Optimal ILP and Register Tiling: Analytical Model and Optimization Framework

Lakshminarayanan. Renganarayana, Upadrasta Ramakrishna, Sanjay Rajopadhye Computer Science Department Colorado State University

Overview

- ILP and register reuse
- Execution time and register pressure functions
- Optimal ILP and register tiling problem
- Optimal tiling problem as convex opt. problem
- Validation
- Related work
- Conclusions & Future work

ILP and Register Reuse

- Loop programs
 - dominate application execution time
 - □ main sources of ILP and register reuse
- Transformations
 - expose / exploit ILP
 - enable register reuse
- These transformations interact in subtle ways
- ILP Register Reuse tradeoff?

ILP - Register Reuse Tradeoff

- Optimal combination of transformations
- Quantification of interactions
- A mathematical model
 - to study the interactions
 - □ to choose the optimal trans. parameters
- TTBOOK: no such model has been studied

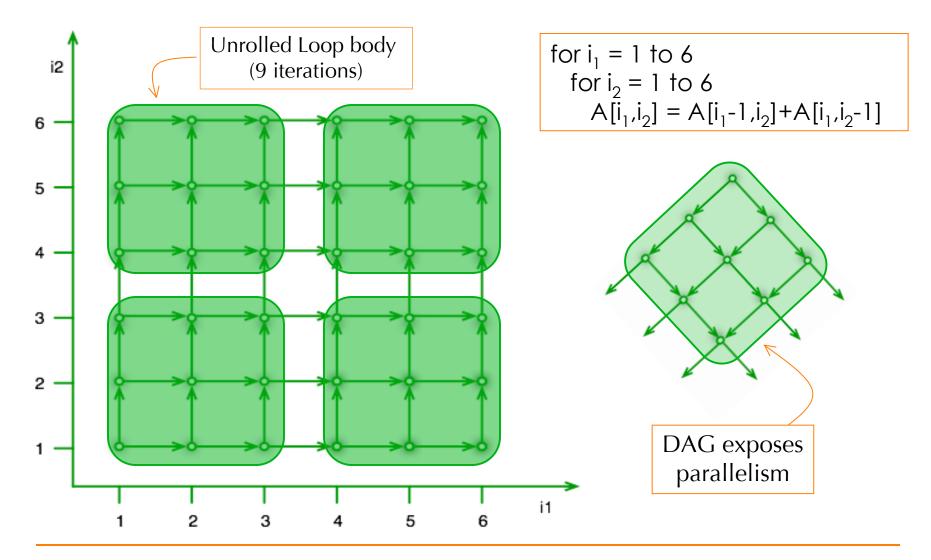
Contributions

- Cost model with trans. params. as variables
 - □ closed forms: execution time & register pressure
- Convex optimization problem formulation
- A globally optimal solution
- First such formulation & optimal solution

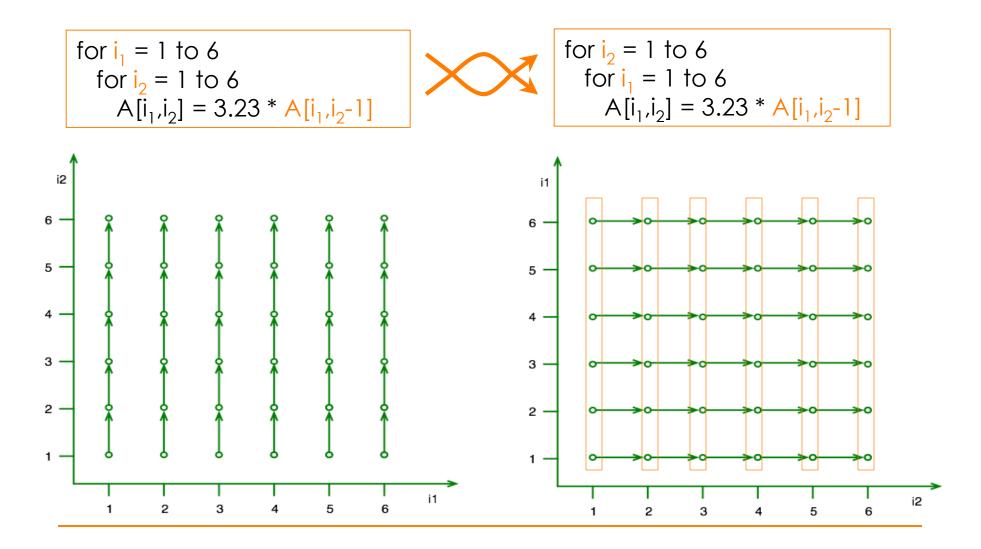
Exposing and Exploiting ILP

- Exposing ILP
 - Unroll and Jam
 - Loop permutation or skewing
 - Multi-dimensional scheduling
- Exploiting ILP
 - DAG schedulers
 - Software pipelining

Exposing ILP with Unroll and Jam



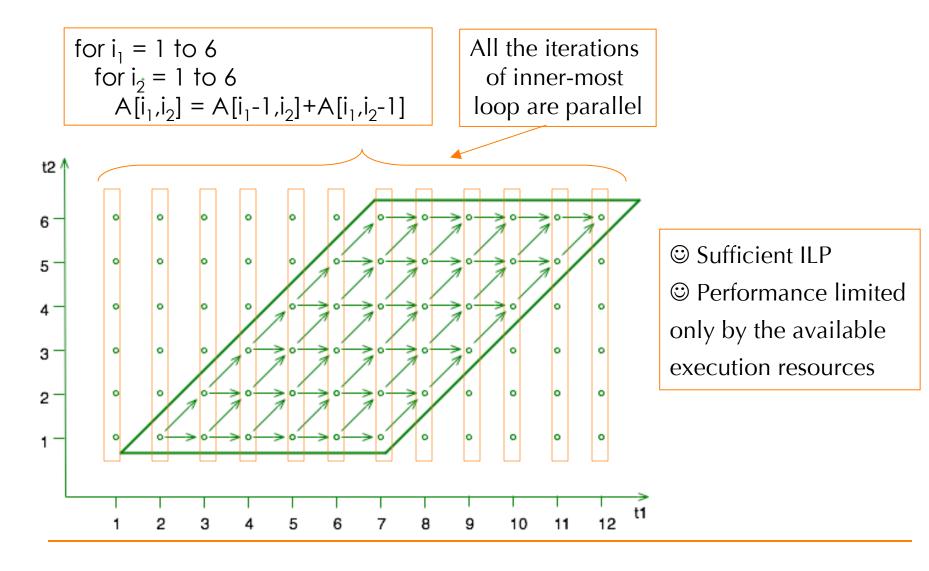
Exposing ILP with Permutation



October 21, 2005

LCPC '05

Exposing ILP with Skewing

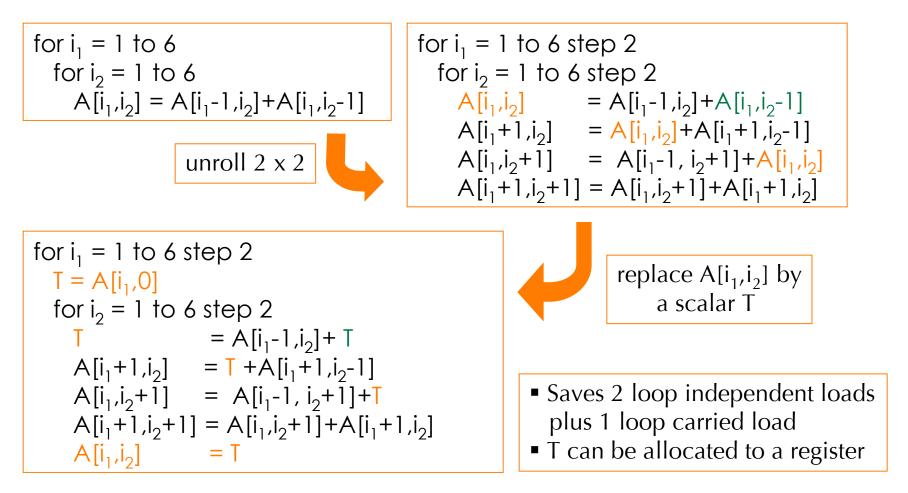


October 21, 2005

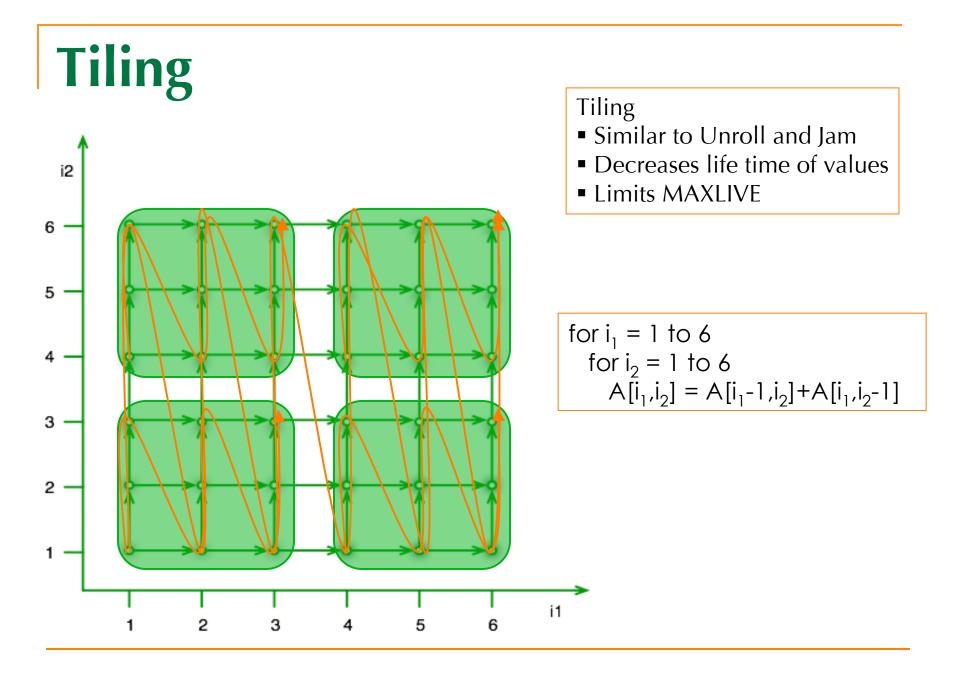
Register Reuse

- Unrol and Jam \rightarrow Scalar replacement
 - scalar replacement enables register placement
 - classic register allocators are sufficient
- Loop tiling \rightarrow array register allocation
 - registers allocated to array values
 - no code size increase
 - 😄 requires an array register allocator

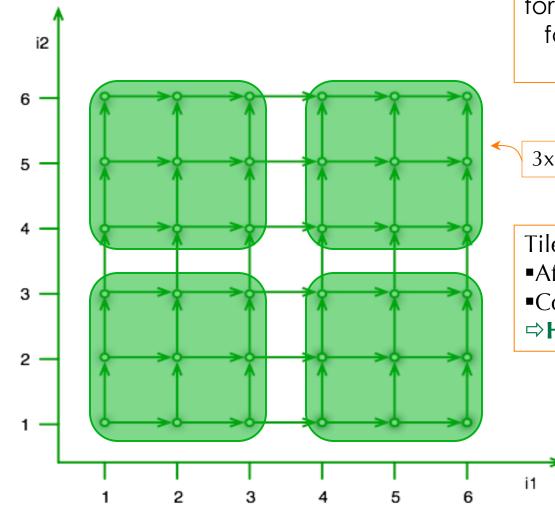
Scalar Replacement



Which array references to scalar replace?



Register tiling



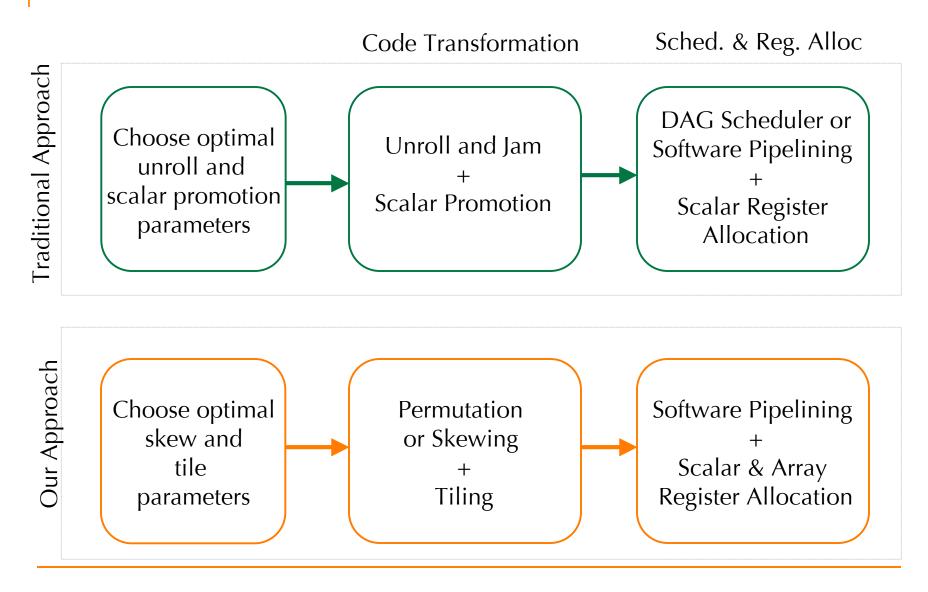
for $i_1 = 1$ to 6 for $i_2 = 1$ to 6 $A[i_1, i_2] = A[i_1-1, i_2] + A[i_1, i_2-1]$

3x3 register tile

Tile sizes:

Affects load/store savings
Constrained by number of registers
How to choose the tile sizes?

Traditional vs. Our Approach

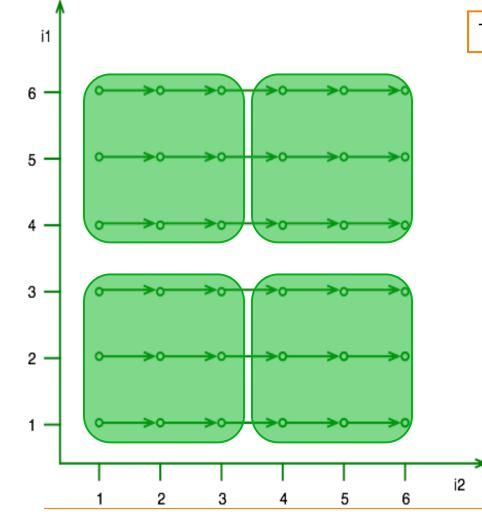


Program, Tiling, and Architecture Class

- Input loops:
 - perfectly nested, rectangular loops
 - uniform dependence bodies
- Rectangular tiling
 - we assume: input loop nest admits rectangular tiling
- ILP-exposed by: permutation or skewing
- Architectures: superscalar or VLIW

Execution Time

(When permutation exposes ILP)



T = (ntiles * tile_cost) + loop_overhead

tile_cost =
max(comp_cost,load_store_cost)

 $comp_cost = \alpha * tile_vol$

load_store_cost = $\beta * LS(t,D)$

loop_overhead = $\eta * LO(1,N)$

ntiles =
$$N_1/t_1 * ... * N_n/t_n$$

t = vector of tile sizes N = vector of iter. space sizes D = dependence matrix

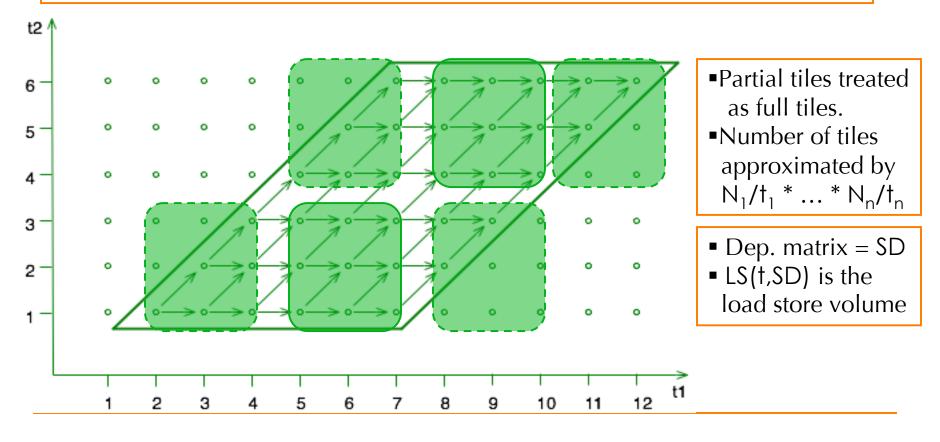
October 21, 2005

Execution Time Model

(when permutation cannot expose ILP: skew)

Skewing affects

- iteration space shape -- makes counting of partial, full, and no. of tiles hard.
- dependence lengths -- affects the amount of data loaded / stored in a tile.



Optimal ILP and Register Tiling: Optimization Problem Formulation

minimize TotalExecutionTime(t,S) subject to $LoadStoreVolume(t,S) \leq Registers$

For a fixed skew **S**

- \checkmark t is the only variable
- \checkmark opt. prob. reduces to an integer convex opt. prob.

Solution Steps

Can permutation expose a parallel loop?

Yes!

- No skewing, only tiling
 - Fix S=I in opt. prob.
- Solve for optimal tile sizes
- Single integer convex opt. problem.

No!

- Construct set (Γ)of valid skews
- For each element in Γ solve the fixed skew optimization problem
- Pick the best
- Only *d(d-1)* problems

Solving for Optimal Tile Sizes

- Opt. Prob. for tile sizes is a Integer Geometric
 Program (à la Integer Linear Programs)
- GPs can be transformed into convex opt. probs.
- Standard solvers are available
- Running time:
 - □ depends on #vars & #constraints
 - \Box few seconds (< 10 secs.)

Validation

- Experimental validation requires
 - array register allocator
 - architectural support (like rotating registers)
- Similar model used for finding optimal unroll factor
 - optimal unroll factors can be found with small tweaks
- In tiling for memory hierarchy
 - we have successfully used a similar model
 - almost all the cost models used by other researchers can be cast into our GP framework [RR-SC04]

Related Work

- Unroll and Jam approach
 - □ [Callhan et al.-90], [Carr-Kennedy-94], [Sarkar-01]
- Hierarchical tiling
 - □ [Carter et al.-95], [Mitchell et al.-98]
- Software pipelining of loop nests
 - □ [Ramanujam-94], [Rong et al. 04], [Rong et al. 05]
- Code generation for register tiling
 - □ [Jiminez et al.-02], [Sarkar-01]

Conclusions & Future Work

- A mathematical formulation of the combined ILP and register tiling problem.
- A globally optimal solution.
- Future work:
 - adapting modulo schedulers to pipeline skewed loops
 - developing an array register allocator
 - experimental validation on benchmarks