
Loop Selection for Thread-Level 
Speculation

Shengyue Wang, Xiaoru Dai, Kiran S. Yellajyosula, 
Antonia Zhai, Pen-Chung Yew 

Department of Computer Science & Engineering
University of Minnesota



Shengyue Wang

Chip Multiprocessors (CMPs)

• CMPs:
• IBM Power5
• Sun Niagara
• Intel dual-core Xeon
• AMD dual-core Opteron

Proc

Proc Proc

Cache

Improve program performance with parallel threads

IBM Power5



Shengyue Wang

Thread-Level Speculation (TLS)

Automatic parallelization is difficult
• Ambiguous data dependences
• Complex control flow 

TLS facilitates automatic parallelization by:
• Executing potentially dependent threads in parallel 
• Preserving data dependences via runtime checking

Where do we find speculative parallel threads?



Shengyue Wang

Parallelizing Loops under TLS

Loops are good candidates for parallelism 
• Regular structure
• Significant coverage on dynamic execution time

General purpose applications are complicated

Facts about SPECINT 2000
• Average number of loops: 714
• Average dynamic loop nesting: 8

Loop selection: which loops should be parallelized?



Shengyue Wang

Potential of Loop Selection

-40%
-20%

0%
20%
40%
60%
80%

100%

mcf
cra

fty

tw
olf gz

ip
bz

ip2
vo

rte
x

vp
r

pa
rse

r

ga
p

gc
c

pe
rlb

mk

Outer loop Inner loop Best

pr
og

ra
m

 s
pe

ed
up

Carefully selected loops can improve performance significantly!



Shengyue Wang

Outline

Loop selection
Algorithm

• Parallel performance prediction

• Dynamic loop behavior

• Conclusions



Shengyue Wang

Loop Nesting

main( ) {
while ( condition1 ) {

while ( condition2 ) {
foo( );
goo( );

}
}

}

Loop graph

Source code

: static loop
: nesting relationship

main_loop1

main_loop2

goo_loop1

foo_loop1foo( ) {
while ( condition3 ) {

goo( );
}

}

goo( ) {
while ( condition4 ) {
}

}



Shengyue Wang

Benefit of Parallelizing a Single Loop

benefit = % program execution time saved
= coverage × (1 – 1 / loop speedup)

BenefitLoop SpeedupCoverage
main_loop1

main_loop2

goo_loop1

foo_loop1

13%

20%

5%

18%

80% 1.2 13%

70% 1.4 20%

30% 1.2 5%

50% 1.6 18%

Program speedup = 1 / (1 - benefit) = 1.25



Shengyue Wang

Loop Selection: Problem Definition

Goal: 
Select the set of loops that maximizes the 
overall program performance when parallelized

Constraint: 
The set cannot contain loops with nesting 
relationship

Loop selection is NP-complete!
Weighted maximum independent set



Shengyue Wang

Loop Selection: Algorithm

• Exhaustive search (≤ 50 nodes)
• Try all possible combinations of loops

• Greedy algorithm (> 50 nodes)
• In descending order of benefit

• Check for nesting relation 
• Add the loop to the set if no nesting

Average number of loops for SPECINT 2000: 714



Shengyue Wang

Loop Pruning

Only resort to greedy algorithm for gcc and parser

loop3

loop4 loop5 loop6

loop7 loop8

loop2

loop1



Shengyue Wang

Benefit of Parallelizing a Single Loop

Loop graph

BenefitCoverage
main_loop1

main_loop2

goo_loop1

foo_loop1

13%

20%

5%

18%

80% 1.2 13%

70% 1.4 20%

30% 1.2 5%

50% 1.6 18%

How can we estimate the speedup?

Speedup



Shengyue Wang

Outline

Loop selection
• Algorithm

Parallel performance prediction

• Dynamic loop behavior

• Conclusions



Shengyue Wang

Estimating Parallel Performance

Communicating value between speculative threads 
adds significant overhead to parallel execution
• Synchronization:

• Resolves frequently occurring data dependences
• Speculation:

• Resolves infrequently occurring data dependences

Estimating communication costs with the compiler



Shengyue Wang

Cost of Mis-speculation

Cost of mis-speculation 
=  amount of work wasted × prob. of mis-speculation

T1

store

T2

load

×

Amount of
work wasted



Shengyue Wang

Cost of Mis-speculation

Cost of mis-speculation 
=  amount of work wasted × prob. of mis-speculation

T1

store

T2

load

×

Amount of
work wasted

Sequential part



Shengyue Wang

Synchronization

T1 T2

load
store

Synchronization serializes parallel execution



Shengyue Wang

Cost of Synchronization

T1 T2

load2

load1store2

store1

T1 T2

store1

T1 T2

load1store1

Synchronization Cost = 

# of dependent instructions

Synchronization Cost = 

longest stall

Synchronization Cost =

longest stall based on 
dependent instructions

load1

Est. I Est. II Est. III



Shengyue Wang

Experimental Framework

• Machine model
• 4 single-issue in-order processors 
• Private L1 data cache (32K, 2-way, 1 cycle)
• Shared L2 data cache (2M, 4-way, 10 cycles)
• Speculation support (write buffer, address buffer) 
• Synchronization support (comm. buffer, 10 cycles)

• Compiler optimizations using ORC 2.1
• Instruction scheduling to improve parallelism



Shengyue Wang

Comparison: Speedup Estimation Techniques

-40%

-20%

0%

20%

40%

60%

80%

100%

mcf crafty twolf gzip bzip2 vortex vpr parser gap gcc perlbmk

Est. I

Est. II

Est. III

Perfect

0%

20%

40%

60%

80%

100%

mcf crafty twolf gzip bzip2 vortex vpr parser gap gcc perlbmk

Est. I

Est. II

Est. III

Perfect

pr
og

ra
m

 s
pe

ed
up

-40%

-20%

0%

20%

40%

60%

80%

100%

mcf crafty twolf gzip bzip2 vortex vpr parser gap gcc perlbmk

Est. I

Est. II

Est. III

Perfect

-40%

-20%

0%

20%

40%

60%

80%

100%

mcf crafty twolf gzip bzip2 vortex vpr parser gap gcc perlbmk

Est. I

Est. II

Est. III

Perfect

-40%

-20%

0%

20%

40%

60%

80%

100%

mcf crafty twolf gzip bzip2 vortex vpr parser gap gcc perlbmk

Est. I

Est. II

Est. III

Perfect

0%

20%

40%

60%

80%

100%

mcf crafty twolf gzip bzip2 vortex vpr parser gap gcc perlbmk

Est. I

Est. II

Est. III

Perfect

0%

20%

40%

60%

80%

100%

mcf crafty twolf gzip bzip2 vortex vpr parser gap gcc perlbmk

Est. I

Est. II

Est. III

Perfect

0%

20%

40%

60%

80%

100%

mcf crafty twolf gzip bzip2 vortex vpr parser gap gcc perlbmk

Est. I

Est. II

Est. III

Perfect

co
ve

ra
ge

Average program speedup: 20%, coverage: 70%



Shengyue Wang

Outline

• Loop selection
• Algorithm
• Parallel performance prediction

Dynamic loop behavior

• Conclusions



Shengyue Wang

Loop Behavior May Change

main( ) {
while ( condition1 ) {

while ( condition2 ) {
foo( );
goo( );

}
}

}

Source code

Calling context of a loop: 
the path from the root to that loop

foo( ) {
while ( condition3 ) {

goo( );
}

}

goo( ) {
while ( condition4 ) {
}

}

main_loop1

main_loop2

foo_loop1

goo_loop1_A goo_loop1_B

Loop tree



Shengyue Wang

Loop Selection in a Tree

main_loop1

main_loop2

foo_loop1

goo_loop1_A goo_loop1_B

13%

20%

5%

-2% 18%

goo_loop1 is parallelized 
only when it is reached 
from main_loop2

Loop cloning can be used



Shengyue Wang

Loop Behavior May Change

Exploit loop behavior dynamically

main_loop1

goo_loop1_A goo_loop1_B

foo_loop1

foo_loop1

only parallelize the loop 
in these invocations



Shengyue Wang

Potential of Exploiting Dynamic Behavior

0%

20%

40%

60%

80%

100%

mcf
cra

fty

tw
olf gz
ip

bz
ip2

vo
rte

x

vp
r

pa
rse

r

ga
p

gc
c

pe
rlb

mk

No Context

Calling Context
Oracle

0%

20%

40%

60%

80%

100%

mcf
cra

fty

tw
olf gz
ip

bz
ip2

vo
rte

x

vp
r

pa
rse

r

ga
p

gc
c

pe
rlb

mk

No Context

Calling Context
Oracle

0%

20%

40%

60%

80%

100%

mcf
cra

fty

tw
olf gz
ip

bz
ip2

vo
rte

x

vp
r

pa
rse

r

ga
p

gc
c

pe
rlb

mk

No Context

Calling Context
Oracle

pr
og

ra
m

 s
pe

ed
up

0%

20%

40%

60%

80%

100%

mcf
cra

fty

tw
olf gz
ip

bz
ip2

vo
rte

x

vp
r

pa
rse

r

ga
p

gc
c

pe
rlb

mk

No Context

Calling Context
Oracle

0%

20%

40%

60%

80%

100%

mcf
cra

fty

tw
olf gz
ip

bz
ip2

vo
rte

x

vp
r

pa
rse

r

ga
p

gc
c

pe
rlb

mk

No Context

Calling Context
Oracle

0%

20%

40%

60%

80%

100%

mcf
cra

fty

tw
olf gz
ip

bz
ip2

vo
rte

x

vp
r

pa
rse

r

ga
p

gc
c

pe
rlb

mk

No Context

Calling Context
Oracle

co
ve

ra
ge

5 out of 11 benchmarks show performance potential



Shengyue Wang

Conclusions

Loop selection is important for TLS

• Compiler-based loop selection
• Speedup 20%, Coverage 70%

• Exploiting dynamic behavior offers 
performance potential



Shengyue Wang

Thank You!


