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Abstract

This paper proposes a new approach for classifying text documents into two disjoint classes. The new
approach is based on extracting patterns, in the form of two logical expressions, which are defined on
various features (indexing terms) of the documents. The pattern extraction is aimed at providing de-
scriptions (in the form of two logical expressions) of the two classes of positive and negative examples. This
is achieved by means of a data mining approach, called One Clause At a Time (OCAT), which is based on
mathematical logic. The application of a logic-based approach to text document classification is critical
when one wishes to be able to justify why a particular document has been assigned to one class versus the
other class. This situation occurs, for instance, in declassifying documents that have been previously
considered important to national security and thus are currently being kept as secret. Some computational
experiments have investigated the effectiveness of the OCAT-based approach and compared it to the well-
known vector space model (VSM). These tests also have investigated finding the best indexing terms that
could be used in making these classification decisions. The results of these computational experiments on a
sample of 2897 text documents from the TIPSTER collection indicate that the first approach has many
advantages over the VSM approach for solving this type of text document classification problem. More-
over, a guided strategy for the OCAT-based approach is presented for deciding which document one needs
to consider next while building the training example sets. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction and background information

This paper investigates the problem of classifying text documents into two disjoint classes. Two
sample sets of training examples (text documents) are assumed to be available. An approach is
developed that uses indexing terms to form logical expressions (patterns) that next are used to
classify unseen text documents. This is a typical case of supervised ‘‘crisp’’ classification.
A typical application of this type of classification problem occurs in the declassification process

of vast amounts of documents originally produced by the US Federal Government. For reasons of
national security, today there are huge numbers of documents that remain classified as secret.
These documents are being kept in secured places because once they were considered to be im-
portant to national security. However, high maintenance costs and new laws dictate that these
documents should be re-evaluated, and the ones that are not critical any more should become
public. Thus, such documents need to be (roughly speaking) classified into the two disjoint cate-
gories of ‘‘secret’’ and ‘‘non-secret’’. In this context, when a document becomes ‘‘non-secret’’ after being
‘‘secret’’, it is termed as ‘‘declassified ’’. In reality, documents have been classified into multiple levels of
criticality to the national security, but in this study we will consider only two classes as described
above. It should also be stated here that once a document becomes public (i.e., it has been declassified),
then there is no way to make it secret again (especially now with the proliferation of the Internet).
In order to highlight the complexity of this kind of classification problem, consider the eval-

uation of the following three illustrative sentences: ‘‘An atomic test is to be conducted at Site X’’,
‘‘An atomic test is to be conducted at 1:00 p.m.’’, and ‘‘An atomic test is to be conducted at Site X at
1:00 p.m.’’ which come from three hypothetical documents, A, B, and C, respectively. According
to (DynMeridian, 1996) and (DOE, 1995), only document C is both specific and sensitive and
should not be declassified and instead should continue to be kept secret. The reason for this DOE
(US Department of Energy) classification rule is because document C includes a sentence with
specific reference to the ‘‘place and time’’ of an ‘‘atomic test’’. On the other hand, documents A
and B can be declassified (assuming that the rest of their contents is not critical) and become
available to the general public. In this illustrative example some key text features that can be used
to characterize the two classes are references to ‘‘place’’, ‘‘time’’ and ‘‘atomic test’’.
Traditionally, this declassification process is carried out by employing vast numbers of human

experts. However, the sheer amount of documents under consideration can make this process
extremely ineffective and inefficient. Although there are guidelines of how to declassify secret
documents, directly computerizing the human effort would require developing sophisticated
parsers. Such parsers would have to analyze syntactically a document and then determine which,
if any, guideline is applicable. The poor quality of the documents (many of which are decades old)
and the complexity of the declassification guidelines could make such an approach too risky to
national security. Thus, a reasonable alternative is to seek to employ machine-learning techniques.
More specifically, techniques that use ‘‘learning from examples’’ approaches might be appropri-
ate. Thus, this study is centered on the following three inter-related research problems:

1. Employ data mining techniques for extracting (mining) from two sets of examples text features
that could be used to correctly group documents into two disjoint classes.

2. Use such features to form logical expressions (patterns) that could explain how the training ex-
amples are grouped together, and accurately classify unseen documents.
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3. When considering a guided learning strategy for extracting the logical expressions, determine
the next training document to include in the sets with the training examples so that accurate
logical expressions are extracted as quickly as possible.

Since being able to justify this kind of classification decisions is important (given the severity of
wrongly releasing a sensitive document to the public), methods that do not clearly allow for an
explanation of the decision making process are not appealing here. Therefore, an impetus for this
research is to seek to develop an approach that is based on mathematical logic, versus approaches
that do not provide satisfactory explanation capabilities.
Traditional text classification and information retrieval (IR) techniques may have some limi-

tations in solving this problem because they group documents that share a similar content. The
prime example of such techniques is the vector space model (VSM) (Salton, 1989), which according
to the literature (Buckley & Salton, 1995; Shaw, 1995) is the most effective methodology for this
type of classification. The limitation of this technique is that it is based on similarity measures and
thus it may not be able to distinguish between the previous three illustrative sentences in terms of
the critical classification issues despite them all having similar contents. Other techniques, such as
fuzzy set approaches (FSAs), neural networks (NNs), nearest neighbor, and computational se-
mantic analysis (SA), have limitations in addressing these research problems, either because of
their time complexity or because the resulting sizes of their outputs are still unacceptable and do
not possess satisfactory explanatory capabilities (Chen, 1996; Scholtes, 1993).
An alternative approach to address the present research problems is the One Clause At a Time

(or OCAT) algorithm (Triantaphyllou, 1994; Triantaphyllou, Soyster, & Kumara, 1994). This is a
new data mining approach based on mathematical logic. This approach extracts (mines) key
features from the training examples and next uses them to construct logical expressions (patterns)
that can be used in classifying the training examples into the two original disjoint classes. These
logical expressions can also easily be transformed into the IF-THEN type of decision rules. The
OCAT approach applies to examples that can be represented by binary vectors (although attri-
butes with continuous values can be transformed into ones with binary values (Triantaphyllou,
2001). However, this is not a limitation because it is the mere presence or absence of certain key
words that can cause a document to be grouped in one class or another. On the other hand, the
typical document classification done by traditional IR systems uses term frequencies (which are
continuous numbers usually normalized in the interval ½0; 1�) of keywords to group together
documents of seemingly similar context.
This paper is organized as follows. Section 2 presents an overview of the document clustering

process. Section 3 introduces the OCAT algorithm. Section 4 presents an overview of the VSM
algorithm. Section 5 presents an overview of the guided learning approach (GLA). Section 6
describes the methodology of this investigation. Section 7 presents and summarizes the results.
Finally the paper ends with some concluding remarks.

2. A brief overview of the document clustering process

The traditional process for automatic clustering of text documents results in a grouping of
documents with similar content into meaningful groups in order to facilitate their storage and
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retrieval (see, for example, Salton, 1989). This is a four-step process as follows. In the first step a
computerized system compiles a list of the unique words that co-occur in a sample of the documents
from various classes (see, for example, Cleveland & Cleveland, 1983; Salton, 1989). In the second
step, the co-occurring frequency of these words is analyzed and the best set of indexing terms is
extracted. Usually, indexing terms (also known as keywords or content descriptors) are selected
among the words with moderate frequency. The most common and the most rare words (i.e., the
most frequent and infrequent words, respectively) are discarded as keywords because they convey
little lexical meaning (see, for example, Cleveland & Cleveland, 1983; Fox, 1990; Luhn, 1957, 1958;
Meadow, 1992; Salton, 1968; Zipff, 1949). Some examples of commonwords are: ‘‘a’’, ‘‘an’’, ‘‘and’’,
and ‘‘the’’ (Fox, 1990); rare words depend on a document’s subject domain (Meadow, 1992).
In the third step, a document is indexed by affixing it with the set of keywords that only occur in

its text. According to Cleveland & Cleveland (1983), ‘‘this assignment is correct because authors
usually repeat words that conform with the document’s subject’’. A list (vector) of keywords
represents the content of a document and usually it is referred to as a document representation or
surrogate. An example of such a surrogate is the list of the seven words or phrases: {‘‘Document
classification’’, ‘‘document indexing’’, ‘‘vector space model’’, ‘‘data mining’’, ‘‘OCAT algorithm’’,
and ‘‘machine learning’’}. This surrogate could be used to represent the content of this paper,
which is composed of thousands of words, symbols, and numbers. Hence, the goal of the third
step is to construct a surrogate for representing the content of each document.
An advantage of using such surrogates is that they can be further simplified by expressing them

as numerical vectors (Salton, 1989). One way to construct such vectors is by expressing their
elements as binary values to indicate the presence (denoted by 1) or absence (denoted by 0) of
certain keywords in a document. For instance, the vector’s element wij ¼ 1 (or 0) expresses the
presence (or absence) of keyword Ti ði ¼ 1; 2; 3; . . . ; tÞ in document Dj ðj ¼ 1; 2; 3; . . . ;NÞ. Thus,
the surrogate Dj ¼ ½011110� of six binary elements indicates the presence of keywords (terms) T2,
T3, T4, and T5 and the absence of keywords (terms) T1 and T6 in Dj.
Another way to construct these numerical vectors is by expressing (i.e., weighting) their ele-

ments using real values from the range ½0; 1�. In this case, the value of an element wij indicates the
relative occurrence frequency of a keyword within a document. For instance, a hypothetical
surrogate such as Dj ¼ ½ 0:00 1:00 0:10 0:75 0:90 1:00 � may indicate that term T3 occurs
little, terms T4 and T5 occur moderately, and terms T2 and T6 occur with high frequency in Dj. In
the remainder of this paper, however, only binary surrogates will be considered. As stated above
the reason for considering binary vectors as surrogates is because the mere presence or absence of
a keyword (or some pattern of keywords) may be detrimental in assigning a document to one of
the two disjoint classes considered in this paper.
In the last step of the (traditional) classification process, documents sharing similar keywords

(i.e., content) are grouped together. This classification follows from the pairwise comparison of all
the surrogates (Salton, 1989).

3. An overview of the OCAT algorithm

The OCAT algorithm (Triantaphyllou, 1994; Triantaphyllou et al., 1994) is an inductive
learning (data mining) approach for the classification of examples (documents in this study) into
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two disjoint classes. Each example is represented by a binary vector, although it can be generalized
into vectors defined on continuous variables (Triantaphyllou, 2001). The ith element of such a
vector represents the presence (1) or absence (0) of a key characteristic (also called a feature,
variable, atom, or attribute) pertinent to the phenomenon under study. For this study, such bi-
nary features represent the presence or absence of the index terms (keywords) in the document
surrogates. It is a good idea for the analyst to first try to define these examples by using as many
features as possible.
The OCAT algorithm systematically identifies (‘‘mines’’) a small set of features while simul-

taneously constructing a logical expression of small size defined on these features that can be used
to group together the training examples into the two original disjoint classes. This logical ex-
pression is a Boolean function that evaluates to true when it is given training examples from one
of the two disjoint classes (the ‘‘positive’’ class) and false when it is given training examples from
the other class (the ‘‘negative’’ class). The assignment of the terms ‘‘positive’’ and ‘‘negative’’ is
arbitrary. Hopefully, if the training examples are representative enough, then this logical ex-
pression can be used to accurately classify unseen examples. Moreover, this logical expression can
be used to extract new knowledge pertinent to the system under study. The extracted Boolean
function is in conjunctive normal form (CNF) or in disjunctive normal form (DNF). Fig. 1 il-
lustrates this algorithm for the CNF case.
From Fig. 1 it becomes evident that the OCAT algorithm is greedy in nature. This allows it to

return logical expressions of small size. That is, it attempts to return a logical expression that is
comprised of a small number of CNF (or DNF) clauses (Triantaphyllou & Soyster, 1996a). This
algorithm is greedy in the sense that in the first iteration, it forms a clause that for the CNF case
accepts (i.e., it evaluates to 1) all the examples in one of the classes ðEþÞ and rejects (i.e., it
evaluates to 0) as many examples in the other class ðE�Þ as possible. Similarly, in the second it-
eration it forms another clause that again accepts all the examples in Eþ and rejects as many

Fig. 1. The OCAT algorithm for CNF expressions.
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examples as possible in E� that were accepted by the previous clause(s). The algorithm repeats this
process until all the examples in E� are rejected by the generated sequence of clauses.
Triantaphyllou et al. (1994) and Triantaphyllou (1994) have implemented a branch-and-bound

(B&B) approach to construct a set of clauses of minimal cardinality (i.e., a logical expression
comprised by a minimum number of clauses) to solve the problem in Step 2 of the OCAT al-
gorithm in Fig. 1. This approach, however, is limited to problems of small to medium size because
of the extensive CPU times it takes to find an optimal or next to optimal set of clauses (i.e., a set of
clauses of minimal cardinality). In Triantaphyllou & Soyster (1995) the authors present a simple
transformation approach that can be used to extract DNF functions from algorithms that infer
CNF functions and vice versa.
More recently, Deshpande & Triantaphyllou (1998) have implemented a faster heuristic of

quadratic time complexity as it is highlighted in Fig. 2. The version of the OCAT approach de-
picted in Fig. 2 returns a CNF expression (Boolean function) which accepts all of the positive
examples while rejecting all of the negative examples. This algorithm can also be enhanced with a
randomized approach which essentially solves this problem many times (in a randomized fashion)
and at the end it selects the smallest (in terms of the number of clauses in the Boolean expression)
of the extracted functions. This solution allows for larger classification problems and delivers a set
of (CNF or DNF) clauses of small size (as opposed to the minimal or near to minimal size sets
delivered by the B&B approach).
The notation POSðAjÞ and NEGðAjÞ in Fig. 2 denotes the number of positive and negative

examples that will be accepted, respectively, if feature (atom) Aj is introduced in the current CNF
clause. That is, POSðAjÞ ¼ jEþðAjÞj and NEGðAjÞ ¼ jE�ðAjÞj. Please note that Steps 1 and 2 in
Fig. 2 also consider the negations (denoted as �AAj) of the features Aj. The ratio POSðAjÞ=NEGðAjÞ
in Steps 1 and 2 is used to quickly identify features that can form a clause that would accept all the

Fig. 2. A fast heuristic for forming CNF clauses for the OCAT approach.
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positive examples while rejecting many of the remaining negative ones (for the CNF case). By
selecting a feature that maximizes this ratio, it is likely to have a feature that has a large POSðAjÞ
value and a low NEGðAjÞ value. If the value of NEGðAjÞ is equal to zero, then a large value is
assigned to the ratio in Step 1 (in Fig. 2) in order to make the choice of including the feature
(atom) Aj very appealing.
In order to help illustrate the previous issues consider the two sets of training examples depicted

in Fig. 3. The set with the positive examples is comprised of four examples, while the set of the
negative examples is comprised of six examples. These examples (document surrogates in our
context) are defined on four binary features (i.e., index terms or atoms) or their negations. A value
of 1 indicates the presence of the corresponding index term, while a value of 0 indicates the ab-
sence of the index term.
In the experiments described in this paper, the OCAT approach (as depicted in Fig. 1) employs

the fast heuristic shown in Fig. 2. However, in other implementations a B&B approach (Tri-
antaphyllou, 1994) may be used in Step 2. When the fast heuristic in Fig. 2 is employed, the first
CNF clause that is derived is ðA2 _ A4Þ. To follow this, observe that the ratio with the maximum
value is given by POSðA2Þ=NEGðA2Þ ¼ 2=2 ¼ 1:00 (this is a tie with the ratio that corresponds to
A4). When feature A2 (which is arbitrarily selected over A4) is included in the first clause (which
initially is nil), then the first and the second positive examples will be accepted by that clause. The
next iteration of the fast heuristic will consider the same negative examples, but the updated set of
positive examples consists of the remaining positive examples (i.e., the third and fourth). This will
result in the next feature to be selected being A4. Now, the CNF clause that is comprised of these
two features (i.e., A2 and A4) will accept all the positive examples in Eþ while rejecting the first,
fourth and fifth examples from the set of the negative examples in E�.
The next iteration of the OCAT approach (in Fig. 1) will consider the original four positive

examples, but now the set of the negative examples consist of the ones not rejected so far. That is,
the second, third, and sixth negative examples, in terms of the original set E�. Working as above,
it can be seen that the next application of the fast heuristic will return the clause : ð�AA2 _ �AA3Þ. The
loop in Fig. 1 needs to be repeated once more, and a third (and final) clause is derived. That clause
is ðA1 _ A3 _ �AA4Þ. In other words, the logical expression (in CNF) which is derived from the
training examples depicted in Fig. 3 is as follows:

ðA2 _ A4Þ ^ ð�AA2 _ �AA3Þ ^ ðA1 _ A3 _ �AA4Þ: ð1Þ
A fundamental property of expression (1) is that it accepts (i.e., evaluates to 1) all the exam-

ples in Eþ, while it rejects (i.e., evaluates to 0) all the examples in E�. However, since such an

Fig. 3. A set of four positive and a set of six negative examples.
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expression is usually constructed from a relatively small collection of training examples, it is
possible that the expression to be inaccurate when it classifies unseen examples. The error may
occur if either the unseen example is positive, and the expression rejects it, or if the example is
negative and the expression accepts it. More details on the OCAT approach can be found at:
http://www.imse.lsu.edu/vangelis

4. Improving the classification accuracy of the OCAT algorithm by using two logical expressions

Let us consider generating a second logical expression for classifying unseen examples. Please
recall that the first expression is derived by treating the first set of training examples as positive
and the second as the negative examples. However, the second expression is derived by treating
the second set of training examples as positive and the first as the negative training examples. For
instance, Fig. 4 depicts the same training examples as the ones in Fig. 3, but now they have reverse
roles.
When the OCAT approach is applied on the new inference problem, the following expression

(2) is derived:

ðA3 _ �AA2Þ ^ ð�AA4 _ A2 _ �AA1Þ ^ ðA1 _ �AA3Þ: ð2Þ
As with expression (1), a property of the corresponding Boolean function f ðxÞ ¼ ðA3 _ �AA2Þ ^

ð�AA4 _ A2 _ �AA1Þ ^ ðA1 _ �AA3Þ is to accept (i.e., to evaluate to 1) the former negative examples and to
reject (i.e., to evaluate to 0) the former positive examples. For convenience, following the setting
of the examples in Figs. 3 and 4, expression (1) will be called the positive rule (denoted as Rþ) while
expression (2) the negative rule (denoted as R�).
The disadvantage of using only one rule (logical expression) can be overcome by considering

the combined decisions of Rþ and R� when classifying an unseen example e. If e is a positive
example it will be denoted as eþ, while if it is a negative example it will be denoted as e�. Under
this setting, the classification of e can only be:

1. Correct if and only if:
(a) RþðeþÞ ¼ 1 and R�ðeþÞ ¼ 0;
(b) Rþðe�Þ ¼ 0 and R�ðe�Þ ¼ 1.

2. Incorrect if and only if:
(c) RþðeþÞ ¼ 0 and R�ðeþÞ ¼ 1;
(d) Rþðe�Þ ¼ 1 and R�ðe�Þ ¼ 0.

Fig. 4. The training example sets in reverse roles.
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3. Undecided if and only if:
(e) RþðeþÞ ¼ 1 and R�ðeþÞ ¼ 1;
(f) Rþðe�Þ ¼ 1 and R�ðe�Þ ¼ 1;
(g) RþðeþÞ ¼ 0 and R�ðeþÞ ¼ 0;
(h) Rþðe�Þ ¼ 0 and R�ðe�Þ ¼ 0.

Cases (a) and (b) are called ‘‘correct’’ classifications because both rules perform according
to the desired properties described above. However, as indicated above it is possible that the rules
could incorrectly classify an example (cases (c) and (d)). Or the rules could simultaneously ac-
cept (cases (e) and (f)) or reject (cases (g) and (h)) the example. Cases (e)–(h) are called ‘‘unde-
cided’’ because one of the rules does not possess enough classification knowledge, and thus such
a rule must be reconstructed. Therefore, ‘‘undecided’’ situations open the path to improve
the accuracy of a classification system. This paper exploits the presence of ‘‘undecided’’ situa-
tions in order to guide the reconstruction of the rule that triggered an erroneous classification
decision.

5. An overview of the vector space model

The VSM is a mathematical model of an IR system that can also be used for the classification of
text documents (Salton, 1989; Salton & Wong, 1975). It is often used as a benchmarking method
when dealing with document retrieval and classification related problems. Fig. 5 illustrates a
typical three-step strategy of the VSM approach to clustering.
To address Step 1 Salton (1989) indicates that a suitable measure for pairwise comparing any

two surrogates X and Y is the cosine coefficient (CC) as defined in Eq. (3) (other similarity
measures are listed in Salton (1989, Chapter 10):

CC ¼ jX \ Y j
jX j1=2 � jY j1=2

: ð3Þ

In this formula, X ¼ ðx1; x2; x3; . . . ; xtÞ and Y ¼ ðy1; y2; y3; . . . ; ytÞ, where xi indicates the presence
(1) or absence (0) of the ith indexing term in X and similarly for yi in respect to Y. Moreover,
jX j ¼ jY j ¼ t is the number of indexing terms, and jX \ Y j is the number of indexing terms ap-
pearing simultaneously in X and Y. To be consistent with the utilization of binary surrogates,
formula (3) provides the CC expression for the case of Boolean vectors. This coefficient measures
the angle between two surrogates (Boolean vectors) in a Cartesian plane. Salton (1989) indicates

Fig. 5. The VSM approach.
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that ‘‘the magnitude of this angle can be used to measure the similarity between any two docu-
ments’’. This statement is based on the observation that two surrogates are identical, if and only if
the angle between them is equal to 0�.
In Step 2 the VSM clusters together documents that share a similar content based on their

surrogates. According to Salton (1989), any clustering technique can be used to group documents
with similar surrogates. A collection of clustering techniques is given in Anderberg (1973), Ald-
enderfer (1984), Sp€aath (1985), and Van Rijsbergen (1979). However, it is important to mention
here that with any of these techniques, the number of generated classes is always a function of
some predefined parameters. This is in contrast with the requirements of our problem here in
which the number of classes is exactly equal to two. When the VSM works under a predefined
number of classes, it is said to perform a pseudo-classification. In this study the training examples
are already grouped into two (disjoint) classes. Thus, the VSM is applied on the examples
(documents) in each class and the corresponding centroids are derived. Hence, we will continue to
use this kind of pseudo-classification.
To address Step 3 Salton (1989), Salton & Wong (1975), and Van Rijsbergen (1979) suggest the

computation of a class centroid to be done as follows. Let wrj ðj ¼ 1; 2; 3; . . . ; tÞ be the jth element
of the centroid for class Cr which contains q documents. Also, the surrogate for document Di is
defined as fDijg. Then, wrj is computed as follows:

wrj ¼ ð1=qÞ
Xq

i¼1
Dij for j ¼ 1; 2; 3; . . . ; t: ð4Þ

That is, the centroid for class Cr is also a surrogate (also known as the ‘‘average’’ document)
defined on t keywords.
Finally, the VSM classifies a new document by comparing (i.e., computing the CC) its surrogate

against the centroids that were created in Step 3. A new document will be placed in the class for
which the CC value is maximum.
In the tests to be described later in this paper, the VSM is applied on the documents (training

examples) available for each class. In this way, the centroid of each one of the two classes is
derived. For instance, consider the training examples depicted in Figs. 3 and 4. The VSM is now
applied on these data. The centroids in expression (5) have been constructed from the data in Fig.
3 and the centroids in expression (6) from the data in Fig. 4. Obviously, the centroids for the
second set are in reverse order of those for the first set of data.

Cþ ¼ ½1=2; 1=2; 1=4; 1=2�;

C� ¼ ½2=3; 1=3; 1=2; 1=3�;
ð5Þ

Cþ ¼ ½2=3; 1=3; 1=2; 1=3�;

C� ¼ ½1=2; 1=2; 1=4; 1=2�:
ð6Þ

The notation Cþ and C� stands for the centroids for the data in Fig. 3, and Cþ and C� stand for
the centroids for the data in Fig. 4, respectively. In order to match the names of the positive and
negative rules described for the OCAT algorithm, the two centroids for the data in Fig. 3 will be
called the positive centroids while the centroids for the data in Fig. 4 will be called the negative
centroids. As with the OCAT algorithm, the utilization of two sets of centroids has been inves-
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tigated in order to tackle the new classification problem by using the VSM as new examples
become available.

6. Guided learning for the classification of text documents

The central idea of the GLA can be illustrated as follows. Suppose that the collection to be
classified contains millions of documents. Also, suppose that an oracle (i.e., an expert classifier) is
queried in order to classify a small sample of examples (documents) into classes Eþ and E�. Next,
suppose that the OCAT algorithm is used to construct the positive and negative rules, such as was
the case with expressions (1) and (2). As indicated earlier, these rules may be inaccurate when
classifying examples not included in the training set, and therefore they will result in one of the
classification outputs provided in cases (a)–(g), as described earlier. One way to improve the
classification accuracy of these rules is to add one more document to the training set (either in Eþ

or E�) and have them reconstructed. Therefore, the question GLA attempts to answer is:What is
the next document to be inspected by the expert classifier so that the classification performance of the
derived rules can be improved as fast as possible?
One way to provide the expert with this document is to randomly select one from the remaining

unclassified documents. We call this the RANDOM input learning strategy. A drawback of this
strategy may occur if the oracle and incumbent rules frequently classify a document in the same
class. If this occurs frequently, then the utilization of the oracle and the addition of the new ex-
amples to the training set is of no benefit. An alternative and more efficient way to provide the
expert with a document is to select one in an ‘‘undecided’’ situation. This strategy (in a general
form) was first introduced in Triantaphyllou & Soyster (1996b). This approach appears to be a
more efficient way of selecting the document because an ‘‘undecided’’ situation implies that one of
the rules misclassified the document. Therefore, the expert’s verdict will not only guide the re-
construction of the rule that triggered the misclassification, but it may also improve the learning
rate of the two rules. We call this the GUIDED input learning strategy. An incremental learning
version of the OCAT approach is described inNieto Sanchez, Triantaphyllou, Chen, & Liao (2002).

7. Experimental data

In order to determine the classification performance of the OCAT approach in addressing this
new problem, the OCAT’s classification accuracy was compared with that of the VSM. Both
approaches were tested under three experimental settings:

1. a Leave-One-Out Cross-Validation (or CV) (also known as the Round-Robin test);
2. a 30/30 Cross-Validation (or 30CV), where 30 stands for the number of training documents in
each class; and

3. in an experimental setting in which the OCAT algorithm was studied under a random and a
guided learning strategy.

These will be defined below. This multiple testing strategy was selected in order to gain a more
comprehensive assessment of the effectiveness of the various methods.
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For these tests, a sample of 2897 documents was randomly selected from four document classes
of the TIPSTER collection (Harman, 1995; Voorhees, 1998). The previous numbers of documents
in each class were determined based on memory limitations on the computing platform used (an
IBM Pentium II PC running Windows 95). The TIPSTER collection is a standard data set for
experimentation with IR systems. The four document classes were as follows:

1. Department of Energy (DOE) documents,
2. Wall Street Journal (WSJ) documents,
3. Associated Press (AP) documents, and
4. ZIPFF class documents.

We chose documents from this collection because for security reasons we did not have access to
actual secret DOE documents.
Table 1 shows the number of documents that were used in the experimentation. These docu-

ments were randomly extracted from the four classes of the TIPSTER collection.
We simulated two mutually exclusive classes by forming the following five class-pairs: (DOE vs.

AP), (DOE vs. WSJ), (DOE vs. ZIPFF), (AP vs. WSJ), and (WSJ vs. ZIPFF). These five class-
pairs were randomly selected from all possible class-pairs combinations. To comply with the
notation presented in the previous sections, the first class of each class-pair was denoted as Eþ,
while the second class was denoted as E�. Thus, we try to find a Boolean expression to classify a
document surrogate into the proper TIPSTER class.
Table 2 shows the average number of keywords that were extracted from the five class-pairs

mentioned above. The data in this table can be interpreted as follows. For the class-pair (DOE vs.
AP), the average number of keywords used in all the experiments was 511 under the CV validation
and 803 under the 30CV validation. A similar interpretation applies to the data in the other col-
umns.
It should be stated at this point that we used a number of alternative indexing terms. Besides

single words, we also used sequences of two words at a time, sequences of three words at a time,

Table 1

Number of documents randomly extracted from each class

Class: DOE AP WSJ ZIPFF Total

Number of documents: 1407 336 624 530 2897

DOE, AP, WSJ, and ZIPFF stand for Department of Energy, Associated Press, and the Wall Street Journal, re-

spectively; ZIPFF is a collection of technical documents of various topics.

Table 2

Average number of indexing words used in each experiment

Type of experiment DOE vs. AP DOE vs. WSJ DOE vs. ZIPFF AP vs. WSJ WSJ vs. ZIPFF

CV 511 605 479 448 501

30CV 803 911 890 814 811

In order to keep the size reasonable for our computing environment, only the first hundred words from each document

were considered. Stop words were always removed.
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and sequences of four words at a time. However, some pilot studies indicated that the best results
would be derivable by using as indexing terms single words only. Thus, the atoms (binary vari-
ables) in the derived logical expressions are single keywords and not sequences of them.

8. Testing methodology

This section first summarizes the methodology for the Leave-One-Out Cross-Validation and the
30/30 Cross-Validation. These two alternative testing methods have been employed in order to
gain a better understanding of the various procedures used to classify text documents. The same
section also presents the statistical tests employed to determine the relative performance of the
VSM and the OCAT algorithm. This section ends with the methodology for the GLA.

8.1. The Leave-One-Out Cross-Validation

The cross-validation (CV) testing was implemented on samples of 60 documents as follows.
First, 30 documents from each class were randomly selected. Please note that the size 60 was used
due to storage limitations in our computing environment. Then, one document was removed from
these sets of documents with its class noted. After that, the positive and negative rules under the
OCAT approach and the positive and negative centroids under the VSM were constructed using
the remaining 59 documents. In the third step the class of the document left out was inferred by
both algorithms. Then, the correctness of the classification was determined according to the cases
(a)–(h), as defined in Section 4. The previous second and third steps were repeated with different
sets of training examples until all 60 documents had their class inferred one at a time. This ex-
perimental setting was replicated 10 times with different subsets of the training data, at which
point the results of the two algorithms were tested for statistical differences.

8.2. The 30/30 Cross-Validation

The 30/30 Cross-Validation (30CV) was implemented on samples of 254 documents as follows.
The number of 254 documents was used to avoid excessive computational time. Initially, the
positive and negative rules under the OCAT approach and positive and negative centroids under the
VSM were constructed by using only 30 documents (randomly selected) from each class. Then,
the classification of the remaining 194 documents was inferred. As before, the correctness of
this classification was determined according to the cases (a)–(g), as defined earlier. As with the
first experimental setting, the 30CV validation was replicated 10 times, at which point the results
of the two algorithms were tested for statistical difference.

8.3. Statistical performance of both algorithms

To determine the statistical performance of both algorithms, the following hypotheses were
tested. The first test was needed to determine the relative dominance of the algorithms. In the
second test we implemented a sign test in order to determine the consistency of the dominance of
the algorithms.
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1: H0 : �PPOCAT6 �PPVSM
H1 : �PPOCAT > �PPVSM

2: H0 : p ¼ 0:50
H1 : p 6¼ 0:50

where POCAT and PVSM are the numbers of documents with ‘‘correct’’ classification under the two
algorithms divided by the total number of documents in the experiment. In addition, p is the
probability of finding an equal number of positive and negative differences in a set of outcomes.
More on how these tests were performed is provided in the following sub-sections which present
the computational results.

8.4. Experimental setting for the Guided Learning Approach

Consider the question: What is the best next document to be given to the oracle in order to
improve the performance of the classification rule? Three samples of 510 documents (255 from each
class) from the three class-pairs: (DOE vs. ZIPFF), (AP. vs. DOE), and (WSJ vs. ZIPFF) were
used. The number of 510 documents was determined by the available RAM memory on the
Windows PC we used. The previous three class-pairs were processed by the OCAT algorithm
(only) under the RANDOM and the GUIDED learning approaches.
These two learning approaches were implemented as follows. At first, 30 documents from each

class in the experiment were randomly selected, and the positive and negative rules (logical ex-
pressions) were constructed. Next, the class membership of all 510 documents in the experiment
was inferred based on the two classification rules. The criteria expressed as cases (a)–(g) in Section
4 were used to determine the number of ‘‘correct’’, ‘‘incorrect’’, and ‘‘undecided’’ classifications.
Next, a document was added to the initial training sample as follows. For the case of the
RANDOM approach, this document was selected at random from among the documents not
included in the training sets yet (i.e., neither in Eþ nor in E�).
In contrast, under the GUIDED approach this document was selected from the set of docu-

ments which the positive and negative rules had already termed as ‘‘undecided’’. However, if the
two rules did not detect an ‘‘undecided’’ case, then the GUIDED approach was replaced by the
RANDOM approach until a new ‘‘undecided’’ case was identified. This process for the RAN-
DOM and GUIDED approaches was repeated until all 510 documents were included in the two
training sets Eþ and E�. The results of this experimentation are presented next.

9. Results for the Leave-One-Out and the 30/30 Cross-Validations

Table 3 summarizes the experimental results for the CV validation, while Table 4 summarizes
the results for the 30CV validation. The abbreviations ‘‘C:’’, ‘‘I:’’, and ‘‘U:’’ in the first column of
both tables correspond to the ‘‘correct’’, ‘‘incorrect’’, and ‘‘undecided’’ classification outcomes
which can be obtained by using the positive and the negative rules (for the OCAT case) or the
positive and the negative centroids (for the VSM case). For instance, the data in Table 3, column 2
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(i.e., class-pair (DOE vs. AP)) indicate that the VSM identified 334 ‘‘correct’’, 261 ‘‘incorrect’’,
and 5 ‘‘undecided’’ cases.
Similarly, the data in Table 3, column 3 (i.e., class-pair (DOE vs. AP)) indicate that the OCAT

algorithm identified 410 ‘‘correct’’, 5 ‘‘incorrect’’, and 185 ‘‘undecided’’ classifications. The data in
the other columns can be interpreted in a similar manner. The last two columns of these two tables
summarize the results across all five class-pairs. Fig. 6 compares the proportions of these results
for both algorithms.
Two key observations can be derived from the size of the dark areas (or areas of ‘‘undecided’’

classifications) in Fig. 6 which was derived from Tables 3 and 4. First, it can be observed that the
proportion of ‘‘undecided’’ cases detected by the VSM algorithm is almost 0%. These have oc-
curred when the two positive and the two negative centroids accepted the same document and,
therefore, the classes predicted by both sets of centroids have to be selected randomly. More
specifically, these ‘‘undecided’’ instances occurred even when these randomly predicted classes
were identical. The VSM was implemented using the CC coefficient, following the suggestions in
Salton (1989).
In contrast, as the second observation, we have large proportions of ‘‘undecided’’ classifications

with the OCAT algorithm. Please recall that this type of classification decision is desired because
such cases demonstrate that either the positive or the negative rules are unable to classify correctly
new documents. Therefore, in these results the large dark areas in the above figure show that both
rules were unable to classify correctly a large proportion of the documents in the experiments.
More importantly, the size of these areas indicates that positive or negative rules may be improved
if they are modified when an ‘‘undecided’’ situation is detected.
Consider the proportion of the ‘‘incorrect’’ classifications (i.e., the white areas in Fig. 6). One

can derive two conclusions. First, the number of ‘‘incorrect’’ classifications the VSM made
amounts to 49.77% (or 1493/3000) with the CV validation and to 46.65% (or 4548/9750) with the
30CV validation. These large proportions of ‘‘incorrect’’ classifications can be attributed to the

Table 4

Summary of the second experimental setting: 30/30 Cross-Validation

DOE vs. AP DOE vs. WSJ DOE vs. ZIPFF AP vs. WSJ WSJ vs. ZIPPF TOTAL

VSM OCAT VSM OCAT VSM OCAT VSM OCAT VSM OCAT VSM OCAT

C: 975 1406 975 1266 1035 1320 1088 1283 1088 1145 5161 6420

I: 975 70 975 134 915 124 846 140 837 176 4548 644

U: 0 474 0 550 0 506 16 527 25 41 41 2686

Table 3

Summary of the first experimental setting: Leave-One-Out Cross-Validation

DOE vs. AP DOE vs. WSJ DOE vs. ZIPFF AP vs. WSJ WSJ vs. ZIPPF TOTAL

VSM OCAT VSM OCAT VSM OCAT VSM OCAT VSM OCAT VSM OCAT

C: 334 410 286 296 280 358 316 365 286 303 1502 1732

I: 261 5 314 66 320 25 284 47 314 76 1493 219

U: 5 185 0 238 0 217 0 188 0 221 5 1049
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inability of the positive and negative centroids to distinguish between ‘‘incorrect’’ and ‘‘unde-
cided’’ classifications. Second we have 7.30% (or 219/3000) and 6.61% (or 644/9750) of ‘‘incorrect’’
classifications the OCAT algorithm made with the two test settings. In this case, these small error
rates can be attributed to the utilization of positive and negative rules of small size that enabled
the OCAT algorithm to distinguish between the ‘‘incorrect’’ and ‘‘undecided’’ classifications.
Despite the disparate proportions of the ‘‘inaccurate’’ and ‘‘undecided’’ classifications for both

of these algorithms, their performances were statistically compared using only the proportions
with the ‘‘correct’’ classifications. That is, the undecided cases were not considered here. In this
way the VSM approach was not placed in an unfair setting when it was compared with the OCAT
approach. This comparison was needed in order to determine which algorithm better addressed
the classification problem studied in this paper. For this comparison, it was assumed that no

Fig. 6. Comparison of the classification decisions under the OCAT and VSM approaches.

Table 5

Statistical difference in the classification accuracy of the VSM and OCAT approaches

Type of experiment POCATa PVSMb PVSM � POCAT Binomial test

Half-lengthc Interval

CV 0.577 0.501 )0.0760 0.025 ð�0:035;�0:085Þ
30CV 0.658 0.529 )0.1287 0.014 ð�11:47;�14:27Þ
a 1732/n and 6420/n; where n is 3000 for CV and 9750 for 30CV.
b 1502/n and 5161/n; where n is 3000 for CV and 9750 for 30CV.
cDenotes that both approaches performed statistically differently.

598 S. Nieto S�aanchez et al. / Information Processing and Management 38 (2002) 583–604



additional improvement of the two algorithms was possible under the CV and 30CV cross-vali-
dations. Furthermore, the ‘‘incorrect’’ and ‘‘undecided’’ outcomes were considered as incorrect
classifications.
The results of these tests (as shown in Table 5) indicate that the OCAT approach is more

accurate in both types of computational experiments than the VSM. Furthermore, the very low p-
values in Table 6 indicate that it is extremely unlikely to find a similar number of positive and
negative differences in the proportions of the ‘‘correct’’ classifications under the two approaches

Fig. 7. Results when the GUIDED and RANDOM approaches were used on the (DOE vs. ZIPFF) class-pair.

Table 6

Data for sign test to determine the consistency in the ranking of the OCAT and VSM approaches

Type of experiment

CV 30CV

Number of ‘‘+’’ signs 4 7

Number of ‘‘)’’ signs 46 43

p-value ¼
Xm
i¼0

50

i

� �
� pi � ð1� pÞ50�i;

p-value ¼ 2:23� 10�10 p-value ¼ 1:04� 10�7

where m ¼ 4 for CV and 7 for 30CV and p ¼ 0:50
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(Barnes, 1994). Therefore, the results of these two statistical tests indicate that the OCAT ap-
proach is better suited to address the document classification problem studied in this paper.

10. Results for the Guided Learning Approach

Figs. 7–9 show the results of the OCAT algorithm under the RANDOM and GUIDED input
learning approaches. The horizontal axis indicates the percentage of training documents used
during the experiment. For example, at the beginning of the experiment there were 60 training
documents or 11.76% of the 510 documents in the experiment. Next, when one more document
was added to the training set, following the recommendation of the GUIDED and RANDOM
approaches, there were 12.16% of the documents in the experiment.
The vertical axis shows the proportions of ‘‘correct’’, ‘‘incorrect’’, and ‘‘undecided’’ classifi-

cation for the various percentages of training documents used in the experiment. The abbrevia-
tions Rc, Ri, Ru and Gc, Gi, Gu stand for the proportions of ‘‘correct’’, ‘‘incorrect’’, and
‘‘undecided’’ outcomes for the RANDOM and GUIDED approaches, respectively. For instance,
Rc is the proportion of ‘‘Correct’’ classifications under the RANDOM approach, and Gu is the
proportion of ‘‘Undecided’’ classification under the GUIDED approach.
Table 7 shows the percentage of training documents the OCAT algorithm needed before it

classified all 510 documents in each class-pair correctly (i.e., it became 100% accurate). The po-

Fig. 8. Results when the GUIDED and RANDOM approaches were used on the (AP vs. DOE) class-pair.
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sition of the dotted line in the above three figures corresponds to the percentages shown in this
table. For instance, in Fig. 7 (class-pair (DOE vs. ZIPFF)) this line is at 65.69% on the horizontal
axis.
Some important observations can be made regarding the proportions of ‘‘correct’’, ‘‘incorrect’’,

and ‘‘undecided’’ classifications in Figs. 7–9. First, the rate of ‘‘correct’’ classifications under the
GUIDED approach, Gc, was higher than the rate Rc under the RANDOM approach. Actually,
the last row in Table 7 indicates that the OCAT algorithm needed on the average about 34% less
training documents to classify correctly all 510 document under the GUIDED approach than
under the RANDOM approach.

Fig. 9. Results when the GUIDED and RANDOM approaches were used on the (WSJ vs. ZIPFF) class-pair.

Table 7

Percentage of documents from the population that were inspected by the oracle before an accuracy of 100% was reached

Class-pairs % Under GUIDED % Under RANDOM

(DOE vs. ZIPFF) 65.69 100.00

(AP vs. DOE) 60.98 99.80

(WSJ vs. ZIPFF) 71.18 99.80

Average 65.95 99.87

100% accuracy was achieved when the number of ‘‘Incorrect’’ and ‘‘Undecided’’ classifications were 0%.
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These results are very interesting for a number of reasons. They confirm the assumption stated
in Section 5 which indicated that the utilization of documents with the ‘‘undecided’’ classification
could increase the accuracy of the OCAT algorithm. These results are also encouraging because
they help to answer the second question stated in the introduction of this section. That is, queries
to the oracle should stop when about 66% of the 510 documents from the three class-pairs of the
TIPSTER collection had been inspected and were included in the training sets. More importantly,
these results are important because they suggest that the OCAT algorithm can be employed for
the classification of large collections of text documents.
The other two observations are related to the rates at which the ‘‘incorrect’’ and ‘‘undecided’’

classifications were eliminated. It can be observed from the previous three figures that these rates
were a direct consequence of improving the classification rules. The figures show that the rates Gi
and Gu reach 0% when about 66% (336 documents) of the 510 documents in the experiment have
been included in Eþ and E�. On the other hand, it can be seen that under the RANDOM learning
approach, the rates Ri and Ru reached 0% when 99.8% (509 documents) of the documents are
processed.

11. Concluding remarks

This paper has examined a classification problem in which a document must be classified into
one of two disjoint classes. As an example of the importance of this type of classification, one can
consider the possible release to the public of documents that may affect national security. The
method proposed in this paper (being an automatic method) is not infallible. This is also true
because its performance depends on how representative the training examples (documents) are.
The application of such an approach to a problem of critical importance (such as the one high-
lighted in the introduction) can be seen as an important and useful automatic tool for a pre-
liminary selection of the documents to be classified.
We considered an approach to this problem based on the VSM algorithm and compared it with

an algorithm which is based on mathematical logic, called the OCAT algorithm. We tested these
two approaches on almost 3000 documents from the four document classes of the TIPSTER
collection: Department of Energy (DOE), Wall Street Journal (WSJ), Associated Press (AP), and
the ZIPFF class. Furthermore, these documents were analyzed under two types of experimental
settings: (i) Leave-One-Out Cross-Validation and (ii) a 30/30 Cross-Validation (where 30 indicates
the initial number of training documents from each document class). The experimental results
suggest that the OCAT algorithm performed significantly better in classifying documents into two
disjoint classes than the VSM.
Moreover, the results of a third experiment suggested that the classification efficiency of the

OCAT algorithm can be improved substantially if a GLA is implemented. Actually, experiments
on samples of 510 documents from the previous four classes of the TIPSTER collection indicated
that the OCAT algorithm needed only about 336 (i.e., 66% of the) training documents before it
correctly classified all of the documents.
The results presented here, although limited to a relatively small collection of almost 3000

documents, are encouraging because they suggest that the OCAT algorithm can be used in the
classification of larger collections of documents.
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