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Chip Multiprocessors (CMPs)

• CMPs:
• IBM Power5
• Sun Niagara
• Intel dual-core Xeon
• AMD dual-core Opteron

Proc

Proc Proc

Cache

Improve program performance with parallel threads

IBM Power5
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Thread-Level Speculation (TLS)

Automatic parallelization is difficult
• Ambiguous data dependences
• Complex control flow 

TLS facilitates automatic parallelization by:
• Executing potentially dependent threads in parallel 
• Preserving data dependences via runtime checking

Where do we find speculative parallel threads?
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Parallelizing Loops under TLS

Loops are good candidates for parallelism 
• Regular structure
• Significant coverage on dynamic execution time

General purpose applications are complicated

Facts about SPECINT 2000
• Average number of loops: 714
• Average dynamic loop nesting: 8

Loop selection: which loops should be parallelized?
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Potential of Loop Selection
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Carefully selected loops can improve performance significantly!



Shengyue Wang

Outline

Loop selection
Algorithm

• Parallel performance prediction

• Dynamic loop behavior

• Conclusions
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Loop Nesting

main( ) {
while ( condition1 ) {

while ( condition2 ) {
foo( );
goo( );

}
}

}

Loop graph

Source code

: static loop
: nesting relationship

main_loop1

main_loop2

goo_loop1

foo_loop1foo( ) {
while ( condition3 ) {

goo( );
}

}

goo( ) {
while ( condition4 ) {
}

}
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Benefit of Parallelizing a Single Loop

benefit = % program execution time saved
= coverage × (1 – 1 / loop speedup)

BenefitLoop SpeedupCoverage
main_loop1

main_loop2

goo_loop1

foo_loop1

13%

20%

5%

18%

80% 1.2 13%

70% 1.4 20%

30% 1.2 5%

50% 1.6 18%

Program speedup = 1 / (1 - benefit) = 1.25
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Loop Selection: Problem Definition

Goal: 
Select the set of loops that maximizes the 
overall program performance when parallelized

Constraint: 
The set cannot contain loops with nesting 
relationship

Loop selection is NP-complete!
Weighted maximum independent set
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Loop Selection: Algorithm

• Exhaustive search (≤ 50 nodes)
• Try all possible combinations of loops

• Greedy algorithm (> 50 nodes)
• In descending order of benefit

• Check for nesting relation 
• Add the loop to the set if no nesting

Average number of loops for SPECINT 2000: 714
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Loop Pruning

Only resort to greedy algorithm for gcc and parser

loop3

loop4 loop5 loop6

loop7 loop8

loop2

loop1
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Benefit of Parallelizing a Single Loop

Loop graph

BenefitCoverage
main_loop1

main_loop2

goo_loop1

foo_loop1

13%

20%

5%

18%

80% 1.2 13%

70% 1.4 20%

30% 1.2 5%

50% 1.6 18%

How can we estimate the speedup?

Speedup
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Outline

Loop selection
• Algorithm

Parallel performance prediction

• Dynamic loop behavior
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Estimating Parallel Performance

Communicating value between speculative threads 
adds significant overhead to parallel execution
• Synchronization:

• Resolves frequently occurring data dependences
• Speculation:

• Resolves infrequently occurring data dependences

Estimating communication costs with the compiler
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Cost of Mis-speculation

Cost of mis-speculation 
=  amount of work wasted × prob. of mis-speculation

T1

store

T2

load

×

Amount of
work wasted
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Cost of Mis-speculation

Cost of mis-speculation 
=  amount of work wasted × prob. of mis-speculation

T1

store

T2

load

×

Amount of
work wasted

Sequential part
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Synchronization

T1 T2

load
store

Synchronization serializes parallel execution
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Cost of Synchronization

T1 T2

load2

load1store2

store1

T1 T2

store1

T1 T2

load1store1

Synchronization Cost = 

# of dependent instructions

Synchronization Cost = 

longest stall

Synchronization Cost =

longest stall based on 
dependent instructions

load1

Est. I Est. II Est. III
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Experimental Framework

• Machine model
• 4 single-issue in-order processors 
• Private L1 data cache (32K, 2-way, 1 cycle)
• Shared L2 data cache (2M, 4-way, 10 cycles)
• Speculation support (write buffer, address buffer) 
• Synchronization support (comm. buffer, 10 cycles)

• Compiler optimizations using ORC 2.1
• Instruction scheduling to improve parallelism
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Comparison: Speedup Estimation Techniques
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Average program speedup: 20%, coverage: 70%
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Outline

• Loop selection
• Algorithm
• Parallel performance prediction

Dynamic loop behavior
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Loop Behavior May Change

main( ) {
while ( condition1 ) {

while ( condition2 ) {
foo( );
goo( );

}
}

}

Source code

Calling context of a loop: 
the path from the root to that loop

foo( ) {
while ( condition3 ) {

goo( );
}

}

goo( ) {
while ( condition4 ) {
}

}

main_loop1

main_loop2

foo_loop1

goo_loop1_A goo_loop1_B

Loop tree
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Loop Selection in a Tree

main_loop1

main_loop2

foo_loop1

goo_loop1_A goo_loop1_B

13%

20%

5%

-2% 18%

goo_loop1 is parallelized 
only when it is reached 
from main_loop2

Loop cloning can be used
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Loop Behavior May Change

Exploit loop behavior dynamically

main_loop1

goo_loop1_A goo_loop1_B

foo_loop1

foo_loop1

only parallelize the loop 
in these invocations



Shengyue Wang

Potential of Exploiting Dynamic Behavior
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5 out of 11 benchmarks show performance potential
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Conclusions

Loop selection is important for TLS

• Compiler-based loop selection
• Speedup 20%, Coverage 70%

• Exploiting dynamic behavior offers 
performance potential
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Thank You!


