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A Quadratic Programming Approach
in Estimating Similarity Relations

Evangelos Triantaphyllou

Abstract—This paper examines the problem of estimating how
similar N objects are when they are compared with each other.
The proposed approach uses as data comparative judgments
of all possible pairs of the N objects. Pairwise comparisons
have long been used with success in determining the relative
importance of individual members in a group of objects. In
the proposed approach the pairwise comparisons focus on the
similarity relations instead of the relative importance of each
object. A quadratic programming model is also proposed. This
model processes the similarity-based pairwise comparisons and
determines the similarity relations among the N objects. The
proposed quadratic programming model has linear constraints;
therefore it can be solved easily by transferring it into a system
of linear equations.

I. INTRODUCTION

onsider a nonempty set of possible worlds U which is
Cintroduced to represent different states of the system
being modeled by a set of sentences. Then a similarity function
maps pairs of possible worlds into a number in the interval [0,
1]. In other words, a similarity function

s:UxU—10,1]

assigns to each pair of entities (W, W’) a unique degree of
similarity between 0 and 1 [1, p. 51]. In this paper we assume
that the value 1 corresponds to the maximum similarity
between two entities, and the value 0 to the maximum

dissimilarity. It should be stated here that this assignment of

the values 1 and 0 to the maximum similarity and dissimilarity,
respectively, is quite arbitrary. However, here we use 1 for the
maximum similarity in order to capture the intuitive feeling
that the degree of similarity between any world and itself
should be as high as possible.

In general, a function s : U x U — RY is a similarity
measure if it has the following properties

1) S(Wi,Wj) = S(Wj,Wi) for all Wi,WjGU

ii) S(Wi,Wi) > S(Wj,VVi) for all Wi,WjeU.
On the other hand, a dissimilarity relation d : U x U — R*
satisfies the properties

) AW, W;) = d(W;, W;)

i) d(Wi,W;) >0

iii) d(Wi, W;) =0

for all W;, W;eU
for all Wi,WjeU
for all W;eU.
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Examples of similarity and dissimilarity measures can be
found in any book on data analysis (e.g. Anderberg [2] and
Sneath and Sokal [3]). A dissimilarity function which has also
the properties

iv) if d(W;, W;) = 0, then W; = W; (definiteness)

V) d(W,‘, Wj), < d(VV,, Wk) + d(Wk,Wj) for all

Wi, W;, WieU (triangular inequality).
is called a distance. This is the case presented in this paper.
Throughout the paper the similarities among the entities are
measured by a dissimilarity (not similarity) relation, partic-
ularly by the distance referred to in the literature as the
city-block metric [4].

From the previous expressions it follows that the function d
is a symmetric one. Furthermore, in this paper it is assumed
that entities can be compared because their similarities can be
measured by means of difference of degrees of a common
characteristic or feature. We denote by Aw and Aw: the
degree that this common feature is present in the two entities
W and W', respectively. The values Aw and Aw- can also
be viewed as membership values of the members of a fuzzy
set defined in terms of a common feature. More on fuzzy sets
can be found, for instance, in the works by Dubois and Prade
[5] and Kaufmann {6]. Usually, these membership values take
values in the interval [0, 1]. A value of 1 indicates that the
feature is fully present, while a value of 0 indicates that the
feature is completely absent.

Using the definition of the two values Ay and Aw-, it
follows that the closer the two values Ay and Ay are to
each other, the more similar the two entities W and W' should
be. Therefore, a dissimilarity function can also be defined in
terms of the degree to which two entities share a common
feature as follows:

d(W,W') = |Aw — Aw~| for any entities W, W' € U.

The main problem that this paper examines is how to
estimate the similarity relation among any pair of IV entities
or objects. It is assumed that these /V entities share a common
feature and that these similarity relations are viewed in terms
of that common feature. ' ;

As input data for determining the previous similarity rela-
tions we use a set of pairwise comparisons. Since there are
N(N —1)/2 possible pairs of entities, the number of pairwise
comparisons is N(N — 1)/2 as well.

For each comparison the decision maker is asked to do his
best in estimating the similarity only between two objects
W and W’ at a time. The answer of the decision maker
is a phrase from a finite set of linguistic phrases. Each such
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linguistic phrase is preassigned to a numerical value which
attempts to capture the numerical value of the - difference
|Aw — Aw| (where Ay and Ay are as defined above). This
is done by using a scale. Pairwise comparisons and scales
have been proposed for use in solving multicriteria decision
making problems.

In the past (e.g., [7, p. 165], [8]-[10], [11, p. 201]) pair-
wise comparisons have been used to estimate the relative
importance of N objects when they are examined in terms
of a common feature. In that context pairwise comparisons
express ratios of relative importance. Usually, the values of
these comparisons are not in the interval [0, 1]. In the present
treatment, however, pairwise comparisons express the relative
similarity of a pair of objects. Furthermore, they express
differences instead of ratios and take values in the interval
[0, 1]. The issue which is raised in the light of these pairwise
comparisons of relative similarity is how to combine them all
and estimate the actual similarity relations among any pair of
the N objects.

This paper is organized as follows. Section Il presents
briefly how pairwise comparisons of relative importance have
been used in decision making problems. Section III introduces
the concept of pairwise comparisons of relative similarity. This
section also illustrates how a scale of discrete choices can
be used to quantify these types of comparisons. Section IV
describes the main contribution of this paper. It presents the
methodology for processing pairwise comparisons of relative
similarity. The comparisons form the data of a quadratic
programming problem which minimizes the errors associated
with these comparisons. In this way, the actual similarity
relations among a number of objects can be estimated effi-
ciently. Finally, the last section presents a summary of the
contributions and some possible extensions for more research
in this area.

II. DECISION MAKING WITH PAIRWISE COMPARISONS

Probably the most critical step in any decision making
problem is how to estimate the pertinent data. Very often
these data cannot be known in terms of absolute values.
For instance, what is the worth of the Kth alternatives in
terms of a political impact criterion? Although information
about questions such as the previous one is vital in deriving
the correct decision, it is very difficult, if not impossible, to
quantify it correctly. For this reason, many decision making
methods attempt to determine the relative importance, or
weight, of the alternatives in terms of each criterion involved
in a given decision making problem. An approach based on
pairwise comparisons proposed by Saaty [12], [7] has long
attracted the interest of many researchers, both because of its
easy applicability and its interesting mathematical properties.

In decision problems of this type, pairwise comparisons are
used to determine the relative importance of each alternative in
terms of each decision criterion. In this approach the decision
maker has to express his opinion about the value of one
pairwise comparison at a time. Usually, the decision maker
has to choose his answer among 10-17 discrete choices. Each
choice is a linguistic phrase. Some examples of such linguistic
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phrases are “A is more important than B,” “A is of the
same importance as B,” and “A is a little more important
than B.” There are two critical problems raised when dealing
with pairwise comparisons. The first is how to quantify the
linguistic choices selected by the decision maker during the
evaluation of the pairwise comparisons. All the methods that
use pairwise comparisons eventually express the qualitative
answers of a decision maker in numerical values. The second
problem is how to process the numerical values of the pairwise
comparisons and thus estimate the actual relative importance
of a number of objects regarding a single criterion.

A. Quantifying Pairwise Comparisons of Relative Importance

Pairwise comparisons are usually quantified by using a
scale. Such a scale is nothing but a one-to-one mapping
between the set of discrete linguistic choices available to the
decision maker and a discrete set of numbers that represent
the importance, or weight, of these linguistic choices. There
are two major approaches in developing such scales. The
first is based on the linear scale proposed by Saaty as part
of the analytic hierarchy process (AHP) [7, p. 54]. The
second approach is due to Lootsma [13], who attempts to
determine exponential scales. Both approaches are based on
psychological theories. These two types of scales are presented
briefly in the following paragraphs.

In 1846 Weber stated his law regarding a stimulus of
measurable magnitude. According to this law, a change in
sensation is noticed if the stimulus is increased by a constant
percentage of the stimulus itself [7, p. 54]. That is, people are
unable to make choices from an infinite set. For example,
people cannot distinguish between two very close values of
importance, say 3.00-and 3.04. Psychological experiments
by Miller [14] have also shown that individuals cannot
simultaneously compare more than seven objects (plus or
minus two).

Saaty uses 9 as the upper limit of his scale, 1 as the
lower limit of his scale and a unit difference between suc-
cessive scale values. According to the Saaty scale the values
of ‘the pairwise comparisons are determined according to
the instructions depicted in Table I [7]). Therefore, based
on this scale the possible values for the pairwise compar-
isons of relative importance should be members of the set
{9, 8, 7, 6,5, 4,3,2,1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7,
1/8, 1/9}.

On the other hand, a class of exponential scales is described
in [15] and [13]. The development of these scales is based
on an observation in psychology made by Roberts [16] about
stimulus perception (denoted as e;). According to that obser-
vation the difference e, — e, must be greater than or equal
to the smallest perceptible difference, which is proportional
to e,. The permissible choices by the decision maker are
summarized in Table II. As a result of Robert’s observation
the numerical equivalents of these linguistic choices need to
satisfy the following relations:

€ntl — €n = €E€p OI:

eni1 = (1t+€)en = (1+e)2ep_y == (1+¢)"leg or:

en = exp(y *n)eg forn=0,1,2,3,---.
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TABLE I
SCALE OF RELATIVE IMPORTANCES (ACCORDING TO SAATY [12])

Intensity of Definition Explanation

Importance

Two activities
contribute equally to
the objective

1 Equal importance

3 Weak importance of one
over another

Experience and
judgment slightly
favor one activity
over another

Experience and
judgment strongly
favor one activity
over another

5 Essential or strong
importance

An activity is
strongly favored and
its dominance
demonstrated in
practice

7 Demonstrated importance

The evidence
favoring one activity
over another is of the
highest possible order
of affirmation

9 Absolute importance

When compromise is
needed

Intermediate values
between the two adjacent
judgments

2,4,6,8

If activity i has one of the
above nonzero numbers
assigned to it when
compared with activity j,
then j has the reciprocal
value when compared
with i.

Reciprocals of
above nonzero
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TABLE IIT
Two EXPONENTIAL SCALES
Normal (y = 1/2) Streteched (y = 1) Definition
exp (v*0) = 1.00 =1.00 €0
exp (v*1) = 1.65 =2.72 e1
exp (v*2) = 2.72 =7.39 e
exp (7*3) = 4.48 =20.09 e3
exp (y*4) = 7.39 = 54.60 e4
exp (v*5) = 12.09 = 148.41 es
exp (7*6) = 20.09 = 403.43 e

TABLE II
EXPONENTIAL SCALES OF RELATIVE IMPORTANCES
(ACCORDING TO LOOTSMA et al. [6])

Intensity of Definition
Importance

=) Indifference between A; and A;
ey ’ Indifference threshold toward A;
es Weak preference for A;

e3 Commitment threshold toward A;
ea Strong preference for A;

es Dominance threshold toward A;
eg Very strong preference for A;

If member i has one of the above nonzero
numbers assigned to it when compared with
member j, then j has the reciprocal value
when compared with i.

Reciprocals of
above nonzero

The previous expressions constitute a sequence with geo-
metric progression. The initial step is eg, while (1 + €) is
the progression factor. The parameter v is unknown. Using
this approach, pairwise comparisons of relative importance are
quantified using Table II. Table III presents two exponential
scales when v = 1.00 and v = 0.50. Apparently, different
exponential scales can be generated by assigning different
values to the 7y parameter.

Lootsma has also observed that in many occasions hu-
mans categorize certain intervals of interest by using an
approximated geometric progression. Examples include the
classification of written history of Europe into historic periods

and the categorization of nations on the basis of the size of
their population, as well as the classification of different sound
and light intensities.

In [17] a total of 78 scales are examined in terms of three
evaluative criteria. These scales were derived from the original
scale proposed by Saaty and the exponential scales proposed
by Lootsma. The findings of that work reveal that there is no
single scale that can outperform all other scales. Furthermore,
the same findings strongly indicate that a few scales are very
efficient under certain conditions. Therefore, for a successful
application of pairwise comparisons of relative importance the
appropriate scale needs to be selected and applied.

B. Processing Pairwise Comparisons of Relative Importance

Let A1, A, -+, A, be N entities (for instance, alternatives
in a decision problem). The problem is how to evaluate their
relative importance in terms of a decision criterion. Saaty in
[7] proposes the use of a matrix A of rational numbers taken
from the finite set {1/9,1/8,---,1,2,---,8,9}. It should be
stated here that the problem of how to process the pairwise
comparisons is independent of the scale used in quantifying
these pairwise comparisons. Each entry of the above matrix A
represents a pairwise comparison. Specifically, the entry a;;
denotes the number which estimates the relative importance
of entity A; when it is compared with entity A;. Obviously,
ai; = 1/aj; and a;; = 1. That is, matrix A is a reciprocal one.

Researchers have proposed a number of methods for pro-
cessing these reciprocal matrices. In [7, p. 49], an eigenvalue-
based approach is used. For an evaluation of this method see
[18]. However, other researchers have proposed least-squares
models (e.g., [19], and [11]). In certain other contributions,
regression models (e.g., [20] and [10]) have been proposed as
well.

III. PAIRWISE COMPARISONS OF RELATIVE SIMILARITY

In the case of using pairwise comparisons of relative im-
portance, the comparative judgments express ratios of relative
importance among pairs of objects. For this reason the matrices
which contain these pairwise comparisons are reciprocal. That
is, the relations: a;; = 1/a;; and-a;; = 1.00(N > 1,5 > 1)
hold. However, in the case of pairwise comparisons of relative
similarity, the comparative judgments express the difference
of the degree to which a certain feature is present in pairs of
objects. Therefore, the matrices which contain these types of
pairwise comparisons are symmetric. That is, the following
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expression is true:

aij=a;  (N2ij21)

Every pairwise comparison of relative similarity, a;; (N >
i,j > 1), represents the assessment by the decision maker
of the absolute difference |A; — A;| of the degree to which
a certain feature is present in the ith and the jth object,
respectively. For these types of comparisons the decision
maker focuses directly on the similarity relations among pairs
of objects. The interest here is not how to estimate the
values A; but rather how to estimate the previous differences
|Ai = A5

Since the decision maker is restricted to using a similarity
scale with discrete choices, two problems arise. The first
is how to quantify the similarity comparisons. The second
problem is how to combine all N(N — 1)/2 possible pair-
wise comparisons and estimate the actual similarity relations
among the N objects. It should be stated here that regardless
of the numerical values associated with the choices given by
a discrete similarity scale, there is always a need to combine
the similarity pairwise comparisons and estimate the actual
similarity relations. These two problems are similar to the two
problems described in the previous section.

Quantifying Pairwise Comparisons of Relative Similarity

As was seen in the case with pairwise comparisons of
relative importance, a scale is needed to quantify pairwise

comparisons of relative similarity. A decision maker cannot

directly assign numerical values to his judgments. Instead, he
can use linguistic phrases to assess his comparative judgments
efficiently and effectively. The observations made by Weber
in 1846 and Miller, which were used in developing scales for
quantifying pairwise comparisons of relative importance, are
also applicable when dealing with similarity-based compar-
isons.

Although the main goal of this paper is not the development -

of a similarity-based scale, such a scale is presented in
Table IV. This scale uses as linguistic choices an extension of
the symbolic structures highlighted by Ruspini in [1]. A close
examination of the scales depicted in Tables I, II, and III with
this scale reveals that the proposed scale focuses explicitly on
similarity relations as opposed to the relative importance of
objects.

IV. PROCESSING PAIRWISE
COMPARISONS OF RELATIVE SIMILARITY

Suppose that the real (and hence unknown to the decision
maker) value of the 1 — j pairwise comparison is equal to a;
(where a;; > 0). This value a;; is equal to the absolute value
of the difference (A; — A;), where A; and A; are the degree to
which a certain feature is present in the ith and the jth object,
respectively. That is, the following is true:

U5 = Qg = |A¢ - A]'|. (1)
Since the decision maker (in his assessment of the value of

the ¢ — j pairwise comparison) has to use a similarity scale
with discrete numerical values, most likely he will select a
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TABLE IV
PROPOSED SIMILARITY SCALE
Intensity of Definition
Similarity
0 The two objects are identical
0.10 Almost identical
0.20 Very similar
0.30 Almost very similar
0.40 Almost similar
050 . Similar
0.60 Almost dissimilar
0.70 ’ Almost very dissimilar
0.80 Very dissimilar
0.90 Almost completely dissimilar
1.00 Completely dissimilar

linguistic choice (such as “very similar” or “almost similar”)
which is associated with a numerical value (denoted as a;;),

- which, hopefully, will be very close to the actual value, a;;.
Therefore, there is an error factor, X;;, introduced with each '

comparison. Clearly, the following relation is true: .
Xijoij = Xjiazi = oy = aje = |4 = A5 (@)

From the previous relation it follows that the error factor,
X;, is equal to 1.00 if and only if the value a;; (given by
the decision maker) and the actual value o;; are identical and
a;; > 0. Otherwise, the farther X;; is from 1.00, the more
different the two values a;; and a;; will be.

At this point, without loss of generality, suppose that the fol-
lowing ordering exists among the values A, Az, A3, -, AN:

A1 > Ay > A3 >--- > An. 3

This ordering is always possible because if the A;(N > i > 1)
values of the N objects are not as in (3), abéve, then a
rearranging of their indices can achieve the ordering expressed
in (3).

Consider all possible pairwise comparisons among any three
objects O;, O;, and Oy (where N > i > j > k > 1). Then, by
combining the previous expressions (2) and (3), the following
expressions are derived: , .

Xikaix = |Ai — Ag| = A; — Ay

Xijan; = |Ax — Aj| = —(Ax — 4j) = A; — Ay
and ' ‘

Xjiaji = |4; — Ail = —(4; — Ai) = Ai — 4;.

By adding up the previous three expressions, the following
expression is derived:

Xixair + ijakj + inaj,- = Z(Ai - Ak) or
Xikaix + Xijan; + Xjiaji = 2Xikai  oOr
Xkjakj + Xjiaji = Xinik
foranyN 2:i>ji>k2>21. (@)
Given N objects there are C) = N(N — 1){(N — 2)/6
possible expressions like the previous one. These expressions

involve N(N — 1)/2 variables (note that X;; = Xj; and
a;j = aj;, for any N > i, 7 > 1). An obvious solution to
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system (4) is X;; = 0, for any N > ¢, j > 1. However, it
makes sense here to seek to determine the X;; values which
are as close to 1.00 as possible. That is, to find those X;j
values which minimize the following sum of squares:

N-1 N
Z Z (1 - Xi5)? or, equivalently:

v w Nl N
YoOdxE-2) Y Xy (5)
=1 j=i+1 i=1 j=i41

subject to constraints (4).
The concept of minimizing a sum of squared errors is very
common in many error estimation problems in science and

engineering. Expression (5) reaches an optimal value of O

if and only if all the X;j variables are equal to 1. From
the previous discussion it follows that the N(N — 1)(N —
2)/6 expressions of type (4), above, consist of the body of
constraints, while expression (5) is the objective function of a
quadratic problem with linear constraints. This quadratic
programming problem can be easily transformed into an
equivalent system of linear equations. This system of linear
equations has a special structure which can be used to solve
it very efficiently.The previous considerations are explained
further via the next example.

An Example of Processing Pairwise
Comparisons of Relative Similarity

Suppose that a decision maker has to estimate the similarity
relations among the four (i.e., N = 4) objects: O1, O, Os,
and Oy4. Furthermore, assume that the real (and hence un-
known to the decision maker) values A;, A, As, and
Ay are equal to 0.92, 0.74, 0.53, and 0.28, respectively. In
other words, the real (and hence unknown) similarity pairwise
comparisons are as follows:

0 0.18 0.39 0.64
A= 018 0 0.21 0.46
T 1039 021 0 0.25

0.64 046 025 0

In this matrix the entry (1,2) is equal to 0.18 because 0.92
- 0.74 = 0.18. A similar explanation holds for the remaining
entries in matrix A.

The decision maker cannot determine the exact values of the
previous comparisons. However, he can use the scale depicted
in Table IV to quantify his judgments. If we assume that the
decision maker is always able to make that selection from the
scale which has a numerical value closest to the corresponding
actual value in matrix A, then the following matrix, B, presents
the pairwise comparisons which we assume that the decision
maker derives for this example:

0 0.20 0.40 0.60
B= 0.20 © 0.20 0.50
~ (040 020 0 0.30

0.60 0.50 0.30 O

In this matrix the entry (1,2) is equal to 0.20 because this
value is the closest value to 0.18 when the scale in Table IV
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is used. A similar explanation holds for the remaining entries
in matrix B. : :

Matrix A corresponds to the notion of the real continuous
pairwise (or RCP) matrix, while matrix B corresponds to
the -notion of the closest discrete pairwise (or CDP) matrix,
described in more detail by Triantaphyllou et al. [21]. These
two classes of matrices were originally introduced in order to
study certain phenomena in decision making problems which
use pairwise comparisons as the input data.

Furthermore, suppose that the decision maker has deter-
mined that the ranking of the values A; (the values A; are
unknown to the decision maker) is as follows:

A > Ay > Az > Ay

The decision maker can reach the above conclusion by asking
first which of the N objects has the highest degree of the
similarity feature, then which object has the second highest,
etc. The decision maker does not have to estimate the values
of A;, As, Az, -, An. He simply needs to determine only
their ranking.

The corresponding quadratic problem with the 4(4 — 1)(4 —
2)/6 = 4 linear constraints has the following general structure:

MINIMIZE F(X12, X13, X14, X23, X24, X34)
=XPp + X+ Xiy + X35 + X530 + X3,
—2X19 —2X13 —2X14 — 2X93 — 2X54 — 2X34

subject to

91(X12, X13, X14, ..., X34)

= Xa2a32 + Xo1091 — X13013 =0
92(X12, X13,X14, .. -, X34)

= Xgza42 + X21021 — X14014 =0
93(X12, X13, X14,. .., Xa4)

= X43a43 + X31a31 — X14a14 =0
94(X12, X13, X14,. .., X34)

= Xy3a43 + X32a32 — X24a24 =0

and all X;;’s are real positive numbers.

In general, the quadratic programming problem takes the
following form:

N-1 N N-1 N

MINIMIZE =Y Y X%-2> > Xy

: i=1 j=itl i=1 j=i+1

subject to:
Xrjor; + Xjia5 — Xigage =0
(foranyN >i> 37>k >1)

and all X;;’s > 0. )]

As stated in the previous subsection, this quadratic pro- .
gramming problem has CY = N(N — 1)(N — 2)/6 linear
constraints. Furthermore, its objective function is always con-
vex. To find the optimal solution of this problem we first
need to associate a Lagrangian multiplier, A;, with the ith
constraint and form the Lagrangian (see, for instance, [22]).
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For the current example the Lagrangian is
L(X12, X13, X145 - » X34, A1, A2, A3, Ad)

= f(X12,X13, X14,- .., X34)
4

- Zx\i(gi(Xm,Xlz,Xm, SR
=1

X34)).
Then, any point (712,713,714,’",734,X1,X2,X3,X4)
which satisfies the following relations:

oL _ 6L _ 6L _  _ 6L
0X12 - _€X34—0)\1 - f6A4

is also an optimal solution to the previous quadratlc pro-
gramming problem. For the present example, expressions
(6) indicate that the quadratic programming system @ is
equivalent to the system of linear equations given in matrix
form as (I.a) at the bottom of the page.

In general, this system of linear equations has the followmg

structure:
L., -AT1[X] _[i
| IRt

where I,, is the identity matrix of order m, A is an n X m
matrix with the coefficienits of expressions (4), AT is the
transpose of A, O, is a square matrix of order n and all
entries equal to 0, X is a vector of size m with the X;;
variables (N > j > i@ >> 1), A is a vector of size n with
the Lagrangian coefficients A;(n > i > 1), 1is a vector of
size m with all entries equal to 1, and 0 is a vector of size n
with all entries equal to 0 (where 7 = N(N - 1)(N -2)/6
and m = N(N - 1)/2).
System (II) leads to the following derivations:

LX-ATA=11 .
AX +0,2=0 '

=0 (6)
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AX =
X=1+AT)
“AAT) = Al } (I

The matrix —A AT is always symmetric of order n. For
the curent example this matrix takes the form (Iil.a) shown
at the bottom of the page. This matrix has- rank n — 1. This
is true because any column (or row) is lmearly dependent on
the remaining columns (or rows). Therefore, any of the A;
variables can be set to an arbitrary value and then solve for
the remammg n — 1 variables. Then the X” variables can be
determined from the first relation in (III).

For instance; suppose that in the current example we set
Al = 0. When the numerical data (that is, matrix B) of this
example are used, the linear system defined by the second
relation in (IIT) yields the solution A\; = —0.087015, Ag =
—0.066934, X3 = —0.147256 (and As = 0).

From the previous ); values and the first relation in (IID),
the following optimal solution of the original quadratic pro-
gramming problem is derived:

r0.96921

T12

T3 0.97590
T | | 1.12851
Tos | | 0.98260
Tas 0.96653
Tas 0.95582

It should be emphasized here that this optimal solution is
independent of the ); values. To see this, suppose that A’ and

M (where X # X") are the solutions to equations denoted

- 1.00 0 0 0 0 0 - —ai2 —ai2 0 0 1r1Xi127 -1W
0 1.00 0 0 0 0 a13 0 —a13 0 X13 1
0 0 1.00 0 0 0 0 T Q14 a.14 0 X14 1
0 0 0 1.00 0] 0 —as3 0 0 —a23 X23 1
0 0 0 0 1.00 0 0 —-Q,Q4 0 24 X24 — 1 (I a)
0 0 0 0 0 1.00 0 0 ~Q34 —Qa34 X34 1 )
a1z —a13 0 az3 0 0 0 0 0 0 Al 0
a12 0 —ai4 0 a24 0 0 0 0 0 ‘)\2 0
0 ai3 —aiq 0 0 34 0 0 0 0 /\3 0
L 0 0 0 az —ax as O 0 0 o ILlx . Lol
—(a3, + af; + a33) —a}, +af; —a3s
—a}, —(a?; + af, + a3s) —a}, +a3, (IILa)
+als —a}, —(a?3 + afy + ady) —a3, '
—a3; +a2e —a3, —(as + adq + a3y)




by the second relation in (III). Then the following derivations
are true:

AATN = AATN' = —Ad, or: AAT(N =X\')=0. (D)

From the structure of the' AAT matrix (as it was depicted
earlier) it follows that expression (7) is true if and only if the
difference (X' — ) is equal to the following vector:

+1.00
—1.00
+1.00
—1.00

()\/ _ )\Il) — t,

where ¢ is any real number.

Given the previous observation on the difference (A" — X"),
the structure of the matrix AT, and relations (III), it follows
that the following relations are also true:

X — X" = AT(N = M) =0, or: X' = X",

where X’ =1+ ATX, and X" =1+ AT)". In other words,
although system (III) may have 1nﬁn1te1y many i solutions,
the optimal solution, T;;, is unique.

As stated earlier, this is also the optimal solutlon of the
onglnal quadratic programming problem In general, if there
are N objects then the resultmg system of linear equations
has C)¥ =1 = N(N = 1)(N — 2)/6 — 1 variables and same
number of equations. :

By using expression (2) and the previous optimal values Z Tij,
the decision maker can determine a;;, the estimated similarity
relations among the N objects, as follows:

T &12 X12a12 0.193842
@13 X13a13 0.390360
&14 _ X14a14 _ 0.677106
Gs3 | | Xasags | | 0.196520
d24 Xo4a94 ‘1 0.483265
d34 X34‘t134 0.286746

It is interesting to observe here that these estimates are closer

to the actual values in matrix A than the original input data-

(i.e., the pairwise compansons of relative similarity) presented
in matrix B.

A critical issue which arises here is whether the proposed
pairwise comparison approach always works. There is only
one situation in which the pairwise comparisons may y1e1d the
wrong results. This is the case when the triangular property
ai; < dik + ag; does not hold for all possible combinations
of the 7, k, and j indices. From the definition of the pairwise
comparisons of relative similarity, however, it was assumed
that the triangular inequality should always be satisfied. This
is introduced in order to capture the intuitive feeling by many

decision makers that there i§ a close relation betweerl the

notion of similarity and that of distance (see, for example, [1,
p. 54]). Therefore, if the decision maker reaches a situation
in which the triangular property does not hold for all possible
combinations, then some or all of his comparative judgments
need to be revised until the triangular property holds true.
Another mterestmg issue here is to observe that the proposed
approach always reaches a feasible solutlon This is the
case because from the transformation of problem (I) into its
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equivalent form (III) it follows that the variables \;(n > ¢ >
1) can always be calculated. Furthermore, the solution vector
T cannot have a negative element (and hence be 1nfeas1ble)

To see this consider the two relations in (III). If some
element in the solution vector T is negative, then (III), together
with the fact that matrix A is formed from the coefficients of
constraints (4) implies the expression (that is, an element of
the vector AI)

ak; + aij — ai is negative for some N>i>j>k2>1.

However, the above situation never occurs because from the
triangular property a;i < a;; + a;x (for any N > 4,5,k > 1)
and the fact that a;; = a;; (for any N > 4,7 > 1) it follows
that the expression axj + 6i; — a; can never be negative.
Therefore, the proposed approach always reaches a feasible
solution.

V. SUMMARY AND DISCUSSION

The main objective of this paper is the development of an
approach for estimating similarity relations among N objects.
Pairwise compansons have been used 1ntens1vely as the means
for extracting ‘the pertinent data for many decision making
problems (see, for example, [7], [23], and [24]). In this
way, imprecise judgments of an expert can be processed and
accurate estimates of the unknown parameters of a problem
can be derived.

In the past, pairwis¢ compansons have been used in esti-
mating the relative 1mportance among the members of a set.
In that context pairwise comparisons estimate the ratio of the
relative 1mportance of two objects when they are considered
in terms of a property which is present in both objects.

On the other hand, the pairwise comparrsons used in this
paper refer to the relative sirnilarity among pairs of objects.
At each comparison between two objects the decision maker
is asked to estimate the drfference of the degrees that a given
feature is present in these two obJects In this way, the resulting
srrmlarrty relatlons exhibit the tnangular inequality: Further-
more, these types of pairwise comparisons focus directly on
the srmrlanty relations among the objects. o

In order for the proposed type ‘of pairwise compansons
to be quantified, a discrete scale is defined in this “paper.
Finally, a quadratic. programmmg formulation is proposed as
the means for estimating the desired srmrlanty relations among
a number of objects. This formulation minimizes a sum of
squared errors. The proposed method is very. efficient because
the quadratrc programming problem can be reduced in the
problem of solving a system of linear equations.. :

An interesting question at this point is why one needs all
the N(N - 1)/2 pairwise comparisons. It is easy tq'verify
that only N — 1 independent comparisons are enough to
determine the rest of the N(/N —1)/2 comparisons. The reason
for seeking to evaluate all possible comparisons is -that in
this way the proposed approach can use information from
many more sources (e.g. comparatlve Judgments) in order to
effectively estlmate the similarity relations among N objects
N -1 comparrsons would be enough if the decrsron “maker
were perfectly accurate in all his judgments. However, if the
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decision maker is heavily inaccurate in a few comparisons,
then the negative impact is diminished if all the independent
N(N —1)/2 comparisons are incorporated into the estimation
process. This Justlﬁcatlon is very similar to the case of using
pairwise comparisons in solving decision making problems.
A number of extensions are possible at this point. An
interesting issue is to devise an approach for estimating
similarity relations among objects even if some of the pair-
wise comparisons are missing. Problems with incorplete data
are sometimes common in many real life applications. A
related issue is to examine how the order of deriving pairwise
comparisons affects the final results. In other words, if the
decision maker can only estimate, say, 80% of the total
number of comparisons, then which comparisons should these
be? The present paper prov1des the necessary foundations for
investigating the previous two problems. The general problem
of estimating 51m11ar1ty relations among a number of objects
is an 1mportant one and more research in thls area is needed.
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