by

Aabsolute-any (AA) critical criterion 134, 141, 152 absolute terms 133 absolute-top (AT) critical criterion 134, 141, 151 actual relative weights 98 additive function 228 additive utility assumption 6-7 AHP axioms 215 AHP variant by Dyer 222-223 all possible comparisons 105-112 alternatives 1 analytic hierarchy process (AHP) 9-11, 116, 137-141, 157-160, 165-166, 179-182, 186-188, 197-199, 201-212, 215-217, 225-227, 241 attributes 2 available comparisons 105-112 average consistency index of CDP matrices 41-42 average squared residual 65Bbest scales 51, 53 best MCDM method 199 best fuzzy MCDM method 261-262 bound of maximum consistency 40"Bridge Evaluation"problem 230-231Ccase studies 230-232 common characteristic 74 common comparisons 105-112 complete pairwise comparisons 88 conflict among criteria 1 concordance index 14, see alsoTOPSIS(fuzzy and crisp) concordance matrix 16, see alsoTOPSIS(fuzzy and crisp) concordance set 16, see also underTOPSIS(fuzzy and crisp) consistency see perfect consistency consistency index (CI) 59, 67-71 consistency of CDP matrices 35-42 consistency ratio (CR) 59 consistent data 91"city-block-metric"74 class 1 scales 45-47 class 2 scales 45, 48-49 Closest Discrete Pairwise (CDP) matrix 32-43, 80, 98, 145, 202, 251 closest value 34 critical alternatives (most) 156-175 criticality degree (of a decision criterion) 136 criticality degree (of an alternative) 156 criticality degree (of measures of performance) 160, 164 critical measure of performance (most) 155-175Criterium Decision Plus(computer software) 201, 212Ddecision criteria 1 decision making paradox seeparadoxdecision matrix 2-3 decision space 1 decision support tool 207 decision weights 2 decomposition of judgment matrices 88-113 definiteness property 74 descriptive theories 265 deterministic MCDM 2 difference comparisons 74-86 difference judgments 76-86 dimensionless analysis 8 discordance index 14, see alsoTOPSIS(fuzzy and crisp) discordance matrix 16-17, see alsoTOPSIS(fuzzy and crisp) discordance set 16, see alsoTOPSIS(fuzzy and crisp) discrete decision spaces 1 dissimilarity relation 74 distance (of similarity) 74 dominance matrices 17-18, see alsoTOPSIS(fuzzy and crisp) duality approach 115-129 dual problem seeduality approachEeigenvalue approach 44, 58-59, 217 eigenvector seeeigenvalue approacheigenvector approximation 58-59 seeeigenvalue approacheigenvector method seeeigenvalue approachELECTRE method 13-18, 241 error terms 93 evaluative criteria (crisp) 43, 177-199 evaluative criteria (fuzzy) 250-262 Euclidean distance 19-20 examples of exponential scales 29-32 Expert Choice 132, 201, 212 exponential scales 24, 28-32Hhierarchic composition 214 hierarchies (multiple) 131 hierarchical structure 1 human rationality assumption 61-71Ffeasible solution 85 feasible value 137, 163"flat maxima principle"131 fuzzy AHP 245-247, 262 fuzzy alternatives 236, 239, 242-262 fuzzy decision criteria 236, 242-262 fuzzy CDP matrix 251-257 fuzzy data 235 fuzzy databases 87 fuzzy decision matrix 243, 254-256 fuzzy evaluative criteria seeevaluative criteriafuzzy operations 236-329 fuzzy MCDM 2, 241-262 fuzzy numbers 166, 236-237, 239, 241 fuzzy RCP matrix 251-257 fuzzy reciprocal (judgment) matrix 253-260 fuzzy revised AHP 247-248, 258, 262 fuzzy sets 57, 87 fuzzy TOPSIS 248-250, 262 fuzzy trapezoid numbers 237 fuzzy triangular numbers seefuzzy numbersfuzzy WSM 242-244, 262 fuzzy WPM 244-245, 262Ggoals 1-2 group decision making 2 guided (pairwise comparisons) 88Qquadratic problem seequadratic programmingquadratic programming 75, 79-85Iideal mode AHP see,revised AHPideal solution 20 identical alternatives 214 incommensurable units 2 inconsistent CDP matrix 37InfoHarvest, Inc.201LLangrangian multipliers 81 Langrangian (the) 81 large size decision problems 128 law of stimulus of measurable magnitude 26 law of stimulus perception 28 least squares 63-67 linguistic choices 24, 28 linear equation, system of 79, 82 linear programming 92-97, 112 linear scale 24, see alsoSaaty scaleLootsma scales seeexponential scaleslogical contradiction 222Mmatrix partitioning seedecompositionmatrix transpose 82 maximum eigenvalue seeeigenvalue approachmaximum similarity 73-74 maximum dissimilarity 73-74 maximum consistency of CDM matrices 38-42 maximum consistency index 40-42 membership value 57, also seefuzzy numbersmodal value 237 most critical criterion 133-135, 138-139, 141 most important criterion 144 most sensitive alternative 155-156 missing pairwise comparisons 86, 91 Multi-Attribute Decision Making (MADM) 1 multi-attribute utility theory (MAUT) 214 Multi-Criteria Decision Making (MCDM) (definitions) 1-22 multi-dimensional MCDM 8 Multi-Objective Decision Making (MODM) 1 multiple attributes 1 multiple hierarchies 131-132 multiple objective functions 1 multiplicative AHP 228-233, see alsoWPMNnegative-ideal solution 20 normalized decision matrix 14-16, 19 normalized columns 117-118 normalized rows 117-118 normative theories 265 number of alternatives (role of) 207Ooptimization approaches 60-67 optimal solution 83-85 outranking relations 13-14Ppairwise comparisons 23, 25-32 paradox 2, 42, 145, 197-199, 265 partial ranking 221 partitioning of pairwise comparisons 90, see alsodecomposition of judgment matricespercent-any (PA) critical criterion 134-135, 140-141, 145, 150 percent-top (PT) critical criterion 134-135, 140-141, 145, 149 perfect consistency 95, 215, 218 performance values seedecision matrixpower law 32 power method 67 prescriptive theories 265 prime approach seeduality approachprime problem seeduality approachprimal approach seeduality approachRrandom consistency index (RCI) 59, see alsoconsistency indexranking abnormalities 213-233 ranking of fuzzy numbers 238-239 ranking reversal 43 ranking indiscrimination 43 ratio comparisons 57-72 Real Continuous Pairwise (RCP) matrix 32-34, 80, 97, 146, 202-205, 251 real life case studies 230-232 reciprocal comparisons seepairwise comparisonsreciprocal matrices 88-89, see alsopairwise comparisonsredundant constraints 96 relative closeness 20 relative importance 75, 85 relative priorities 89, see alsorelative importancerelative magnitudes 25 relative ranking 80 relative similarity 75-85, also, seesimilarityrelative terms 132 relative weights 57-72, 73-86, 87-113 revised AHP 11-13, 116, 189, 191-193, 197-199, 201-212, 214, 218-222, 225-227 robust criterion 138 robust decision problem 164SSaaty scale 26-27 scale 24-55, 75 scale generation 27 scale evaluation 32-55 separation measure 20 SENSATTO library 131 sensitivity analysis 131-175 sensitivity coefficient (of a criterion) 136 sensitivity coefficient (of an alternative) 156 sensitivity coefficient (of measures of performance) 160, 164 similarity function 73 similarity scale 77 similarity measure 74 single-dimensional MCDM 8"Site Selection"problem 232 stepwise approach 166 stochastic MCDM 2 stimulus of measurable magnitude 26 stimulus perception 28 symmetric comparisons seedifference judgmentssymmetric comparisons 76 system of linear equations seequadratic programmingTtaxonomy of MCDM methods 4 threshold value(s) 155, 158-159, 161, 163, 175 TOPSIS method 18-21, 194-196, 241 triangular property 74, 85V"vector-maximum"problem 1Uunion operation 87 units of measure 8 upper bound of reduction rate 120 unrestricted variables 93 utility theory 214Wweighted product model (WPM) 8-9, 142-145, 154, 161-164, 165, 169-170, 174-175, 180, 183, 185, 192, 197-199, 228-233, 241 weighted sum model (WSM) 6-7, 137-141, 157-160, 165, 167-168, 170-171, 179-185, 241, 197-199 worst scales 52-54

Click the BACK key of your browser or

Dr. Triantaphyllou's Homepage