
Optimal ILP and Register Tiling:
Analytical Model and
Optimization Framework

Lakshminarayanan. Renganarayana,
Upadrasta Ramakrishna,

Sanjay Rajopadhye
Computer Science Department

Colorado State University

October 21, 2005 LCPC '05 2

Overview
 ILP and register reuse

 Execution time and register pressure functions

 Optimal ILP and register tiling problem

 Optimal tiling problem as convex opt. problem

 Validation

 Related work

 Conclusions & Future work

October 21, 2005 LCPC '05 3

ILP and Register Reuse

 Loop programs

 dominate application execution time

 main sources of ILP and register reuse

 Transformations

 expose / exploit ILP

 enable register reuse

 These transformations interact in subtle ways

 ILP - Register Reuse tradeoff?

October 21, 2005 LCPC '05 4

ILP - Register Reuse Tradeoff

 Optimal combination of transformations

 Quantification of interactions

 A mathematical model

 to study the interactions

 to choose the optimal trans. parameters

 TTBOOK: no such model has been studied

October 21, 2005 LCPC '05 5

Contributions

 Cost model with trans. params. as variables

 closed forms: execution time & register pressure

 Convex optimization problem formulation

 A globally optimal solution

 First such formulation & optimal solution

October 21, 2005 LCPC '05 6

Exposing and Exploiting ILP

 Exposing ILP
 Unroll and Jam

 Loop permutation or skewing

 Multi-dimensional scheduling

 Exploiting ILP
 DAG schedulers

 Software pipelining

October 21, 2005 LCPC '05 7

Exposing ILP with Unroll and Jam
for i1 = 1 to 6
 for i2 = 1 to 6
 A[i1,i2] = A[i1-1,i2]+A[i1,i2-1]

DAG exposes
parallelism

Unrolled Loop body
(9 iterations)

October 21, 2005 LCPC '05 8

Exposing ILP with Permutation

for i2 = 1 to 6
 for i1 = 1 to 6
 A[i1,i2] = 3.23 * A[i1,i2-1]

for i1 = 1 to 6
 for i2 = 1 to 6
 A[i1,i2] = 3.23 * A[i1,i2-1]

October 21, 2005 LCPC '05 9

Exposing ILP with Skewing
for i1 = 1 to 6
 for i2 = 1 to 6
 A[i1,i2] = A[i1-1,i2]+A[i1,i2-1]

All the iterations
of inner-most

loop are parallel

 Sufficient ILP

 Performance limited

only by the available

execution resources

October 21, 2005 LCPC '05 10

Register Reuse

 Unrol and Jam  Scalar replacement
 scalar replacement enables register placement

 classic register allocators are sufficient

 Loop tiling  array register allocation
 registers allocated to array values

 no code size increase

 requires an array register allocator

October 21, 2005 LCPC '05 11

Scalar Replacement
for i1 = 1 to 6
 for i2 = 1 to 6
 A[i1,i2] = A[i1-1,i2]+A[i1,i2-1]

for i1 = 1 to 6 step 2
 for i2 = 1 to 6 step 2
 A[i1,i2] = A[i1-1,i2]+A[i1,i2-1]
 A[i1+1,i2] = A[i1,i2]+A[i1+1,i2-1]
 A[i1,i2+1] = A[i1-1, i2+1]+A[i1,i2]
 A[i1+1,i2+1] = A[i1,i2+1]+A[i1+1,i2]

for i1 = 1 to 6 step 2
 T = A[i1,0]
 for i2 = 1 to 6 step 2
 T = A[i1-1,i2]+ T
 A[i1+1,i2] = T +A[i1+1,i2-1]
 A[i1,i2+1] = A[i1-1, i2+1]+T
 A[i1+1,i2+1] = A[i1,i2+1]+A[i1+1,i2]
 A[i1,i2] = T

unroll 2 x 2

replace A[i1,i2] by
a scalar T

 Saves 2 loop independent loads
 plus 1 loop carried load
 T can be allocated to a register

Which array references to scalar replace?

October 21, 2005 LCPC '05 12

Tiling

for i1 = 1 to 6
 for i2 = 1 to 6
 A[i1,i2] = A[i1-1,i2]+A[i1,i2-1]

Tiling
 Similar to Unroll and Jam
 Decreases life time of values
 Limits MAXLIVE

October 21, 2005 LCPC '05 13

Register tiling
for i1 = 1 to 6
 for i2 = 1 to 6
 A[i1,i2] = A[i1-1,i2]+A[i1,i2-1]

3x3 register tile

Tile sizes:
Affects load/store savings
Constrained by number of registers
How to choose the tile sizes?

October 21, 2005 LCPC '05 14

Traditional vs. Our Approach

Unroll and Jam
+

Scalar Promotion

Permutation
or Skewing

+
Tiling

Choose optimal
unroll and

scalar promotion
parameters

DAG Scheduler or
Software Pipelining

+
Scalar Register

Allocation

Choose optimal
skew and

tile
parameters

Software Pipelining
+

Scalar & Array
Register Allocation

Tr
ad

iti
on

al
 A

pp
ro

ac
h

O
ur

 A
pp

ro
ac

h

Code Transformation Sched. & Reg. Alloc

October 21, 2005 LCPC '05 15

Program, Tiling, and Architecture
Class
 Input loops:

 perfectly nested, rectangular loops

 uniform dependence bodies

 Rectangular tiling

 we assume: input loop nest admits rectangular tiling

 ILP-exposed by: permutation or skewing

 Architectures: superscalar or VLIW

October 21, 2005 LCPC '05 16

Execution Time
(When permutation exposes ILP)

T = (ntiles * tile_cost) + loop_overhead

tile_cost =
max(comp_cost,load_store_cost)

comp_cost = α * tile_vol

load_store_cost = β * LS(t,D)

loop_overhead = η * LO(t,N)

t = vector of tile sizes
N = vector of iter. space sizes
D = dependence matrix

ntiles = N1/t1 * … * Nn/tn

October 21, 2005 LCPC '05 17

Execution Time Model
(when permutation cannot expose ILP: skew)

Partial tiles treated
 as full tiles.
Number of tiles
 approximated by
 N1/t1 * … * Nn/tn

Skewing affects
 iteration space shape -- makes counting of partial, full, and no. of tiles hard.
 dependence lengths -- affects the amount of data loaded / stored in a tile.

 Dep. matrix = SD
 LS(t,SD) is the
 load store volume

October 21, 2005 LCPC '05 18

Optimal ILP and Register Tiling:
 Optimization Problem Formulation

minimize TotalExecutionTime(t,S)
subject to LoadStoreVolume(t,S) ≤ Registers

For a fixed skew S
 t is the only variable
 opt. prob. reduces to an integer convex opt. prob.

October 21, 2005 LCPC '05 19

Solution Steps

 Yes!

 No skewing, only tiling

 Fix S=I in opt. prob.

 Solve for optimal tile
sizes

 Single integer convex
opt. problem.

 No!

 Construct set (Γ)of valid
skews

 For each element in Γ
 solve the fixed skew
 optimization problem
 Pick the best
 Only d(d-1) problems

Can permutation expose a parallel loop?

October 21, 2005 LCPC '05 20

Solving for Optimal Tile Sizes

 Opt. Prob. for tile sizes is a Integer Geometric

Program (à la Integer Linear Programs)

 GPs can be transformed into convex opt. probs.

 Standard solvers are available

 Running time:
 depends on #vars & #constraints

 few seconds (< 10 secs.)

October 21, 2005 LCPC '05 21

Validation

 Experimental validation requires
 array register allocator

 architectural support (like rotating registers)

 Similar model used for finding optimal unroll factor
 optimal unroll factors can be found with small tweaks

 In tiling for memory hierarchy
 we have successfully used a similar model

 almost all the cost models used by other researchers can be
cast into our GP framework [RR-SC04]

October 21, 2005 LCPC '05 22

Related Work

 Unroll and Jam approach

 [Callhan et al.-90], [Carr-Kennedy-94], [Sarkar-01]

 Hierarchical tiling

 [Carter et al.-95], [Mitchell et al.-98]

 Software pipelining of loop nests

 [Ramanujam-94], [Rong et al. 04], [Rong et al. 05]

 Code generation for register tiling

 [Jiminez et al.-02], [Sarkar-01]

October 21, 2005 LCPC '05 23

Conclusions & Future Work

 A mathematical formulation of the combined

ILP and register tiling problem.

 A globally optimal solution.

 Future work:
 adapting modulo schedulers to pipeline skewed loops

 developing an array register allocator

 experimental validation on benchmarks

