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Abstract—Two new heuristics are presented for inferring a small size Boolean function from
complete and incomplete examples in polynomial time. These examples are vectors defined in {1,0}"
for the complete case, or in {1,0,}" for the incomplete case (where n is the number of binary
attributes or atoms and “+” indicates unknown value). Each example is either positive or negative, if
it must be accepted or rejected by the target function, respectively. For the incomplete case, however,
some examples may be unclassifiable. Moreover, computational results indicate that the proposed
heuristics may also be effective in solving very large problems with thousands of examples.

Keywords—Boolean functions, CNF/DNF form, Learning from examples, Logical analysis, Cla-
use satisfiability problem, GRASP, Randomized algorithms, Inductive inference.

1. INTRODUCTION

An interesting machine learning problem is how to infer a Boolean function from collections of
positive and negative examples. This is also called the logical analysis problem and is a special
case of inductive inference. This problem is essential when there is no stochastic or fuzzy behavior
in the system and one is interested in extracting an underlying pattern in the form of a set of
logical rules. This kind of knowledge extraction is desirable when one is interested in deriving
a set of rules which, in turn, can be easily comprehended by a field expert. In many domains
the end users lack sophisticated computer and modelling expertise. As result, systems which are
based on techniques such as neural networks, statistics, or linear programming, are not appealing
to them. On the other hand, a logical analysis approach, when it is applicable, can result in rules
which are already known to the end user (thus increasing his/her confidence on the method) or
lead to new discoveries.

The most recent advances in distinguishing between elements of two pattern sets can be classi-
fied into six distinct categories. These are: a clause satisfiability approach to inductive inference
by Kamath et al. [1,2]; some modified branch-and-bound approaches of generating a small set of
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logical rules by Triantaphyllou et al. [3] and Triantaphyllou [4]; some improved polynomial time
and NP-complete cases of Boolean function decomposition by Boros et al. [5,6]; linear program-
ming approaches by Wolberg and Mangasarian 7], Mangasarian et al. [8], and Mangasarian [9);
some knowledge based learning approaches by combining symbolic and connectionist (neural net-
works) machine based learning as proposed by Shavlik [10], Fu [11], Goldman et al. [12], and Cohn
et al. [13], and finally, some nearest neighbor classification approaches by Hattori and Torii [14],
Kurita {15}, Kamgar-Parsi and Kanal [16]. From the above six categories, the first three can be
considered as logical analysis approaches.

More specifically, Gallant [17] and Fu [18] have proposed algorithms which formulate rules if a
node’s weighted input exceeds its threshold and convert each one of these situations into a rule.
However, these methods can require an ezponential number of rules for rule formulation [10].
Recall that in the present paper, emphasis is given in minimizing the number of rules. Towell
and Shavlik [19] developed a method that produced comprehensible rules for each node while
maintaining the accuracy of the network. However, their approach works well only on knowledge
based networks as it requires those weights to cluster into a few groups. Knowledge based
connectionism clusters the weights of the neurons to improve the search efficiency.

Fu [11} proposed an algorithm for extracting rules from a trained neural network. The algo-
rithm heuristically searches through the rule space distinguishing between positive and negative
attributes that link to positive and negative weights. Since the search procedure is done layer by
layer, the algorithm would have an ezxponential time complerity with respect to the depth of the
network.

Goldman and Sloan [12] studied the self directed learning approach in which the learner chooses
the training examples to be supplied to the learning mechanism. Although they show that the
time complexity is somewhat less than other learning mechanisms in this class of classification
approaches, it essentially remains of exponential complexity.

This paper examines two interrelated problems. In both problems, given are collections of
examples. In the first problem each example is a vector of size n (where n is the number of
binary attributes or atoms pertinent to the current application) defined in the space {1,0}".
Positive examples should be accepted by the inferred Boolean function while negative examples
should be rejected. In the second problem, examples are defined in the space {1,0,*}", where
“x” stands for a missing (i.e., unknown) value. Because of the presence of missing elements in the
examples, now some examples may be unclassifiable (i.e., the expert, or oracle cannot determine
whether the example is positive or negative). As result, the inferred Boolean function should
neither accept nor reject the unclassifiable examples. In the above settings the focus is to infer
a Boolean function in CNF (conjunctive normal form) or DNF (disjunctive normal form) of a
very small, ideally minimum, number of disjunctions (for the CNF case) or conjunctions (for
the DNF case). The motivation for this direction becomes evident when one considers that each
CNF disjunction corresponds to a single logical rule. That is, to an “IF-THEN” type of logical
structure. )

The above clause minimization problem is NP-complete [2]. In the past, the second author
and his associates [3,4] have developed some efficient (but still of exponential time complexity)
branch-and-bound (B&B) approaches which can infer very small size Boolean functions (either in
CNF or DNF form). The present paper presents the development of two randomized heuristics
which can infer small size Boolean functions in polynomial time. These two heuristics can be
used for solving the previous two research problems. A rigorous definition of these two problems
and some pertinent notation is provided in the next section.

2. SOME DEFINITIONS AND TERMINOLOGY

Before proceeding to the actual problem description, some terminology is discussed. Let
{A1,As,..., An} be a set of n Booolean predicates (binary attributes or atoms). Each atom A;,
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{i =1,2...,n} has a binary value, i.e., it can either be true (1) or false (0). Let F be a Boolean
function over these predicates, i.e., F is a mapping from {0,1}™ — {0,1}. In this paper, the terms
Boolean functions, Boolean system, logical system and set of clauses will be interchangeably used
to denote the same concept. For each combination of the A;, Ag, ..., Ay, values, F takes the value
true (1) or false (0). The positive set of examples are those combinations of the A, A, ... ,Ap
values for which F takes the value of 1. In this paper, they will be represented as the E* set.
The negative set of examples are those combinations of attribute values which evaluate the value
of F as 0. They will be represented as the £~ set.

The Boolean expressions dealt with in this paper are of conjunctive normal form (CNF). Any
Boolean expression can be transformed into the CNF or disjunctive normal form (DNF) [20].
The CNF and DNF representation schemes are defined as (I) and (1), respectively:

k
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where a; is either A; or 4; and p; is the superset of the indices of the atoms in the j*" conjunction
or disjunction. In other words, a CNF expression is a conjunction of disjunctions, while a DNF
expression is a disjunction of conjunctions. Triantaphyllou and Soyster [21] show how to use any
DNF algorithm to derive a CNF expression (and vice versa).

To illustrate the central idea of this paper, consider the following two sets E* and E~ which
represent the positive and negative examples, respectively:

Et = , E- =

O = O
oo =
O = O O
== O O
—_ -0 = O =
-0 O = O O
—_ 0 O = O
OO O =0

These examples are binary vectors of dimension 4 (ie., n = 4). For instance, the first example
in the E* set (ie., [0 1 0 0]) implies that the values of (A, Ag, As, and Ay) are equal to
(false, true, false, and false), respectively. Therefore, the desired Boolean function should evaluate
to the true value (denoted as (1)) when it is fed with that positive example. Similar observations
can be made for the rest of the positive and negative examples (for the negative examples the
Boolean function must return negative value). Next, consider the following Boolean function
which has three disjunctions:

(Ag VA4) A (AzVA:;) A (A1 VA3VA4) .

It can be easily verified that the above expression satisfies the requirements of the available
positive and negative examples. That is, each positive example makes each disjunction to return
true value. Also, each negative example is rejected by at least one of the disjunctions.

This in essence is Problem 1: how to construct a set (of hopefully small size) of clauses (i.e.,
terms of a Boolean function) which would correctly classify all the available positive and negative
examples and hopefully classify new examples with high accuracy.

Next, to illustrate Problem 2, consider the sample of the input data shown below:

0 x 0 0 0 0 % 1 01 1 %
E+=10*1,E‘=*010,EU=[11**].
01 01 1000
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In this paper the set EV always denotes the set with the unclassifiable examples. The symbol
“¢” in the three data sets represents atoms whose values (i.e., true or false) are missing.

In the previous Et and E~ data sets it is assumed that the missing data values (indicated
by “«”) did not prohibit the user (i.e., the hidden function or oracle) from classifying the corre-
sponding examples as positive or negative. For instance, the first positive example in E* (i.e.,
[0, %,0,0]) implies that this example should be positive regardless of the actual nature of the “”
element. This observation indicates that the following 2 examples (note that 2 = 2!, where 1 is
the number of the missing elements in that example): [0,0,0,0] and [0,1,0,0] are also positive
examples. That is, for positive and negative examples the missing values can be treated as “do
not care” cases (i.e., they can be either 1 or 0 without changing the classification of that exam-
ple). The notion of the “do not care” (or DC) concept was first introduced by Kamath et al. [2]
in order to condense the information representation in this type of learning problems.

An obvious restriction for the data to be correct is that every possible pair of a positive and a
negative example should have at least one of their common fixed atoms with a different value. For
instance, when n = 8, then the examples [1,1, %, *,0,0,*,%] and [1,1,%,0,0,0, %, 1] cannot belong
to different classes (i.e., one to be positive and the other to be negative). This is true because
the example [1,1,0,0,0,0,0,1] is implied by either one of the previous two examples with the
missing (1.e., “do not care”) elements.

To further illustrate the concept of the unclassifiable examples consider the following Boolean
function defined on five atoms (i.e., n = 5):

(A1 VAN (AV A3V 45).

The above Boolean function would make an example such as {0, 1,1, *,1] unclassifiable chiefly
because the value of A4 is missing.

A naive way for dealing with data which have missing values would be to ignore the unclassi-
flable examples and concentrate the attention only on the positive and negative examples. That
is, to ignore all unclassifiable examples, and expand all the positive and negative examples, and
thus transform Problem 2 into a problem of Type 1. Recall that if a positive or negative (but
not unclassifiable) example has k (where k < n) missing values, then it can be expanded into 2%
positive or negative examples defined in {1,0}". However, if this is done, then one would ignore
the information present in the unclassifiable examples. That is, by knowing that the inferred
system should neither accept nor reject any of the unclassifiable examples, the search for an
accurate Boolean function may be better directed.

3. A HEURISTIC FOR INFERRING A BOOLEAN FUNCTION
FROM COMPLETE DATA

The aim of the clause inference strategies in this paper is to derive a very small (hopefully
minimum) number of disjunctions (in the CNF case). Also recall that although the Boolean
functions derived in the proposed approach are in CNF form, DNF functions can also be derived
from the same data set [21] and vice versa.

A Boolean function in CNF must satisfy the following requirements:

(i) each clause in the derived system should accept all the examples in the E* set, and
(ii) all the clauses, when taken together, should reject all the examples in the E~ set.

In (3] an algorithm which infers CNF Boolean expressions of small size from positive and
negative examples is developed. In that approach, CNF clauses are generated in a way which
attempts to minimize the number of CNF clauses that constitute the recommended CNF system.
In this way, a compact CNF system can be derived. The strategy followed there is called the one
clause at a time (or OCAT) approach.

The OCAT approach is greedy in nature. It uses as input data two collections of positive
and negative examples (denoted as Et and E~, respectively). It determines a set of CNF
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clauses which, when taken together, reject all the negative examples and accept all the positive
examples. The OCAT approach is sequential. In the first iteration it determines a single clause
(i.e., a disjunction) which accepts all the positive examples in the E* set while it rejects as many
negative examples in E~ as possible. This is the greedy aspect of the approach. In the second
iteration if performs the same task using the original E* set but the revised E~ set has only
those negative examples which have not been rejected by any clause (i.e., the first) so far. The
iterations continue until a set of clauses is constructed which reject all the negative examples
in the original E~ set. More on this approach can be found in (3,4]. Figure 1 summarizes the
iterative nature of the OCAT approach.

i =0 ; C = ¢; {initializations}
DO WHILE (E~ # ¢)
Step 1: i « i+ 1; /* i indicates the i*! clause */
Step 2: Find a clause ¢; which accepts all members of Et
while it rejects as many members of E™ as possible
Step 3: Let E~(c;) be the set of members of E~ which are rejected by ¢;
Step 4: Let C «— CUg¢;
Step 5: Let E- «— E~ — E~ (c;)

REPEAT;

Figure 1. The one clause at a time (OCAT) approach.

At this point please note that the number of atoms in a rule (logical clause) could be a measure of
performance. However, the OCAT approach (which is the underlying philosophy of the proposed
heuristics) creates CNF (or DNF) clauses which are of decreasing discriminatory power. This is
true, because the first clause rejects many negative examples (while it accepts all the positive
examples) and so on. Thus, the first clauses are defined on very few atoms while later clauses
are increasingly defined on more and more atoms.

The core of the OCAT approach is Step 2, in Figure 1. In (3] a branch-and-bound (B&B)
based algorithm is presented which solves the problem posed in Step 2 efficiently. A more efficient
branch-and-bound algorithm (B&B), along with other enhancements, are described in [4]. The
OCAT approach returns the set of desired clauses (i.e., the CNF system) as set C.

To offset the drawback of the exponential time complexity of the B&B algorithm in Step 2 of
the OCAT approach, in the first proposed heuristic clauses are formed in a manner such that each
clause accepts all the examples in the E+ set while it attempts to reject many (as opposed to as
many as possible in the B&B approaches) examples in the E~ set. Note that this is the main
procedural difference between the B&B algorithms and the proposed heuristics. This is achieved
in the proposed first heuristic by choosing the atoms to form a clause based on an evaluative
function (to be described later). Only atoms with high values in terms of the evaluative function
are included in the current clause. A single clause is completely derived when all the examples
in the Et set are accepted. The clause forming procedure is repeated until all the examples in
the E— set are rejected by the proposed set of clauses. As some computational results (presented
in a later section) indicate, this strategy may often result in Boolean functions with a small
number of clauses.

Observe that if always the atom with the highest value of the evaluative function is included
in the clause, then there is an inherent danger of being trapped in a local optimal point. To
prevent the Boolean system from being degenerated as result of being trapped at a local optimal
point, a randomized approach is used. In this randomized approach, instead of a single atom
being included in a clause due to its highest value of the evaluative function, a candidate list is
formed of atoms whose values in terms of the evaluative function are close to the highest value
as derived from the evaluative function. Next, an atom is randomly chosen out of the candidate
list and is included in the CNF clause being derived.
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Please note that it is possible a CNF clause to reject as many negative examples as possible
(and, of course, to accept all positive examples) but the entire system not to have a small (ideally
minimum) number of clauses. Recall that the proposed heuristics follow the OCAT approach
(see also Figure 1). That is, sometimes it may be more beneficial to have a less “effective”
clause which does not reject a large number of negative examples, and still derive a system with
very few clauses. Such systems are possible to derive with the use of randomized algorithms. A
randomized algorithm, with a sufficiently large number of random replications, is difficult to be
trapped by a local optimal point.

The first heuristic approach, termed RA1 (for Randomized Algorithm 1), is proposed to solve
the first research problem considered in this paper. Before the RA1 heuristic is formally presented,
some new definitions and terminology are needed to be introduced next.

Definitions
C The set of atoms in the current clause (disjunction).
Ay An attribute (atom) such that Ay € A, where A is the set of all

attributes Aq,..., 4,.

POS(Ar)  The number of all positive examples in E* which would be accepted if
attribute Ay is included in the current clause.

NEG(A;) The number of all negative examples in E~ which would be accepted if
attribute Ay is included in the current clause.

l The size of the candidate list.

ITRS The number of times the clause forming procedure is repeated.

As an illustrative example of the above definitions, consider the following sets of positive and
negative examples:

1 010

0100 0 0 01

1100 1111
+~' _=

E——OOll’ E 0 000

1 0 01 1 0 00

1 110

The set A of all attributes for the above set of examples is:
A={A1, Ay, A3, Ay, A1, Ay, A3, A4}

Therefore, the POS(Ay) and the NEG(Ag) values are;

POS(A;1) =2, NEG(41)=4, POS(4;)=2,  NEG(4;) =2,
POS(4;) =2, NEG(4;)=2, POS(A;)=2,  NEG(4;) =4,
POS(A43) =1, NEG(A43)=3, POS(A3)=3, NEG (43)=3,
POS(44) =2, NEG(Aq) =2, POS(A4)=2  NEG(44) =4

The problem now is to derive a small set of logical clauses which would correctly classify all
the above examples. Suppose that there exists a “hidden” system given by the following Boolean

function:
(Az \Y A4) A (Az V/ig) A (A1 V Az VA4) .

It can be easily seen that the above Boolean function correctly classifies all the previous ex-
amples. Therefore, the first problem is to accurately estimate the above “hidden” system. This
is accomplished by using heuristic RA1, which is described in Figure 2.
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The following theorem states an upper bound on the number of clauses which can be inferred
by RA1, and it is the same as a similar result first presented in (3].

THEOREM 1. The RAI approach terminates within at most mo iterations.

PROOF. A clause C, can always be formed which rejects only the zth negative example while
accepting all other examples. For instance, if the z*P negative example to be rejected is [1,0,1,0],
then the clause which rejects the 2" example, while accepting all other examples, is: (A1 VAV
A3V Ay). Therefore, in Step 2 of the RA1 procedure, a clause which at best rejects only one
single example from the E~ set could be formed. As result, the maximum number of clauses
required to reject all the E~ examples is m;. ]

DO for ITRS number of iterations
BEGIN;
DO WHILE (E~ # ¢)
C = ¢; {initializations}
DO WHILE (Et # ¢)

Step 1: Rank in descending order all atoms a; € a (where a; is either A; or A;)
according to their POS(a;)/NEG(a;) value, if NEG(a;) = 0, then
POS(a;}/NEG(a;) = 1,000 (an arbitrarily high value);

Step 2: Form a candidate list of the atoms which have the ! top highest
POS(a;)/NEG(a;) values;

Step 3: Randomly choose an atom aj from the candidate list;

Step 4: Let the set of atoms in the current clause be C « C U ax;

Step 5: Let ET(ax) be the set of members of E+ accepted when aj is included
in the current CNF clause;

Step 6: Let EY — Et — Et{(ay);

Step 7: Let a «— a — ag;

Step 8: Calculate the new POS(ay) values for all ax € a;

REPEAT
Step 9: Let E~(C) be the set of members of E~ which are rejected by C;
Step 10: Let E~ «— E~ — E~(C);
Step 11: Reset ET;
REPEAT

END;
CHOOSE the final Boolean system among the previous ITRS systems which has the smallest number of clauses.

Figure 2. The RA1 heuristic.

Next, let n be the number of atoms in the data set, m1 be the number of examples in the E*
set and ms be the number of examples in the E~ set. Then Theorem 2 states the time complexity
of the RA1 algorithm.

THEOREM 2. The RAI algorithm has a polynomial time complexity of order O(n(m1+ma)mima
x ITRS).

PROOF. Calculating the values of the ratios POS(A;)/NEG(4;), for i = 1 to n, requires n(mi +
mg) simple computations. To sort out the atoms in descending order of their POS(A4;)/NEG(A;)
value we can use the “quick sort” procedure [22] which has time complexity of order O(nlogn).
Each clause is completely formed when all the m; examples in the positive set are accepted. Each
Boolean function is completely formulated when all the my negative examples are rejected. The
whole clause forming procedure is repeated ITRS number of times. Therefore, the time complexity
of the RA1 algorithm is O((n(m; +ms) + nlog n)mimeITRS) = O(n{mi + ma)mymeITRS). 1

From the way the POS(Ay) and NEG(A) values were defined, some critical observations can
be made. When an atom with a rather high value of the POS function is included in the CNF
clause being formed, then chances are that some additional positive examples will be accepted
by that clause as result of the inclusion of that atom. Similarly, atoms which correspond to low
NEG values, are likely not to cause many new negative examples to be accepted as result of the
inclusion of that atom in the current clause. Therefore, it makes sense to include as atoms in
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the CNF clause under formation, atoms which correspond to high POS values and, at the same
time, to low NEG values.

In this paper the notations POS(a;)/NEG(a;) and POS(Ax)/NEG(A) will be used inter-
changeably to denote the same concept. For the current illustrative example, the values of the
POS(A)/NEG(Ag) ratios are:

POS(A;) POS (4;)

= 05, = = 10’
NEG(4,) NEG (4;)
POS(4,) =1.0, POS ( _2) = 0.5,
NEG(43) NEG (4;)
POS(4s) POS (43)
NEG (A43) 0-33, NEG (43) 10,

bOS (4

POS(Ad) _ 4, 08 (44) =0.5.
NEG(A;) NEG (4y)

The above discussion illustrates the motivation for considering as possible candidates for the
evaluative function, the functions: POS/NEG, POS — NEG, or some type of a weighted version
of the previous two expressions. Some exploratory computational experiments indicated that the
evaluative function POS/NEG was the most effective one. That is, it lead to the formation of
Boolean functions with less clauses than when the other evaluative functions were considered.

The randomization of the RA1 algorithm is done as follows. In Step 2, the first | atoms with
the highest value of the POS(A;)/NEG(A) ratio are chosen as the members of the candidate
list and an atom in the list was randomly chosen out the candidate list in Step 3. This is done in
order to obtain different solutions at each iteration and prevent the system from being trapped
by a locally optimal point.

In the approach of choosing a fixed value [ as the size of the candidate list, there is a possibility
that an atom with a very low value of POS(Ay)/NEG(A) ratio could be selected if the value
of I is large enough (how large depends on the current data). That could occur if there are not
! atoms with a sufficiently high value of the POS(Ax)/NEG(A) ratio. If an atom with a low
value of POS(Ay)/NEG(Ag) is chosen to be included in the clause, then the clause would accept
less examples from the E% set or accept more examples from the E~ set, or both. All these
three situations should be avoided as it would lead to an increase in the number of atoms in
a clause (if it accepts less examples from the E7T set) or an increase in the number of clauses
(if the atom accepts more examples from the E~ set) or both. To prevent the above situation
from happening, a candidate list is formed of atoms, each of whose POS(A)/NEG(Ay) value is
within a certain percentage, say a%, of the highest value of the POS(A)/NEG(Ay) value in the
current candidate list. This ensures that the atom (randomly chosen out of the candidate list) to
be included in the clause has a value close to the highest value of the POS(A4;)/NEG(A) ratios.

The above idea of using randomization in a search algorithm has been explored recently by
other researchers as well. For instance, Feo and Resende [23] have successfully used randomization
to solve clause satisfiability (SAT) problems. Also, in a recent book [24] Motwani and Raghavan
provide a comprehensive presentation of the theory on randomized algorithms. Randomization
also offers a natural and intuitive way for implementing parallelism in algorithms.

To obtain a system with a very small number of clauses, the whole procedure is subjected to a
certain number of iterations (denoted by the value of the ITRS parameter) and the system which
has the least number of disjunctions is chosen as the final inferred Boolean system.

Referring to the previous illustrative example, if | = 3, then the values of the 3 best POS(Ax)/
NEG(Ag) ratios are: {1.0,1.0,1.0} (note that it is a coincidence that the three values are identical)
which correspond to the atoms Aj, Ay, and Ay, respectively. Let atom A, be the randomly
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selected atom from the candidate list. Note that atom Az accepts examples number 2 and 3 from
the current E1 set. Therefore, at least one more atom is required to complete the formation of
the current clause. The whole process of finding a new atom (other than atom Ay which has
already been selected) with a very high value of POS /NEG is repeated. Now, suppose that the
atom with a high POS/NEG value happened to be A4. Observe that atoms Ay and A4, when are
combined together, accept all the elements in the E+ set. Therefore, the first clause is (Az V Ay).

This clause fails to reject examples number 2, 3, and 6 in the E~ set. Therefore, examples
number 2, 3, and 6 in the original E~ set constitute the reduced (and thus new) E~ set. The
above process is repeated until a set of clauses are formed which, when combined together, reject
all the examples in the original E~ set. Therefore, a final Boolean function for this problem
could be as follows (recall that the algorithm is a randomized one and thus it does not return a
deterministic solution):

(A2 VA4) AN (Ag \ A3) A (A1 VvV Az V /L;) .

A very important factor in deriving a Boolean function from positive and negative examples is
the number of examples needed to infer the logic. This is also known as the sample complexity of
a given approach. The problem of inferring a pattern with a sequence of very few new examples
has been examined by Bshouty et al. [25], Goldman and Sloan [12], and Triantaphyllou and
Soyster [26]. This is also known as the guided learning approach. A guided learning approach
(as, for instance, the one described by [26]) can be used in conjunction with the randomized
algorithm RA1 to infer Boolean functions from positive and negative data.

4. AN APPROACH FOR INFERRING A BOOLEAN FUNCTION
FROM INCOMPLETE DATA

The second algorithm deals with the case in which some of the examples contain missing
values. That is, now the examples are defined in the {0, 1, *}™ space. The consequences of having
missing elements in the positive, negative, or unclassifiable examples have already been discussed
in Section 2.

If an example is determined as unclassifiable by the “hidden” system, then it has also to remain
unclassifiable by the derived Boolean system. In other words, the property for inferring Boolean
functions when unclassifiable examples are also considered (along with positive and negative
examples), is that none of the examples in the EV set should neither be accepted nor rejected by
the derived system.

To help fix ideas, consider the following Boolean function:

(A V Ag) A (A v As) A (A1 V A3V Ay).

If an example in EY has A; = A4 = 0, then the first clause would reject that example. This,
however, should not be permissible and thus the above function cannot be a candidate solution,
regardless of what are the positive and negative examples. If, on the other hand, in a particular
unclassifibale example A = 0 and A4 = *, then that example is neither rejected nor accepted.
Therefore, in the later scenario, the previous function is a possible candidate as far as that single
unclassifiable example is concerned.

The second algorithm, termed RA2 (for Randomized Algorithm 2), also works in conjunction
with the OCAT approach (as described in Figure 1). That is, the RA2 generates a single clause
at a time. Each clause accepts all the positive examples in the ET set, while it does not reject
any examples in the unclassifiable set EV and it also attempts to reject a large number (but not
necessarily as many as possible) of negative examples in the E~ set.
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DO for ITRS number of iterations
BEGIN;
PHASE I: DO WHILE (E~ # ¢)
C = ¢; {initialization}
DO WHILE (C does not reject any example from EUV)
DO WHILE (E* # ¢)
Step 1: Rank in descending order all atoms a; € a (where a; is either A; or A;)
according to their POS(at)/NEG(ax) value, if NEG(ak) = 0, then
POS(ay)/NEG(ax) = 1,000 (an arbitrarily very high value);
Step 2: Form a candidate list of the atoms which have the ! top highest POS(a;)/
NEG(a;) values;
Step 3: Randomly select an atom ay, from the candidate list;
Step 4: Let Et(ay) be the set of members of E* accepted when ay is included
in the current clause;
Step 5: Let Et «— E+ — Et(ay);
Step 6: Let the set of atoms in the current clause be C «— C U ag;
REPEAT;
Step 7: C « C'Ua; where a; is any one atom with a value of “+” in
each of the examples in EV which were rejected by the clause C.
REPEAT;
Step 8: Let E~(C) be the set of members of E~ which are rejected by C;
Step 9: Let E~ «— E~ — E—(C);
Step 10: Reset ET;
REPEAT;

PHASE 1I1: Denote as E4 the updated set of unclassifiable examples in EU accepted by the current set of
clauses C1 A C2 A--- A Cpp, where m is the total number of clauses formed so far.
DO WHILE (EA # ¢)
Step 11: m —m +1;
Step 12: Form (according to the proof of Theorem 3) a clause Cy, which does not
accept the first unclassifiable example from the E4 set.
REPEAT;
END;

CHOOSE the final Boolean system among the previous ITRS systems which has the smallest number of clauses.

Figure 3. The RA2 heuristic.

Subsequent clauses are formed with a reduced E~ set (comprised by the negative examples
which have not been rejected so far). When all the examples in the E~ set have been rejected,
then the RA2 algorithm enters its second phase. In the second phase the whole set of clauses
is tested against the EV set to satisfy the necessary Boolean system forming condition for the
unclassifiable examples. That is, all the clauses when are grouped together should not accept
any example from the EV set.

Recall that from Phase I the clauses do not reject any of the unclassifiable examples. Any
unclassifiable examples which are accepted by the clauses which have been formed in the first
phase, are grouped into the set E4 (that is: E4 C EV). The clauses which were formed in the
first phase are appended with a new set of clauses which are formed in the second phase. The
new clauses, when are grouped together with the first set of clauses, do not accept any example
in the set E4 (i.e., EA = ¢). This is accomplished in a sequential manner. Figure 3 illustrates
the specific steps of the RA2 heuristic.

Let the set E4 contain examples from the original EU set which the derived Boolean function
has accepted. Therefore, the maximum number of examples in the set E4 is the same as the
cardinality of the EV set (i.e., equal to m3). Suppose that there are still m} (where mj < mj3)
unclassifiable examples in the E4 set after all the examples from the E~ set are rejected and all
the clauses are tested against the examples in the EU set for non acceptance (i.e., now E4 # ¢ and
E- = ¢). Then, how does the RA2 heuristic terminate? The upper bound for the terminating
condition is given in the following theorem.
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THEOREM 3. If E~ = ¢, the maximum number of additional conjunctions in Phase II in heuris-
tic RA2 is mj.
PRrROOF. A clause C, can always be formed which does not accept the zt unclassifibale example
(i.e., it can either reject or make unclassifiable this example) from the E set while accepting all
other examples (please refer to the proof of Theorem 1 for the validity of the previous statement).
Since all the negative examples have already been rejected, a maximum of m4 new clauses can
be formed which do not accept the mj unclassifiable examples from the EA set. For instance, if
the zth example in E4 is [1, %,0, %], then the clause C : (A1 V AxV A3V A4) would fail to accept
as well as reject the z*" example. ]
If n is the number of attributes and m,mo and ma are the cardinalities of the E+, E~, and
the EU sets, respectively, then the complexity of the RA2 algorithm is stated in the following
theorem.

THEOREM 4. The time complexity of the RA2 heuristic is O(n(my + ma)mymamaITRS).

PROOF. Calculating the values of the POS(4;)/NEG(4;) ratios (for i = 1 to n) requires n(m; +
ms) computations. To sort the atoms in descending order of their POS(A;)/NEG(A;) value
we can use the “quick sort” which is of time complexity of order O(nlogn) [22]. To form a
Boolean system in which each clause accepts all the m; positive examples, rejects none of the ms
unclassifiable examples and the whole set of clauses is rejecting all the m; negative examples
is of order m;moms. The complexity of Phase II is mgn. This is indicated in the second loop
in Figure 3. Therefore, the complexity of the RA2 heuristic is of order O(((n(m1 + ma) +
nlog n)mimaoms) + mgn)ITRS) = O(n(my + mo)mymomsITRS). ]

Next, for demonstrative purposes of the above issues consider the following illustrative example.
Let the three classes of data be as follows (observe that for simplicity, any positive or negative
examples with missing values has been expanded to be in {1,0}"):

0100 1010 Lao
E+=1101,E‘zllll,andEU=10*0.
0 01 0 00 0 0 *+ 1 % 0

Then, the POS(ax), NEG(ax), and POS(ax)/NEG(ax) values are:

POS(4;) =1, NEG(4;)=2, %392((%)) =0.5,
POS(4;) =2, NEG(Ap) =1, 1532((‘2’) 2.0,
POS(43) =1, NEG(43) =2, Egcs;((i?;)) = 0.25,
POS(A4) =1, NEG(A4) =2, Egg((ii)) 0.5,
POS(A;) =2, NEG(A4)) =2, ;gé((ill)) ,
POS(4;) =1, NEG(4,) =3, ;gz((ﬁ";)) 0.33,
POS(As) =2, NEG(As) =2, ;%% _ 05,
POS(As)

P A,) = i,) = =2 =
0S(A,) =2, NEG(4,) =2, NEG(As)
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If [ = 3, the 3 highest ratios of the POS(ax)/NEG(ax) values are {2.0,1.0,1.0} which correspond
to atoms Ay, A, and Ay, respectively. Let atom Aj be the randomly selected atom from the
current candidate list. If atom Aj is introduced into the current clause, then as result this clause
will accept the first and the second examples in the E* set. The whole process of finding the
values of POS(ar)/NEG(ax), (with k # 2) is repeated. For the next iteration suppose that
atom Ag is chosen. When atoms A, and Aj are introduced into the clause, then this clause
accepts all examples in the E*1 set. This set of atoms does not reject any example in the EV
set. Therefore, the first clause is (A2 V A3z). This process is repeated until E~ = ¢ and E4 = ¢.
Therefore, a final Boolean function for this problem could be as follows (recall that the algorithm
is a randomized one and thus it does not return a deterministic solution):

(A2 V As) A (/11 VA3 VA4) A (A] V./ig) .

5. SOME COMPUTATIONAL RESULTS

A number of computer experiments were conducted on an IBM 3090-600S mainframe computer
running the VM/XA operating system, in order to investigate the effectiveness of the RA1 and
RAZ2 heuristics on different types of problems. Some interesting results were obtained and are
discussed in the next sections.

The previous two heuristics RA1 and RA2 were tested on a number of different experiments.
The first type of experiments used the well known Wisconsin breast cancer database (donated
by Professor Mangasarian from the University of Wisconsin, Madison, and now it can be found
in the University of California at Irvine Repository of Learning Databases and Domain Theo-
ries) [27]. This database contained (at the time it was obtained) 421 examples, 224 of which were
corresponding to benign (or positive) and 197 to malignant (or negative) cases. The original data
were defined on nine discrete variables, each variable assuming values from the integer set [1,10].
These data were converted into their equivalent binary data. That is, each variable was converted
into four binary variables and thus the transformed database was defined on 36(= 4 x 9) binary
variables.

Additionally, the RA1 heuristic was compared with the branch-and-bound method (described
by [4]) by generating a challenging set of large random test problems. The first large random data
set contained 18,120 examples defined on 15 atoms with a varied ratio of positive and negative
examples. Note, that this set was almost 50 times larger than the size of the breast cancer data.
A second large data set contained 3,750 examples defined on 14 atoms (binary variables).

The measures of performance considered in these tests are of three types:

(i) the accuracy of the derived system (Boolean function),
(ii) the number of clauses (CNF disjunctions) in the derived system, and
(iii) the CPU time required to derive a solution.

The method of determining accuracy of a proposed system (i.e., Boolean function) was defined
in two different ways. When the Wisconsin breast cancer database was used, the accuracy of a
solution was defined by comparing the way an inferred system (which was derived when a part of
the available data was used as the training set) and the system derived when the entire data base
is used, classified a random collection of 10,000 examples. Note, that this approach is similar to
the testing procedures used in [1,3,4,21]. For the other cases the testing procedure was different.
First a collection of random examples was formed. Next, a random Boolean function was formed
and the previous examples were classified according to that function as either positive or negative
examples. That function played the role of the oracle or “hidden system”. Then, the goal of the
inference algorithms was to infer a close approximation of that “hidden” function. Therefore, in
this case the notion of accuracy was defined as the percentage of the times the proposed and the
“hidden” system agreed in classifying a random collection of 10,000 examples.

Moreover, for testing the two heuristics on the breast cancer data, two categories of Boolean
functions were derived. The first category of Boolean functions used the benign set as the E* set
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and the malignant set as the £~ set. This category of Boolean systems was denoted as system S1.
The second category of systems treated the benign set as the E™ set and the malignant set as
the E* set. This category of Boolean systems was denoted as system S2. The purpose of
formulating two categories of systems (i.e., S1 and S2) was to study the effect of the number of
examples (recall that the benign and the malignant observations were 224 and 197, respectively)
on the accuracies and the number of clauses in the derived systems.

Since it was required that the number of clauses be kept at a very small level, the whole clause
forming process was repeated a certain number of times (defined as the value of the parameter
ITRS in Figures 2 and 3). The value of ITRS equal to 150 was determined after a brief pilot
study. The results are tabulated below.

ITRS Value Number of Clauses in
System S1 System S2

50 14.40 23.52

100 12.20 20.69

150 8.86 19.92

200 8.84 20.12

500 8.83 19.79
1,000 8.82 19.78

These results suggest that higher values of ITRS did not generated much fewer clauses (although
the CPU requirement is higher now). Thus, the value of ITRS equal to 150 is a reasonable one.
Obviously, this empirical value cannot be generalized since for different data a different ITRS
value may be more appropriate. Therefore, we suggest that a pilot study to be undertaken before
an ITRS value is decided. Finally, please recall that the running time of the heuristic is directly
proportional to the value of ITRS. This is indicated in the complexities of the RA1 and RA2
heuristics as seen in Figures 1 and 3, respectively.

For the randomization of the heuristics, a candidate list of a few atoms was formed among which
the representative atom was randomly chosen. Only those atoms were chosen in the candidate
list whose POS/NEG value was within a certain percentage, say 0%, of the maximum POS/NEG
value in the candidate list. This would assure that the atoms which are finally chosen are in a
near neighborhood of the atom with the maximum value of the POS/NEG ratio in the candidate
list. A good value of a% seemed to be equal to 75% as it resulted in the highest accuracy in
some exploratory computational experiments. These experiments are described in more detail in
the following sections.

5.1. Results for the RA1 Algorithm on the Cancer Data

The results for Problem 1 (i.e., inference of a Boolean function with complete data) are pre-
sented in Table 1. The number of replications per case was equal to 50. The numbers in the
parentheses indicate the standard deviations of the various observations. Individual accuracies for
the benign and the malignant tumors are also presented. For instance, B(S1), M(S1), B(S2) and
M (S2) represent benign and malignant accuracies for systems S1 and S2, respectively. Figure 4
shows the relationship of accuracy on the percentage of data used. With approximately 10% of
the data used as the training data, accuracy of approximately 88% was achieved with system S1
while a higher accuracy rate of 92% was achieved with system S2. A peak accuracy of approx-
imately 92% was obtained with system S1 while a peak of 94% was obtained with system S2.
Figure 5 shows the number of clauses which were derived. The maximum number of clauses is
nine for system S1 and 20 for system S52.

On the average, the time required to infer the nine clauses was 300 CPU seconds. Resende
and Feo [28] had reported that their SAT approach took more than 27,000 CPU seconds (on
a VAX system, which also is 4-5 times slower than the IBM 3090-600S computer used in our
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the Wisconsin Breast Cancer Data.

tests) without being able to infer the nine clauses from the breast cancer database. Some typical
Boolean functions for systems S1 and S2 are given in Figure 6. These clauses were derived from
the entire set of cancer data. Recall that the cancer data had nine discrete valued attributes
which were converted into 36 binary valued attributes, Ay, ..., Ass. System S2 was derived after
treating the malignant examples as the E* data set and the benign examples as the E~ data
set. As such, the set of clauses in system S2 approximates the complement of system S1. This
is seen in Figure 6 where system S1 has nine clauses, each clause containing on an average ten
atoms, whereas system S2 contains 20 clauses, each clause having, on the average, four atoms.
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System S1:
Clause 1: A1 VA9V Az vV A17 VA2V Aa V Ags V Agg V Agg V A3z V Azs
Clause 2: A1 VA2V AgV A3V A5V A21 V A5 V Azo V Asz3
Clause 3: A1V A3V AgV AgV A17 V Ag1 V Ags V A3z V Azs V Agg
Clause 4: A1V AgV A7V Az1 V Aaz V Ags V Az V Ass V /ils
Clause 5: AzV AgV A12V A17V A21 V A5 V A3z V Aszs
Clause 6: A1V A1V A3V A7V Azz V Ags V Age V A3q V A3s V A12 V A1e V Azo V Ase
Clause 7: A1aV A5V A7V A2z V A2a V Aas V Aa7 V Agg V Azg V A V Ass
Clause 8: AgV Az V Asgs V Az A\ A_ls A\ Azo \Y) Aae
Clause 9: AgV AoV A1 V A21 V Az V A6 V Ago V A3z
System S2:
Clause 1: Ag V A2 V Agp
Clause 2: Agq V Az V Age
Clause 3: As V Am \Y A26
Clause 4: A2V A6 V A1
Clause 5: Ag V Aw \Y Alg

Clause 6: Ag Vv Aze

Clause 7: Ao V fi13

Clause 8: AzoV Az V Ajg V A2y

Clause 9: AgV AgV Ay V A

Clause 10: A5V A7 \ Alo \Y Azz

Clause 11: Ao VA7V A4V Age

Clause 12: AgV Ao V Agg

Clause 13: A2 V A5 V Agg

Clause 14: AgV A V Ag()

Clause 15: AsV A3V /12 \Y Au \Y Age
Clause 16: AzV AsV A5V Aa7 V As

Clause 17: AsV A3V Aig Vv AG \Y Azg
Clause 18: A3V A1aV A7V Ags

Clause 19: A3V A3V A21 V Aza V /111 \Y /izo
Clause 20: A3V Ais VA2 V A7V Asg V Asp

Figure 6. Clauses for Systems S1 and S2 when the entire Breast Canter data are
used.

5.2. Results for the RA2 Algorithm on the Cancer Data with Some Missing Values

The results for Problem 2 (i.e., inference of a Boolean function with incomplete data) are
presented in Table 2. Heuristic RA2 was used to solve this probelm. The unclassifiable data were
generated by “covering” (i.e., masking out) the actual values of some elements in some random
examples taken from the cancer data base. When the covered values were enough not to allow for
the classification of that example, that example was introduced into the EVY set and the covered
attributes were assigned missing values. Two systems of rules were inferred. System SA was
inferred with only the positive (i.e:, the E¥) and the negative (i.e, the E7) data sets. On the
other hand, system SB was inferred from E+, E~ as well as the unclassifiable (i.e., the EY) data
set. The reason for doing this was to compare the relative benefit of including the unclassifiable
data sets as opposed to inferring a system of rules without the inclusion of the unclassifiable data.

The number of replications for each case was also equal to 50 and the numerical resulst are
presented in Table 2. That number of replications produced rather acceptable confidence intervals
and it was limited due to the excessive CPU time requirements. The individual benign and
malignant accuracies for systems SA and SB are denoted in Table 2 by B(SA), M(SA) and
B(SB), M(SB), respectively. The graphs for the accuracies and the number of clauses derived by
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Table 1. Results using the RA1 algorithm on the Wisconsin Breast Cancer database.

% | # of Rules | # of Rules | Accuracy | Accuracy | Accuracy | Accuracy | Accuracy | Accuracy

Data (S1) (S2) (S1) B(S1) M(S1) (S2) B(S2) M(S2)

5.0 1.18 2.28 0.8248 0.8095 0.8430 0.9061 0.9413 0.8666
(0.38) (0.49) (0.0584) | (0.1074) | (0.1060) | (0.0680) | (0.1012) | (0.1078)

10.0 1.60 3.02 0.8816 0.8791 0.8852 0.9211 0.9618 0.8752
(0.57) (0.55) (0.0319) | (0.0573) | (0.0548) | (0.0521) | (0.0730) | (0.0605)

15.0 2.06 3.70 0.8801 0.8670 0.8955 0.9391 0.9948 0.8756
(0.54) (0.67) (0.0271) | (0.0593) | (0.0348) | (0.0308) | (0.0197) | (0.0620)

20.0 2.42 4.62 0.8934 0.9039 0.8824 0.9435 0.9956 0.8851
(0.53) (0.75) (0.0229) | (0.0401) | (0.0337) | (0.0267) | (0.0145) | (0.0482)

25.0 2.72 5.14 0.9010 0.9158 0.8845 0.9446 0.9950 0.8873
(0.60) (0.89) (0.0168) | (0.0303) | (0.0359) | (0.0200) | (0.0157) | (0.0407)

30.0 3.12 6.00 0.9043 0.9146 0.8933 0.9445 0.9959 0.8872
(0.71) (1.31) (0.0138) | (0.0200) | (0.0330) | (0.0183) | (0.0113) | (0.0350)

35.0 3.40 6.84 0.9027 0.9151 0.8896 0.9438 0.9977 0.8837
(0.72) (1.10) (0.0170) | (0.0205) | (0.0357) | (0.0177) | (0.0081) | (0.0332)

40.0 3.74 7.60 0.9038 0.9209 0.8848 0.9457 0.9997 0.8850
(0.66) (1.34) (0.0146) | (0.0232) | (0.248) (0.185) | (0.0015) | (0.0369)

45.0 4.06 8.60 0.9034 0.9140 0.8918 0.9502 1.0000 0.8928
(0.88) (1.71) (0.0183) | (0.0275) | (0.0327) | (0.0155) | (0.0000) | (0.0321)

50.0 4.44 9.70 0.9056 0.9170 0.8929 0.9494 0.9998 0.8920
(0.78) (1.57) (0.0175) | (0.0315) | (0.0372) | (0.0166) | (0.0011) | (0.0338)

55.0 4.90 10.94 0.9015 0.9149 0.8870 0.9448 0.9996 0.8837
{0.88) (1.63) (0.0160) | (0.0341) | (0.0325) | (0.0164) | (0.0020) | (0.0321)

60.0 5.40 12.06 0.9022 0.9159 0.8872 0.9432 0.9996 0.8787
(0.92) (1.54) (0.0229) | (0.0372) | (0.0450) | (0.0183) | (0.0029) | (0.0376)

65.0 5.84 13.46 0.9095 0.9177 0.8995 0.9448 1.0000 0.8813
(1.03) (2.02) (0.0228) | (0.0280) | (0.0400) | (0.0197) | (0.0000) | (0.0395)

70.0 6.24 14.34 0.9109 0.9230 0.8985 0.9440 0.9997 0.8810
(0.93) (2.06) (0.0217) | (0.0383) | (0.0419) | (0.0211) | (0.0021) | (0.0428)

75.0 6.92 15.26 0.9096 0.9186 0.9009 0.9381 1.0000 0.8683
(1.07) (1.71) (0.0255) | (0.0397) | (0.0364) | (0.0238) | (0.0000) | (0.0477)

80.0 7.68 16.54 0.9132 0.9110 0.9156 0.9462 1.0000 0.8830
(0.88) (1.56) (0.0321) | (0.0459) | (0.0502) | (0.0239) | (0.0000) | (0.0491)

85.0 7.88 17.44 0.9131 0.9197 0.9054 0.9436 1.0000 0.8798
(0.99) (1.73) (0.0399) (0.0520) (0.0583) (0.0290) (0.0000) (0.0607)

90.0 8.56 19.22 0.9131 0.9147 0.9091 0.9379 1.0000 0.8623
(0.75) (1.71) (0.0464) | (0.0500) | (0.0714) | (0.0330) | (0.0000) | (0.0771)

95.0 8.88 19.90 09171 0.9242 0.9109 0.9299 1.0000 0.8608
(0.86) (1.81) (0.0725) | (0.0810) | (0.1031) | (0.0536) | (0.0000) | (0.0971)

the RA2 algorithm with and without the inclusion of the unclassifiable data set EV, are shown in
Figures 7 and 8, respectively. As it was anticipated, the accuracy obtained with the inclusion of
the unclassifiable data set EV is always higher than the corresponding accuracy obtained without
the inclusion of the EV data set. Therefore, it is indicated in these experiments that the use
of unclassifiable data set, along with the positive and negative data sets, indeed improves the
quality of the improved Boolean system. That is, the inferred system is a better approximation
of the “hidden” system.
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5.3. Comparison of the RA1 Algorithm and
the B&B Method Using Large Random Data Sets

To compare the RA1 heuristic with the B&B method, a large data set was randomly generated
and used for clause inference. The difficulty of the problem is determined not only by the number
of examples, but also by the percentage of examples used as compared to the total possible number
of examples. For n atoms, the total number of possible distinct examples is 2". The problem

MM 27:1-D
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Table 2. Results using the RA2 algorithm on the Wisconsin Breast Cancer database.

% | # of Rules | # of Rules | Accuracy | Accuracy Accuracy | Accuracy | Accuracy | Accuracy

Data (SA) (SB) (SA) B(SA) M(SA) (SB) B(SB) M(SB)

5.0 1.26 2.08 0.8662 0.8822 0.8482 0.8687 0.8843 0.9206
(0.48) (0.63) (0.0513) (0.0857) (0.0898) (0.0423) (0.0955) (0.0475)

10.0 1.62 2.76 0.8989 0.9070 0.8898 0.8951 0.8961 0.9397
(0.49) (0.62) (0.0306) (0.0428) (0.0645) (0.0280) (0.0545) (0.0227)

15.0 1.88 3.18 0.9160 0.9309 0.8992 0.9172 0.8967 0.9407
(0.38) (0.68) (0.0180) (0.0361) (0.0312) (0.0201) (0.0460) (0.0216)

20.0 2.32 4.08 0.9206 0.9373 0.9018 0.9211 0.9002 0.9449
(0.61) (0.84) (0.0190) (0.0299) (0.0403) (0.0221) (0.0442) (0.0231)

25.0 2.76 4.84 0.9253 0.9409 0.9078 0.9340 0.9171 0.9531
(0.68) (0.86) (0.0151) (0.0253) (0.0356) (0.0151) (0.0329) (0.0140)

30.0 3.14 5.68 0.9316 0.9418 0.9202 0.9371 0.9143 0.9630
(0.75) (0.97) (0.0126) (0.0259) (0.0240) (0.0133) (0.0278) (0.0162)

35.0 3.60 . 598 0.9399 0.9542 0.9239 0.9492 0.9363 0.9640
(0.94) (1.10) (0.0112) (0.0203) (0.0228) (0.0089) (0.0168) (0.0141)

40.0 3.92 6.76 0.9472 0.9608 0.9319 0.9538 0.9416 0.9680
(0.84) (0.93) (0.0088) (0.0148) (0.210) (0.0089) (0.0174) (0.0135)

45.0 4.46 8.14 0.9488 0.9575 0.9390 0.9543 0.9347 0.9768
(1.08) (1.15) (0.0104) (0.0165) (0.0167) (0.0104) (0.0127) (0.0122)

50.0 5.00 9.00 0.9536 0.9620 0.9439 0.9627 0.9492 0.9783
(0.98) (1.36) (0.0087) (0.0151) (0.0150) (0.0102) (0.0189) (0.0094)

55.0 5.38 9.40 0.9588 0.9666 0.9501 0.9672 0.9522 0.9845
(1.09) (1.11) (0.0088) (0.0128) (0.0169) (0.0088) (0.0164) (0.0092)

60.0 6.28 10.20 0.9630 0.9671 0.9583 0.9718 0.9588 0.9871
(1.10) (1.25) (0.0091) (0.0136) (0.0141) (0.0077) (0.0150) (0.0076)

65.0 6.54 10.78 0.9669 0.9726 0.9607 0.9768 0.9655 0.9899
(1.08) (1.38) (0.0079) (0.0111) (0.0160) (0.0071) (0.0139) (0.0082)

70.0 7.48 11.70 0.9734 0.9790 0.9673 0.9815 0.9705 0.9941
(1.30) (1.00) (0.0072) (0.0104) (0.0126) (0.0062) (0.0115) (0.0053)

75.0 8.24 12.06 0.9775 0.9788 0.9763 0.9838 0.9733 0.9959
(1.05) (1.24) (0.0070) (0.0121) (0.0122) (0.0056) (0.0112) (0.0043)

80.0 8.84 12.84 0.9833 0.9850 0.9818 0.9869 0.9782 0.9970
(1.21) (1.17) (0.0080) (0.0106) (0.0113) (0.0058) (0.0101) (0.0040)

85.0 9.56 12.34 0.9862 0.9875 0.9852 0.9917 0.9860 0.9984
(1.17) (0.97) (0.0055) (0.0069) (0.0090) (0.0048) (0.0085) (0.0032)

90.0 10.36 12.90 0.9920 0.9925 0.9919 0.9950 0.9912 0.9996
(0.97) (0.83) (0.0043) | (0.0059) | (0.0065) | (0.0033) | (0.0058) | (0.0014)

95.0 10.98 12.90 0.9960 0.9960 0.9960 0.9980 0.9964 0.9999
(0.97) (0.92) (0.0025) (0.0035) (0.0040) (0.0023) (0.0039) (0.0007)

would be easy when there are very few examples or when the number of examples approaches 2™,
The upper limit on the number of examples was limited by the dynamic allocation of the random
access memory (RAM memory) of the IBM 3090-600S mainframe computer at LSU. Thus, a
maximum of 18,120 examples were randomly generated for the purpose of these computational
experiments when the number of attributes was set equal to 15. A maximum of 32,768 distinct
examples are possible when n is equal to 15. Therefore, this data set is a representation of one
of the difficult problems possible with n equal to 15.

The RA1 algorithm terminates when all the clauses, when are put together, reject the entire
set of negative examples denoted by E~. A critical question is what happens if none of the
clauses formed in the local search are able to reject even a single negative examples. In the proof
of Theorem 1 it was shown that a clause can always be formed which rejects exactly one negative
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DO WHILE (E~ # ¢)
Call Procedure RA1 to form a single clause.
If no examples from the E~ set are rejected by that clause then:
Call the B&B method to form a single clause.

REPEAT;

Figure 9. Using the RA1 heuristic in conjunction with the B&B method.
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Figure 10. Percentage of the time the B&B was invoked in the combined RA1-B&B
method.

example while accepting all positive examples. However, a disadvantage of that approach is that
only one negative example would be rejected at a time by the inclusion of such one new clause.
If the number of negative examples is large and if this boundary condition is initiated often, then
the system could end up with an exceptionally large number of (degenerative) clauses.

A possible alternative solution to this situation is the use of the RA1 heuristic in conjunction
with the B&B method in [4]. The B&B method always guarantees to return a clause, which most
of the time, rejects more than just a single negative example. However, there is also a certain
tradeoff to this implementation. The B&B method has an exponential CPU time complexity.
Hence, for large size data sets, it has the potential to take large amounts of CPU time. Figure 9
best describes the idea of using the RA1 algorithm in conjunction with the B&B method (or for
that matter, with any other single clause inference method).

Computational results are presented in Tables 3 and 4 which compare the combined RA1l
heuristic and the B&B method with the stand alone B&B method, respectively. Two sizes of
random data sets were used in these tests. One set of data contained a total of 18,120 examples
with a varying ratio of the positive to the negative examples (See also Table 3). The number
of atoms in this data set was equal to 15. In the other data set, the total number of examples
was equal to 3,750. The number of atoms in this case was set equal to 14 (see also Table 4).
These numbers of examples were fixed after determining the RAM memory restrictions of the
IBM 3090-600S mainframe computer system at LSU.

Besides the CPU times consumed by the RA1 heuristic and the B&B approach in the RA1-
B&B combination, the number of clauses inferred by each component method was also recorded.
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Figure 11. Ratio of the number of clauses by the RA1-B&B method and the number
of clauses by the stand alone B&B method.
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Figure 12. Number of clauses by the stand alone B&B and the RA1-B&B method.

Moreover, the number of times the boundary condition was invoked (i.e., the number of times
the B&B method was used) in the RA1-B&B method, was recorded as well.

As it can be seen from the previous computational results, the combination of the RA1 heuristic
with the B&B method performed significantly better than the stand alone B&B method when
one focuses on the CPU times. Figure 10 shows the percentage of times the B&B method was
invoked when it was combined with the RA1 heuristic. On the average, the B&B method was
called approximately 60% of the time in the combined RA1-B&B approach.
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Table 3. Comparison of the RA1 algorithm with the B&B method (number of ex-
amples 18,120; number of atoms = 15).

Rules by Rules Rules CPU Time CPU Time
Et E- B&B in in in RA1l B&B
RA1/B&B RA1 B&B (in seconds) (in seconds)
264 17,856 11 15 15 267 267
690 17,430 13 20 18 614 1,265
730 17,390 16 23 26 2,243 3,302
856 17,264 20 27 23 5,781 10,983
1,739 16,381 17 23 21 5,266 6,244
1,743 16,377 36 45 46 3,442 6,016
1,773 16,347 39 46 39 5,150 10,020
2,013 16,107 24 26 25 2,058 2,000
2,298 15,822 38 44 41 4,777 4,891
2,396 15,724 23 24 31 2,816 2,583
2,400 15,720 36 45 48 3,719 4,827
2,913 15,207 35 40 45 4,344 4,532
3,090 15,030 34 37 34 4,889 4,945
3,459 14,661 38 40 32 12,187 14,547
3,574 14,546 34 41 67 4,980 9,245
3,917 14,203 46 53 52 10,588 12,232
4,781 13,339 47 48 95 10,243 19,475
5,750 12,370 29 30 29 7,959 7,944
6,503 11,617 48 51 56 5,316 9,688
6,608 11,512 34 37 52 3,887 12,632
6,989 11,131 62 66 60 16,719 17,626
9,981 8,139 42 44 43 12,232 12,146
10,554 7,566 42 42 42 12,681 12,523
E+: Number of Positive Examples.
E—: Number of Negative Examples.
Rules by B&B in Number of rules contributed by B&B method in the
RA1/B&B: RA1/B&B combined approach.
Rules in RA1: Number of rules inferred by RA1 heuristic.
Rules in B&B: Number of rules inferred by the B&B method.

CPU Time RA1: CPU time taken by the RA1 heuristic in seconds.
CPU Time B&B: CPU time taken by the B&B method in seconds.

Figure 11 depicts the ratio of the number of rules returned by the combination of the RA1-B&B
methods as compared to the stand alone B&B method. As it can be seen from that figure, the
number of rules returned by the combined methods is comparable to the number of rules returned
when the more greedy (and by far more CPU time demanding) B&B is used alone. Figure 12
depicts the absolute values of the previous numbers of rules.

Figure 13 shows the ratio of the time taken by the stand alone B&B method to the time
taken by the combined RA1-B&B method. These results indicate the relative benefits of using
the proposed combined approach (i.e., the RA1-B&B method) as compared to the earlier stand
alone methods (i.e., the stand alone RA1 or the stand alone B&B methods). The CPU time
performance of the combined RA1-B&B methods, when it was tested in terms of the previous
computational experiments was, on the average, two to three times faster as compared to the
stand alone B&B method, with sometimes as much as being six times faster. Finally, Figure 14
shows the absolute values of the time taken by the two methods.
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Table 4. Comparison of the RA1 algorithm with the B&B method (number of ex-
amples 3,750; number of atoms = 14).

Rules by Rules Rules CPU Time CPU Time
E+ E- B&B in in in RA1 B&B
RA1/B&B RA1 B&B (in seconds) (in seconds)
10 3,740 10 15 12 0.48 1.5
14 3,736 8 20 18 44 89
18 3,752 12 23 22 51 172
19 3,731 6 25 19 12 70
23 3,727 11 32 25 75 125
23 3,727 9 20 20 99 206
30 3,720 7 20 24 76 202
33 3,717 9 24 20 112 299
40 3,710 11 24 17 23 28
47 3,703 12 21 17 73 97
52 3,698 10 17 17 38 53
53 3,697 16 29 36 519 1,218
62 3,688 10 22 18 16 146
65 3,685 12 27 23 132 374
67 3,683 15 22 20 586 739
77 3,673 9 17 16 90 354
88 3,662 13 28 24 312 1,303
112 3,638 5 13 11 50 57
140 3.610 22 38 30 1,735 1,867
233 3,517 28 37 31 1,416 2,487
345 3,405 14 22 20 818 863
379 3,371 21 30 29 587 621
419 3,331 28 39 30 596 754
425 3,325 28 25 21 1,149 1,266
552 3,198 25 30 28 534 704
558 3,192 24 38 30 704 1,407
558 3,192 26 33 30 774 1,408
846 2,904 22 28 23 2,812 3,171
864 2,886 35 39 38 968 1,487
899 2,851 37 41 37 1,620 2,197
924 2,826 33 35 39 1,502 2,379
1,112 2,638 35 38 35 1,183 1,020

Note: The legend for this table is the same as for Table 3 shown on the previous page.

At present, previously obtained benchmark results which take into consideration unclassifiable
examples are not available. Hence, computational results obtained with the RA2 algorithm were
not compared with any other set of resulst. A logical extension of the work done so far is to
develop a B&B method which would take into consideration the unclassifiable examples, and
compare the RA2 alogorithm with this modified B&B method. It is quite possible that the RA2
algorithm in conjunction with the modified B&B method would perform better than the present
method (i.e., the stand alone RA2 heuristic). Once this is developed, the combination of the
RA?2 algorithm and the modified B&B method could be tested on a large set of random examples
to indicate with a high degree of certainty that the inclusion of unclassifiable examples indeed
enhances the accuracy of the inferred rules.
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6. CONCLUDING REMARKS

This paper discussed some new developments in two closely related areas. The first contri-
bution is the development of a randomized search heuristic, termed as RA1 (for Randomized
Algorithm 1). This heuristic takes as input positive and negative examples (i.e., binary vectors
of size n) and infers a Boolean function which satisfies the requirements of the input examples.
Unlike previous algorithms which were of exponential time complexity, the RA1 heuristic is of
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polynomial time complexity. However, it does not return small Boolean functions (in terms of
the number of CNF clauses) as other more time demanding approaches (e.g., the ones in [1,3,4]).

However, computational results seem to indicate that the RA1 heuristic returns comparably
small numbers of logical clauses when it is compared with the other exponential time approaches.
Moreover, as it was shown in Figure 8 and supported by the computational results, the RAl
heuristic can be effectively combined with other methods (such as the B&B method developed
in [4]) and solve very large problems. In this paper, we presented test results of solving problems
with more than 18,000 examples defined on 15 binary variables. The previous best results were
reported by [4] and involved problems with up to 1,000 examples defined on 32 atoms.

The second contribution of this paper was the development of the RA2 heuristic (for Random-
ized Algorithm 2). This algorithm can process examples in which some of the values may be
missing. That is, now besides the ordinary positive and negative examples, some examples may
be unclassifiable. This is the first time in the literature to deal with this kind of data. As it was
anticipated, the inclusion of the unclassifiable data can significantly assist the search process. The
above algorithms were tested on some large sets and on the well known breast cancer database
which was originally compiled in the University of Wisconsin.

The problem of extracting a small set of logical rules via a logical analysis approach from
classes of mutually exclusive observations is gradually gaining a wide interest in the computer
science/operations reserach communities. This can be partly attributed to the failure of many
neural network applications to gain the understanding and confidence by the end user (who
usually does not have a computer/mathematical background). It should always be kept in mind,
however, that the proposed methods of logical should be used in deterministic environments.
Clearly, more research in this highly potential area is required.
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