Loop Selection for Thread-Level
Speculation

Shengyue Wang, Xiaoru Dai, Kiran S. Yellajyosula,
Antonia Zhai, Pen-Chung Yew

Department of Computer Science & Engineering
University of Minnesota

A%, UNIVERSITY OF MINNESOTA

Chip Multiprocessors (CMPs)

e CMPs:
e |IBM Powers
« Sun Niagara
« Intel dual-core Xeon
« AMD dual-core Opteron

Improve program performance with parallel threads

A, UNIVERSITY OF MINNESOTA

Shengyue Wang

Thread-Level Speculation (TLS)

Automatic parallelization is difficult
« Ambiguous data dependences
o Complex control flow

TLS facilitates automatic parallelization by:
« Executing potentially dependent threads in parallel
e Preserving data dependences via runtime checking

Where do we find speculative parallel threads?

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

Parallelizing Loops under TLS

Loops are good candidates for parallelism
o Regqular structure
« Significant coverage on dynamic execution time

General purpose applications are complicated

Facts about SPECINT 2000

o Average number of loops: 714
« Average dynamic loop nesting: 8

Loop selection: which loops should be parallelized?

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

100%0

Potential of Loop Selection

O Outer loop

@ Inner loop

0O Best

:

60%
40% -

3

program speedup

-20%

20%1=ﬂ mHH

0

-40%

&

Carefully selected loops can improve performance significantly!

A%, UNIVERSITY OF MINNESOTA

Shengyue Wang

Outline

» Loop selection
» Algorithm
« Parallel performance prediction

e Dynamic loop behavior

e Conclusions

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

Loop Nesting

Source code

main() {
while (conditionl) { main_loopl
while (condition2) {
foo(); 1
) goo(); main_loop2
}
}
f00() { foo_loopl
while (condition3) { \
goo(); Y
} } goo_loopl
Loop graph
goo() { P
while (condition4) { [: static loop
}} — : nesting relationship

A%, UNIVERSITY OF MINNESOTA

Shengyue Wang

Benefit of Parallelizing a Single Loop

main_loopl
S Coverage | Loop Speedup Benefit
main_loop2 70% 14 20%
Ea / 30% 12 5%
foo_I({ 50% 1.6 18%
o I'O ol benefit = % program execution time saved
go0_o0p = coverage X (1-1/loop speedup)

Program speedup =1/ (1 - benefit) = 1.25

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

Loop Selection: Problem Definition

Goal:

Select the set of loops that maximizes the
overall program performance when parallelized

Constraint:

The set cannot contain loops with nesting
relationship

Loop selection is NP-complete!
Weighted maximum independent set

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

Loop Selection: Algorithm

e Exhaustive search (< 50 nodes)
« Try all possible combinations of loops

e Greedy algorithm (> 50 nodes)
o In descending order of benefit
« Check for nesting relation
 Add the loop to the set if no nesting

Average number of loops for SPECINT 2000: 714

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

Loop Pruning

Only resort to greedy algorithm for gcc and parser

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

Benefit of Parallelizing a Single Loop

main_loopl VAR :
Coverage / Speedup\\ Benefit
main_loop2 70% 14 20%
Ea / 3w || 12| | 5%
foo_loopl

Sy 50% \ 1.6 / 18%

/

N\ N
goo_loopl How can we estimate the speedup?

Loop graph

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

Outline

» Loop selection
« Algorithm
» Parallel performance prediction

e Dynamic loop behavior

e Conclusions

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

Estimating Parallel Performance

Communicating value between speculative threads
adds significant overhead to parallel execution

« Synchronization:
« Resolves frequently occurring data dependences

« Speculation:
« Resolves infrequently occurring data dependences

Estimating communication costs with the compiler

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

Cost of Mis-speculation

T1 T2

Io_agl ________ Amount of
work wasted

store

Cost of mis-speculation
= amount of work wasted X prob. of mis-speculation

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

Cost of Mis-speculation

T1

1 I Sequential part

load . Amount of
work wasted

store

Cost of mis-speculation
= amount of work wasted X prob. of mis-speculation

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

Synchronization

T1 T2

store
load

Synchronization serializes parallel execution

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

Cost of Synchronization

Est. | Est. Il Est. Il
T1 12 T1 12 T1 T2
store2 load1 T
storel load1
load2

storel store load1
Synchronization Cost = Synchronization Cost = Synchronization Cost =
of dependent instructions longest stall longest stall based on

dependent instructions

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

Experimental Framework

e Machine model

e 4 single-issue In-order processors

« Private L1 data cache (32K, 2-way, 1 cycle)
Shared L2 data cache (2M, 4-way, 10 cycles)
Speculation support (write buffer, address buffer)
« Synchronization support (comm. buffer, 10 cycles)

e Compiler optimizations using ORC 2.1
o Instruction scheduling to improve parallelism

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

100%0 -

80% -

program speedup

%

-200061

4006

100%

:

coverage
3

20%

0%

60%0 -

40% -

2% -

Comparison: Speedup Estimation Techniques

OEst. |
B Est. |l
O Est. 1l
O Perfect

60%0

Ll -
ncf craty twaf ip bzip2 \otex v parser gap gcc bk
Average program speedup: 20%, coverage: 70%
) H
ncf vpr parser gap perlbnk

crafty twolf

ozip bzip2 vortex

gcc

O Est. |

@ Est. 1l
O Est. 111
0O Perfect

Outline

e Loop selection
« Algorithm
« Parallel performance prediction

» Dynamic loop behavior

e Conclusions

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

Loop Behavior May Change

main() {
while (conditionl) { main_loopl
while (condition2) {
foo(); 1
) goo() main_loop2
}
}
foo(){ foo_loopl
while (condition3) { 1
goo();
| } goo_loopl A goo_loopl B
Loop tree
goo(){ P
\}/vhlle(cond|t|0n4){ Calling context of a loop:
} the path from the root to that loop

Source code

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

Loop Selection in a Tree

main_loopl

[

main_loop?2

- \
= | E

goo_loopl A goo_loopl B

goo_loopl is parallelized
only when it is reached
from main_loop2

Loop cloning can be used

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

Loop Behavior May Change

main_loopl
foo_loopl J.IJ
==
foo_loopl

|goo_loop1_A n

Exploit loop behavior dynamically

only parallelize the loop
In these invocations

goo_loopl B

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

program speedup

coverage

Potential of Exploiting Dynamic Behavior

10020

8020 -

6020

40%0

20%0

020 -

10020

80%0

O No Context

m Calling Cortext
O Oracle

< or »
éééaé?&Q &ﬁ@&gf?&o@‘*
5 out of 11 benchmarks show performance potentief

3 No Context

m Calling Cortext
O Oracle

6020

40%0

2020

020

il

CP S FFE <

Conclusions

Loop selection Is important for TLS

e Compiler-based loop selection
e Speedup 20%, Coverage 70%

e EXploiting dynamic behavior offers
performance potential

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

Thank You!

Shengyue Wang 4%, UNIVERSITY OF MINNESOTA

