
accesses, aggregate memory
CGPC access size and instruction 48 1485_
Firewall |BASE count 1742
PAC 4.4 140 572
CGPC 32 375
LCPC 2005

PErfiormance summary

e All benchmarks exhibit similar trends and
performance curves

— CGPC shows 5.8x performance speedup

* PAC & CGPC can efficiently reduce aggregate
memory access Size and instruction count

— PAC: reduce 70% memory access size
— CGPC: Reduce 90% memory access size

e CGPC is also effective to reduce dynamic packet
accesses

LCPC 2005

Conclusions

* Packet access optimizations are critical to the
performance of high-level programming
environments

— Performance is limited by instruction count and memory
bandwidth

— Efficiently relieve memory bandwidth contention and
reduce instruction count

* PAC and CGPC are effective on performance
Improvement

— Reduce aggregate memory access size and improve
performance by 5.8x

— With CGPC, achieve 2Gbps line rate on three typical
network applications on IXP2400

LCPC 2005

gL

Related work

Shangri-la

— Michael K. Chen, X. Li, R.Lian, J. Lin, L. Liu, T. Liu, R. Ju. Shangri-
La: achieving high performance from compiled network applications
while enabling ease of programming, In PLDI'05, Chicago, IL, June 2005

Click

— Kohler, E., Morris, R., Chen, B., Jannotti, J. and Kaashoek, M.F. The
Click Modular Router. In ACM TCS, 18(3) pp. 263-297, August 2000.

Memory access combining

— Davidson, J. and Jinturkar, S. Memory Access Coalescing: A Technique
for Eliminating Redundant Memory Accesses. In PLDI'94, Orlando, FL,
June 1994,

Packet buffer caching

— S. lyer, R.R. Kompella, and N. McKeown. Analysis of a memory
architecture for fast packet buffers. In Proc. IEEE Workshop High
Performance Switching and Routing(HPSR), 2001.

LCPC 2005

LCPC 2005

22

	Optimizing Packet Accesses for a Domain Specific Language on Network Processors
	Outline
	Network Processors
	Domain specific language: Baker
	Packet accesses critical to performance
	Outline
	Intel IXP2400 network processor
	L3-Switch written in the Baker
	Outline
	Packet primitives in Baker and implementation
	Packet access combining
	Compiler-generated packet caching (static)
	Compiler-generated packet caching (dynamic)
	Outline
	Experimental setup
	L3-Switch forwarding rate *
	MPLS & Firewall Performance
	Packet access count and aggregate access size
	Performance summary
	Conclusions
	Related work
	Q&A

