
1

Parallelization of Utility Programs
Based on Behavior Phase Analysis

Xipeng Shen Chen Ding

Department of Computer Science
University of Rochester

2

Motivation

 Multi-core is coming to personal computers
 Many programs, especially those run on

past personal computers, are sequential
programs

 Automatic parallelization is the path of
least resistance

3

Utility Programs
 A class of dynamic programs which take

a group of requests and serve them one
by one

 Examples
 Compilers, interpreters, compressions,

transcoding utilities, ...
 GNU C compiler (Gcc)
 The compilation of a function is a phase

4

 Dynamic data (access)
 Dynamically allocated data structures
 One or more levels of indirections

 Complex control flow
 Input-dependent execution paths
 Many (recursive) function calls

 More difficult to analyze and parallelize
than scientific programs

Challenges

5

Opportunities

 Different phase instances operate on
different data, thus have few data
dependences between them

 Recently we found a way to detect the
phase boundaries

 Can we automatically parallelize those
programs at the phase level?

6

Overview
 Objective: to preliminarily check the feasibility

of parallelizing utility programs at phase level
without special hardware support

 Technology
 Phase detection
 Dependence detection
 Program transformation

 Evaluation
 Summary

7

Behavior Phase Detection

 Key idea: active profiling
 Use regular input to trigger repetitive

behavior
 Filtering dynamic basic block trace based

on frequency and recurring distance
 Use real input to verify phase boundaries

*Refer to “Shen et. al., TR 848, CS, U of Rochester, 2004”

8

Phase-based Parallelization

 Process-based parallelization
 Separate address space

 Each process executes one or a group
of phase instances

9

Phase-Dependence Detection

 Trace memory accesses in profiling runs
 Detect different kinds of dependences

 anti- and output dependences can be
ignored because of separate address space

 Classify flow dependences into removable
and non-removable types

10

Flow Dependence

 Removable flow dependence
 Memory reuses
 Implicit initialization
 Byte operations

11

Memory Reuses

 Two objects are allocated to the same
memory location in different part of the
execution.

12

Implicit Initialization

 NODE* xlevel(NODE* expr){
if (++xltrace<TDEPTH){
...

}
- - xltrace;

}

*code fragments from SPEC2K/LI

13

Byte Operation
 char * buf;
 ...

buf[i] = 0; // byte operation

*code fragments from SPEC2K/Parser

lda s4, -28416(gp) // load array base address
addq s4, s0, s4 // shift to the target array element
ldq u v0, 0(s4) // load a quadword from the current element
mskbl v0, s4, v0 // set the target byte to 0 by masking
stq u v0, 0(s4) // store the new quadword to the array

14

Program Transformation
 We parallelize programs by hand at phase

boundaries based on the information
provided by the automatic tool

 A fully automatic tool would include
automatic parallelization with run-time
support to guarantee correctness and rollback
when necessary
 Currently being studied

15

Evaluation (4-CPU Xeon 2GHz)

-0.5

0

0.5

1

1.5

1 2 4 8

Process Number

S
p
e
e
d
u
p
 t

im
e
s

Gzip Parser

16

Evaluation (16-CPU Sunfire
Sparc V9 1.2 GHz)

0
2
4
6
8

10
12
14

1 2 4 8 16 32

Process Number

S
p
e
e
d
u
p
 t

im
e
s

Gzip Parser

17

Summary

 A preliminary exploration on the coarse-
grain parallelization of utility programs
based on behavior phases

 Fully automatic system remains our
future work

18

The End

Thanks!

