
Imperial College
London

A Domain-Specific Interpreter for
Parallelising a Large Mixed-Language

Visualisation Application
Karen Osmond, Olav Beckmann, Anthony J. Field and Paul H. J. K elly

Department of Computing, Imperial College London,

180 Queen’s Gate, London SW7 2AZ, United Kingdom

http://www.doc.ic.ac.uk/˜ob3

A Domain-Specific Interpreter for Parallelising a Large
Mixed-Language Visualisation Application— 1/20

http://www.doc.ic.ac.uk/~ob3

Imperial College
London

Visualising Large Ocean Current Simulations

M
ay

aV
i

M
od

ul
ar

V
is

ua
lis

at
io

n
E

nv
iro

nm
en

t

Graphical interface for
composing analysis and
rendering components

22,000 LOC, Python + VTK

Open source, active
development

Poor interactive performance
limits usefulness

A Domain-Specific Interpreter for Parallelising a Large
Mixed-Language Visualisation Application— 2/20

Imperial College
London

Python/VTK Visualisation Software Architecture

Visualisation typically involves a pipeline of feature-extraction operations

When working on extremely large datasets, response time for interactive
parameterisation of the visualisation pipeline is poor.

The challenge is to make visualisation of large datasets interactive by
improving use of memory hierarchy and parallelisation

Application or Script
written in Python, interpreted

Python VTK Bindings

VTK
 written in C++, compiled

OpenGL / XGL etc.

Multi-language: Python, C++, C

Component-based

Actively changing code base,
maintained by people who have
no time for parallelisation

Mixed dynamic / static

Domain-specific semantics in
DSL (VTK)

A Domain-Specific Interpreter for Parallelising a Large
Mixed-Language Visualisation Application— 3/20

Imperial College
London

Object-Oriented Visualisation in VTK

Graphics Model:
Object-oriented representation of 3D
computer graphics

Visualisation Model

Model of data flow.

Capable of representing
complex data-flow graphs:
“visualisation pipelines”

Data-flow graphs can be
executed in a demand-driven or
data-driven manner.

Surprisingly similar to high-level
compositional programming
models.

VTK Visualisation Pipeline

A Domain-Specific Interpreter for Parallelising a Large
Mixed-Language Visualisation Application— 4/20

Imperial College
London

Domain-Specific Libraries: Typical Use

Domain-specific libarary

user-program

vtkContourFilter

vtkPolyDataMapper

vtkActor

Render

...

...

...

...

Program compiled with
standard compiler (gcc, icc, . . .)
or interpreted with standard
interpreter (e.g. python).

DSL code mixed with other
code.

No domain-specific
optimisation.

Using such DSLs often dominates and constrains the way a software
system is built just as much as a programming language.

Compiling a quasi domain-specific language without a domain-specific
compiler or optimiser.

Typically miss out on cross-component optimisation opportunities that
exploit the domain-specific semantics of the library.

A Domain-Specific Interpreter for Parallelising a Large
Mixed-Language Visualisation Application— 5/20

Imperial College
London

Domain-Specific Interpreter Pattern

for [all processors, per chunk]
 vtkContourFilter
 vtkPloyDataMapper
 vtkActor
 Render
end

user-program

Domain-specific libarary

vtkContourFilter

vtkPolyDataMapper

vtkActor

Render

vtkContourFilter

vtkPolyDataMapper

vtkActor
Render

C
ap

tu
re Optimise

. . .

. . .

. . .

. . .

. . .

User program is unmodified and is compiled with or interpreted by
unmodified language compiler or interpreter.

Capture all calls to methods from a DSL.

Apply domain-specific optimisation, then call the underlying library.

A Domain-Specific Interpreter for Parallelising a Large
Mixed-Language Visualisation Application— 6/20

Imperial College
London

Domain-Specific Interpreter Pattern

for [all processors, per chunk]
 vtkContourFilter
 vtkPloyDataMapper
 vtkActor
 Render
end

user-program

Domain-specific libarary

vtkContourFilter

vtkPolyDataMapper

vtkActor

Render

vtkContourFilter

vtkPolyDataMapper

vtkActor
Render

C
ap

tu
re Optimise

. . .

. . .

. . .

. . .

. . .

Applicability (Requirements)

Reliable capture
VTK/Python bindings

Reliable capture of data-flow
through DSL routines.
Opaque VTK data structures

Profitability

Domain-specific semantics
Piecewise evaluation valid

Opportunities for optimisations
across method calls
Size of intermediate data

A Domain-Specific Interpreter for Parallelising a Large
Mixed-Language Visualisation Application— 7/20

Imperial College
London

Domain-Specific Interpreter for VTK in Python
mv vtkpython.py vtkpython_real.py then vtkpython.py:

2 if ("vtkdsi" in os.environ): # Control DS Interpreter via Environment

3 import vtkpython_real # Original vtkpython.py re−named

4 from vtkdsi import proxyObject

5 for className in dir(vtkpython_real): # For all classes in this module

6 exec "class " + className + "(proxyObject): pass" # class with no methods (yet)

7 else :

8 from vtkpython_real import ∗ # fall−through to original VTK Python

For all classes from vtkpython_real.py, create a class by the same
name, with no methods, derived from proxyObject.

Explicit hooks for capturing all field and method accesses (cf. AOP)

176 class proxyObject:

253 def __getattr__(self, callName): # Catch−all method

256 return lambda ∗callArgs: self.proxyCall(callName, callArgs) # lambda call

A Domain-Specific Interpreter for Parallelising a Large
Mixed-Language Visualisation Application— 8/20

Imperial College
London

Visualisation Recipes

The scheme we showed on the previous slide works lazily for all calls
through VTK Python interface

We need to identify force points (i.e. Render()).

Lazy indirection causes Python’s reflection mechanism to break;
therefore we actually use a more eager scheme.

The proxy stores all calls made to VTK in a visualisation recipe.

When a force point is reached, the recipes are evaluated.

1 [’construct’, ’vtkConeSource’, ’vtkConeSource_913’]

2 [’callMeth’, ’vtkConeSource_913’, ’return_926’, ’SetRadius’, ’0.2’]

3 [’callMeth’, ’vtkConeSource_913’, ’return_927’, ’GetOutput’, ’’]

4 [’callMeth’, ’vtkTransformFilter_918’, ’return_928’, ’SetInput’, "self.ids[’return_927’]"]

5 [’callMeth’, ’vtkTransformFilter_918’, ’return_929’, ’GetTransform’, ’’]

6 [’callMeth’, ’return_929’, ’return_930’, ’Identity’, ’’]

A Domain-Specific Interpreter for Parallelising a Large
Mixed-Language Visualisation Application— 9/20

Imperial College
London

Optimising VTK Visualisation Pipelines
Simulations generating the datasets we are visualising are run in
parallel, resulting in a parallel tetrahedral VTK data set.

This means: XML file giving locations of partitions

Normally, VTK fuses the partitions into one whole dataset.

If a dataset has not been generated as a collection of partitions, we
can use METIS to create a partitioned version.

VTK does have parallel routines — data-parallel using MPI.

We are interested in a more dynamic scenario, steered from a client.

P1 P2 P3 P4

Render Render Render Render Render ClientSPMD
Data-Parallel

A Domain-Specific Interpreter for Parallelising a Large
Mixed-Language Visualisation Application— 10/20

Imperial College
London

Coarse-Grained Tiling of VTK Visualisation Pipelines

Render Render Render Render Client

Large intermediate data means
that multi-stage visualisation
pipelines make poor use of
memory hierarchy.

Our domain-specific
vtkpython interpreter builds a
data-structure representing the
sequence of operations
performed.

When the user-application calls
Render(), we apply this
partition-by-partition on the
data-set.

The only difference is an
environment variable.

Domain-specific semantics
determine the validity of this
transformation.

A Domain-Specific Interpreter for Parallelising a Large
Mixed-Language Visualisation Application— 11/20

Imperial College
London

Coarse-Grained Tiling of VTK Visualisation Pipelines

Calculating isosurfaces one partition at a time, showing outlines of partitions.

A Domain-Specific Interpreter for Parallelising a Large
Mixed-Language Visualisation Application— 12/20

Imperial College
London

Shared-Memory Parallelisation

Render

P1 P2 P3 P4

Python Global Interpreter Lock

Plan: execute the visualisation
pipelines for each tile in parallel
on an SMP.

The first obstacle is that Python
interpreter is not thread-safe!

This can be overcome by
manually lifting the GIL
(global interpreter lock) on
the C++ side.

Some VTK routines are also not
thread-safe, or do not have
parallel semantics.

Rendering via OpenGL is not
thread-safe.

So we do not lift the GIL
when calling C++-side
rendering from Python.

A Domain-Specific Interpreter for Parallelising a Large
Mixed-Language Visualisation Application— 13/20

Imperial College
London

Distributed Memory Parallelisation

Use a cluster of machines to perform the calculation in parallel and then
render on one client machine.

Used Python library Pyro to provide RMI-like features for Python.

Pyro allows ’pickleable’ (serialisable) objects to be transferred over
the network.

Our recipes can be transferred to servers in the cluster in this way.

Unfortunately, VTK objects cannot be serialised using the ‘pickle’
mechanism.

Therefore use a shared filesystem to transfer VTK objects.

This is a dynamic, client-server model of distributed memory
parallelisation, not data-parallel.

A Domain-Specific Interpreter for Parallelising a Large
Mixed-Language Visualisation Application— 14/20

Imperial College
London

Evaluation

Size: Approx 325 MB

Benchmark Scenario

Open a dataset
representing flow over
heated sphere

Plot seven isosurfaces at
different values

Platforms

Athlon 1600+, dual SMP,
256 KB L2, 1GB RAM,
Linux 2.4

Cluster of 4 Pentium 4 2.8
GHz, 512 KB L2, 1GB
RAM, Linux 2.4

A Domain-Specific Interpreter for Parallelising a Large
Mixed-Language Visualisation Application— 15/20

Imperial College
London

Results for IsoSurface Benchmark
IsoSurface Benchmark: Athlon 2-way SMP 1600+

0

10

20

30

40

50

60

70

2 4 8 16
Number of Partitions

T
im

e
in

 S
ec

on
ds

Base
Tiling
SMP

Results for IsoSurface Benchmark

Benchmark consists of loading a dataset representing flow over heated
sphere and calculating 7 isosurfaces at different values.

A Domain-Specific Interpreter for Parallelising a Large
Mixed-Language Visualisation Application— 16/20

Imperial College
London

Results for IsoSurface Benchmark
IsoSurface Benchmark:Cluster of Pentium 4 2.0 GHz

0

5

10

15

20

25

30

35

40

45

50

2 4 8 16

Number of Partitions

T
im

e
in

 S
ec

on
ds

Base

Tiling

DMP

Benchmark consists of loading a dataset representing flow over heated
sphere and calculating 7 isosurfaces at different values.

A Domain-Specific Interpreter for Parallelising a Large
Mixed-Language Visualisation Application— 17/20

Imperial College
London

Related Work

Dynamic component assembly software architectures

SciRun / BioPSE / Uintah

“Virtual data-grid” projects

Dynamic cross-component optimisation

Telescoping languages (Rice, LLNL)

Code generation approaches

Kitware tool: Paraview

This makes use of VTK’s data-parallel routines, relies on MPI

Grid workflow engines

Related in that we assemble a workflow at runtime, then execute

Our work illustrates an interesting pathway for facilitating “legacy
code” to operate in such an environment.

A Domain-Specific Interpreter for Parallelising a Large
Mixed-Language Visualisation Application— 18/20

Imperial College
London

What’s Next
Use of metadata to carry additional domain-specific semantics

Parallel semantics, thread-safe on C++ side, use-def equations

Reducing the size of the polygon set before rendering

Cache full sets on servers, return decimated sets to client

full 80% 85%

Level of detail (LOD) and region-of-interest (ROI) selection

Multiple time steps

Speculatively applying the recipe to future timesteps

Aim to achieve smooth rendering of a series of timesteps
A Domain-Specific Interpreter for Parallelising a Large

Mixed-Language Visualisation Application— 19/20

Imperial College
London

Conclusion

We have parallelised a large, open-source visualisation application
without changing a single line of code.

Entirely transparent to application program, controlled via an
environment variable.

Works for any Python visualisation script using VTK.

Use Python to implement a domain-specific interpreter for a
domain-specific library

Facilitated by reliable capture of DSL calls and known data-flow due
to opaque objects on the C++ side.

Optimisations

Coarse-grained tiling

SMP parallelisation

Distributed memory parallelisation

Dynamic, runtime parallelisation

A Domain-Specific Interpreter for Parallelising a Large
Mixed-Language Visualisation Application— 20/20

	Visualising Large Ocean Current Simulations
	Python/VTK Visualisation Software Architecture
	Object-Oriented Visualisation in VTK
	Domain-Specific Libraries: Typical Use
	Domain-Specific Interpreter Pattern
	Domain-Specific Interpreter Pattern
	Domain-Specific Interpreter for VTK in Python
	Visualisation Recipes
	Optimising VTK Visualisation Pipelines
	Coarse-Grained Tiling of VTK Visualisation Pipelines
	Coarse-Grained Tiling of VTK Visualisation Pipelines
	Shared-Memory Parallelisation
	Distributed Memory Parallelisation
	Evaluation
	Results for IsoSurface Benchmark
	Results for IsoSurface Benchmark
	Related Work
	What's Next
	Conclusion

