
Optimal ILP and Register Tiling:
Analytical Model and
Optimization Framework

Lakshminarayanan. Renganarayana,
Upadrasta Ramakrishna,

Sanjay Rajopadhye
Computer Science Department

Colorado State University

October 21, 2005 LCPC '05 2

Overview
 ILP and register reuse

 Execution time and register pressure functions

 Optimal ILP and register tiling problem

 Optimal tiling problem as convex opt. problem

 Validation

 Related work

 Conclusions & Future work

October 21, 2005 LCPC '05 3

ILP and Register Reuse

 Loop programs

 dominate application execution time

 main sources of ILP and register reuse

 Transformations

 expose / exploit ILP

 enable register reuse

 These transformations interact in subtle ways

 ILP - Register Reuse tradeoff?

October 21, 2005 LCPC '05 4

ILP - Register Reuse Tradeoff

 Optimal combination of transformations

 Quantification of interactions

 A mathematical model

 to study the interactions

 to choose the optimal trans. parameters

 TTBOOK: no such model has been studied

October 21, 2005 LCPC '05 5

Contributions

 Cost model with trans. params. as variables

 closed forms: execution time & register pressure

 Convex optimization problem formulation

 A globally optimal solution

 First such formulation & optimal solution

October 21, 2005 LCPC '05 6

Exposing and Exploiting ILP

 Exposing ILP
 Unroll and Jam

 Loop permutation or skewing

 Multi-dimensional scheduling

 Exploiting ILP
 DAG schedulers

 Software pipelining

October 21, 2005 LCPC '05 7

Exposing ILP with Unroll and Jam
for i1 = 1 to 6
 for i2 = 1 to 6
 A[i1,i2] = A[i1-1,i2]+A[i1,i2-1]

DAG exposes
parallelism

Unrolled Loop body
(9 iterations)

October 21, 2005 LCPC '05 8

Exposing ILP with Permutation

for i2 = 1 to 6
 for i1 = 1 to 6
 A[i1,i2] = 3.23 * A[i1,i2-1]

for i1 = 1 to 6
 for i2 = 1 to 6
 A[i1,i2] = 3.23 * A[i1,i2-1]

October 21, 2005 LCPC '05 9

Exposing ILP with Skewing
for i1 = 1 to 6
 for i2 = 1 to 6
 A[i1,i2] = A[i1-1,i2]+A[i1,i2-1]

All the iterations
of inner-most

loop are parallel

 Sufficient ILP

 Performance limited

only by the available

execution resources

October 21, 2005 LCPC '05 10

Register Reuse

 Unrol and Jam Scalar replacement
 scalar replacement enables register placement

 classic register allocators are sufficient

 Loop tiling array register allocation
 registers allocated to array values

 no code size increase

 requires an array register allocator

October 21, 2005 LCPC '05 11

Scalar Replacement
for i1 = 1 to 6
 for i2 = 1 to 6
 A[i1,i2] = A[i1-1,i2]+A[i1,i2-1]

for i1 = 1 to 6 step 2
 for i2 = 1 to 6 step 2
 A[i1,i2] = A[i1-1,i2]+A[i1,i2-1]
 A[i1+1,i2] = A[i1,i2]+A[i1+1,i2-1]
 A[i1,i2+1] = A[i1-1, i2+1]+A[i1,i2]
 A[i1+1,i2+1] = A[i1,i2+1]+A[i1+1,i2]

for i1 = 1 to 6 step 2
 T = A[i1,0]
 for i2 = 1 to 6 step 2
 T = A[i1-1,i2]+ T
 A[i1+1,i2] = T +A[i1+1,i2-1]
 A[i1,i2+1] = A[i1-1, i2+1]+T
 A[i1+1,i2+1] = A[i1,i2+1]+A[i1+1,i2]
 A[i1,i2] = T

unroll 2 x 2

replace A[i1,i2] by
a scalar T

 Saves 2 loop independent loads
 plus 1 loop carried load
 T can be allocated to a register

Which array references to scalar replace?

October 21, 2005 LCPC '05 12

Tiling

for i1 = 1 to 6
 for i2 = 1 to 6
 A[i1,i2] = A[i1-1,i2]+A[i1,i2-1]

Tiling
 Similar to Unroll and Jam
 Decreases life time of values
 Limits MAXLIVE

October 21, 2005 LCPC '05 13

Register tiling
for i1 = 1 to 6
 for i2 = 1 to 6
 A[i1,i2] = A[i1-1,i2]+A[i1,i2-1]

3x3 register tile

Tile sizes:
Affects load/store savings
Constrained by number of registers
How to choose the tile sizes?

October 21, 2005 LCPC '05 14

Traditional vs. Our Approach

Unroll and Jam
+

Scalar Promotion

Permutation
or Skewing

+
Tiling

Choose optimal
unroll and

scalar promotion
parameters

DAG Scheduler or
Software Pipelining

+
Scalar Register

Allocation

Choose optimal
skew and

tile
parameters

Software Pipelining
+

Scalar & Array
Register Allocation

Tr
ad

iti
on

al
 A

pp
ro

ac
h

O
ur

 A
pp

ro
ac

h

Code Transformation Sched. & Reg. Alloc

October 21, 2005 LCPC '05 15

Program, Tiling, and Architecture
Class
 Input loops:

 perfectly nested, rectangular loops

 uniform dependence bodies

 Rectangular tiling

 we assume: input loop nest admits rectangular tiling

 ILP-exposed by: permutation or skewing

 Architectures: superscalar or VLIW

October 21, 2005 LCPC '05 16

Execution Time
(When permutation exposes ILP)

T = (ntiles * tile_cost) + loop_overhead

tile_cost =
max(comp_cost,load_store_cost)

comp_cost = α * tile_vol

load_store_cost = β * LS(t,D)

loop_overhead = η * LO(t,N)

t = vector of tile sizes
N = vector of iter. space sizes
D = dependence matrix

ntiles = N1/t1 * … * Nn/tn

October 21, 2005 LCPC '05 17

Execution Time Model
(when permutation cannot expose ILP: skew)

Partial tiles treated
 as full tiles.
Number of tiles
 approximated by
 N1/t1 * … * Nn/tn

Skewing affects
 iteration space shape -- makes counting of partial, full, and no. of tiles hard.
 dependence lengths -- affects the amount of data loaded / stored in a tile.

 Dep. matrix = SD
 LS(t,SD) is the
 load store volume

October 21, 2005 LCPC '05 18

Optimal ILP and Register Tiling:
 Optimization Problem Formulation

minimize TotalExecutionTime(t,S)
subject to LoadStoreVolume(t,S) ≤ Registers

For a fixed skew S
 t is the only variable
 opt. prob. reduces to an integer convex opt. prob.

October 21, 2005 LCPC '05 19

Solution Steps

 Yes!

 No skewing, only tiling

 Fix S=I in opt. prob.

 Solve for optimal tile
sizes

 Single integer convex
opt. problem.

 No!

 Construct set (Γ)of valid
skews

 For each element in Γ
 solve the fixed skew
 optimization problem
 Pick the best
 Only d(d-1) problems

Can permutation expose a parallel loop?

October 21, 2005 LCPC '05 20

Solving for Optimal Tile Sizes

 Opt. Prob. for tile sizes is a Integer Geometric

Program (à la Integer Linear Programs)

 GPs can be transformed into convex opt. probs.

 Standard solvers are available

 Running time:
 depends on #vars & #constraints

 few seconds (< 10 secs.)

October 21, 2005 LCPC '05 21

Validation

 Experimental validation requires
 array register allocator

 architectural support (like rotating registers)

 Similar model used for finding optimal unroll factor
 optimal unroll factors can be found with small tweaks

 In tiling for memory hierarchy
 we have successfully used a similar model

 almost all the cost models used by other researchers can be
cast into our GP framework [RR-SC04]

October 21, 2005 LCPC '05 22

Related Work

 Unroll and Jam approach

 [Callhan et al.-90], [Carr-Kennedy-94], [Sarkar-01]

 Hierarchical tiling

 [Carter et al.-95], [Mitchell et al.-98]

 Software pipelining of loop nests

 [Ramanujam-94], [Rong et al. 04], [Rong et al. 05]

 Code generation for register tiling

 [Jiminez et al.-02], [Sarkar-01]

October 21, 2005 LCPC '05 23

Conclusions & Future Work

 A mathematical formulation of the combined

ILP and register tiling problem.

 A globally optimal solution.

 Future work:
 adapting modulo schedulers to pipeline skewed loops

 developing an array register allocator

 experimental validation on benchmarks

