
1http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

Titanium Performance and
Potential: an NPB Experimental

Study
Kaushik Datta, Dan Bonachea, and

Katherine Yelick
http://titanium.cs.berkeley.edu

LCPC 2005
U.C. Berkeley

October 20, 2005

2http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

Take-Home Messages
• Titanium:

• allows for elegant and concise programs
• gets comparable performance to Fortran+MPI on three

common yet diverse scientific kernels (NPB)
• is well-suited to real-world applications
• is portable (runs everywhere)

3http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

NAS Parallel Benchmarks
• Conjugate Gradient (CG)

• Computation: Mostly sparse matrix-vector multiply (SpMV)
• Communication: Mostly vector and scalar reductions

• 3D Fourier Transform (FT)
• Computation: 1D FFTs (using FFTW 2.1.5)
• Communication: All-to-all transpose

• Multigrid (MG)
• Computation: 3D stencil calculations
• Communication: Ghost cell updates

4http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

Titanium Overview
• Titanium is a Java dialect for parallel scientific

computing
• No JVM, no JIT, and no dynamic class loading

• Titanium is extremely portable
• Ti compiler is source-to-source, and first compiles to C for

portability
• Ti programs run everywhere- uniprocessors, shared

memory, and distributed memory systems
• All communication is one-sided for performance

• GASNet communication system (not MPI)

5http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

Presented Titanium Features
• Features in addition to standard Java:

• Flexible and efficient multi-dimensional arrays
• Built-in support for multi-dimensional domain calculus
• Partitioned Global Address Space (PGAS) memory model
• Locality and sharing reference qualifiers
• Explicitly unordered loop iteration
• User-defined immutable classes
• Operator-overloading
• Efficient cross-language support

• Many others not covered…

6http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

• Ti Arrays are created and indexed using points:
double [3d] gridA = new double [[-1,-1,-1]:[256,256,256]];

(MG)
• gridA has a rectangular index set (RectDomain)

of all points in box with corners [-1,-1,-1]
and [256,256,256]

• Points and RectDomains are first-class types
• The power of Titanium arrays lies in:

• Generality: indices can start at any point
• Views: one array can be a subarray of another

Titanium Arrays

Lower Bound Upper Bound

7http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

• Foreach loops allow for unordered iterations through a
RectDomain:
public void square(double [3d] gridA, double [3d] gridB) {

foreach (p in gridA.domain()) {
gridB[p] = gridA[p] * gridA[p];

}
}

• These loops:
• allow the compiler to reorder execution to maximize performance
• require only one loop even for multidimensional arrays
• avoid off-by-one errors common in for loops

Foreach Loops

8http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

• Titanium allows for arithmetic operations on Points:
final Point<2> NORTH = [0,1], SOUTH = [0,-1],

 EAST = [1,0], WEST = [-1,0];

foreach (p in gridA.domain()) {
gridB[p] = S0 * gridA[p] +

 S1 * (gridA[p + NORTH] + gridA[p + SOUTH] +
 gridA[p + EAST] + gridA[p + WEST]);
}

• This makes the MG stencil code more readable and concise

Point Operations

pp+WEST

p+SOUTH

p+EAST

p+NORTH

9http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

Titanium Parallelism Model
• Ti uses an SPMD model of parallelism

• Number of threads is fixed at program startup
• Barriers, broadcast, reductions, etc. are supported

• Programmability using a Partitioned Global
Address Space (i.e., direct reads and writes)
• Programs are portable across shared/distributed memory
• Compiler/runtime generates communication as needed
• User controls data layout locality; key to performance

10http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

PGAS Memory Model
• Global address space is logically partitioned

• Independent of underlying hardware (shared/distributed)
• Data structures can be spread over partitions of shared space

• References (pointers) are either local or global (meaning possibly
remote)

Object heaps
are default shared

G
lo

ba
l a

dd
re

ss
 s

pa
ce x: 1

y: 2

Program stacks
are private

l: l: l:

g: g: g:

x: 5
y: 6

x: 7
y: 8

t0 t1 tn

11http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

• Titanium allows construction of distributed arrays in the
shared Global Address Space:
double [3d] mySlab = new double [startCell:endCell];

// “slabs” array is pointer-based directory over all procs
double [1d] single [3d] slabs = new double [0:Ti.numProcs()-1]

single [3d];
slabs.exchange(mySlab);
(FT)

Distributed Arrays

t0 t1 t2local
mySlab

local
mySlab

local
mySlab

slabs slabs slabs

12http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

• Full power of Titanium arrays combined with PGAS model
• Titanium allows set operations on RectDomains:

// update overlapping ghost cells of neighboring block
data[neighborPos].copy(myData.shrink(1));
(MG)

• The copy is only done on intersection of array RectDomains
• Titanium also supports nonblocking array copy

Domain Calculus and Array Copy

mydata data[neighborPos]

non-ghost (“shrunken”)
cells

ghost cells

intersection (copied area)

fills in neighbor’s ghost cells

13http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

• Local keyword ensures that compiler statically
knows that data is local:
double [3d] myData = (double [3d] local) data[myBlockPos];

• This allows the compiler to use more efficient
native pointers to reference the array
• Avoid runtime check for local/remote
• Use more compact pointer representation

• Titanium optimizer can often automatically
propagate locality info using Local Qualifier
Inference (LQI)

The Local Keyword and Compiler
Optimizations

14http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

Is LQI (Local Qualifier Inference) Useful?

• LQI does a solid
job of
propagating
locality
information

• Speedups:
• CG- 58%

improvement
• MG- 77%

improvementG
O

O
D

15http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

• For small objects, would sometimes prefer:
• to avoid level of indirection and allocation overhead
• to pass by value (copying of entire object)
• especially when immutable (fields never modified)

• Extends idea of primitives to user-defined data types
• Example: Complex number class

immutable class Complex {
// Complex class is now unboxed
public double real, imag;
…

}

(FT)

Immutable Classes

No assignment to fields
outside of constructors

16http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

• For convenience, Titanium allows operator overloading
• Overloading in Complex makes the FT benchmark more readable
• Similar to operator overloading in C++
immutable class Complex {

public double real;
public double imag;
public Complex op+(Complex c) {
return new Complex(c.real + real, c.imag + imag);

}
}
Complex c1 = new Complex(7.1, 4.3);
Complex c2 = new Complex(5.4, 3.9);
Complex c3 = c1 + c2;
(FT)

Operator Overloading

“+” is overloaded to add Complex objects

17http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

Cross-Language Calls
• Titanium supports efficient calls to

kernels/libraries in other languages
• no data copying required

• Example: the FT benchmark calls the FFTW
library to perform the local 1D FFTs

• This encourages:
• shorter, cleaner, and more modular code
• the use of tested, highly-tuned libraries

18http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

Are these features expressive?
• Compared line counts

of timed,
uncommented portion
of each program

• MG and FT disparities
mostly due to Ti
domain calculus and
array copy

• CG line counts are
similar since Fortran
version is already
compact

G
O

O
D

19http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

Testing Platforms
• Opteron/InfiniBand (NERSC / Jacquard):

• Processor: Dual 2.2 GHz Opteron (320 nodes, 4 GB/node)
• Network: Mellanox Cougar InfiniBand 4x HCA

• G5/InfiniBand (Virginia Tech / System X):
• Processor: Dual 2.3 GHz G5 (1100 nodes, 4 GB/node)
• Network: Mellanox Cougar InfiniBand 4x HCA

20http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

Problem Classes

5010243MG Class D
205123MG Class C
205123FT Class C
1001,500,0002CG Class D
75150,0002CG Class C

IterationsMatrix or Grid
Dimensions

All problem sizes shown are relatively large

21http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

Data Collection and Reporting
• Each data point was run three times, and the

minimum of the three is reported
• For a given number of procs, the Fortran and

Titanium codes were run on the same nodes (for
fairness)

• All the following speedup graphs use the best
time at the lowest number of processors as the
baseline for the speedup

22http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

FT Speedup
• All versions of the code

use FFTW 2.1.5 for the
serial 1D FFTs

• Nonblocking array copy
allows for comp/comm
overlap

• Max Mflops/proc:

318268203Opt.
350294238G5

Ti(nbl)Ti(bl)For

G
O

O
D

23http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

MG SpeedupG
O

O
D

24http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

CG SpeedupG
O

O
D

25http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

Other Applications in Titanium
• Larger Applications

• Heart and cochlea simulations (E. Givelberg, K. Yelick, A.
Solar-Lezama, J. Su)

• AMR Elliptic PDE solver (P. Colella, T. Wen)
• Other Benchmarks and Kernels

• Scalable Poisson solver for infinite domains
• Unstructured mesh kernel: EM3D
• Dense linear algebra: LU, MatMul
• Tree-structured n-body code
• Finite element benchmark

26http://titanium.cs.berkeley.edu Kaushik Datta, Dan Bonachea, and Katherine Yelick

Conclusions
• Titanium:

• Captures many abstractions needed for common scientific
kernels

• Allows for more productivity due to fewer lines of code
• Performs comparably and sometimes better to Fortran

w/MPI
• Provides more general distributed data layouts and

irregular parallelism patterns for real-world problems (e.g.,
heart simulation, AMR)

