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Quantifying data for group technology with weighted fuzzy features

DAVID BEN-ARIEH and EVANGELOS TRIANTAPHYLLOUY%

The high potential of using group technology in manufacturing has attracted the
interest of both practitioners and researchers. Group technology is based on
clustering parts which have similar features. Very often it is very hard to quantify
successfully data regarding these features. This is because in many real applications
features are fuzzy. This paper identifies two types of fuzzy features: qualitative
features, and quantitative ones with subjective meaning. The paper presents a
methodology for quantifying the data that refer to the fuzzy features. The proposed
methodology deals with crisp and fuzzy data in a unified manner. Finally, some
clustering approaches which process the quantified features are also discussed.

1. Introduction

Contemporary group technology is becoming a mature technique of classifying
parts into groups. The advantages of grouping parts are numerious and include
increased productivity, reduced costs, reduced process planning effort, greater
component standardization, improved cost estimation, reduced material handling,
reduced setup times, better scheduling and faster product delivery.

Currently there are two main scientific approaches towards part classification:
classification based on coding, and classification based on production flow analysis.
The approach considered in this research is the coding approach for classification.
More specifically, the problem discussed in this paper is grouping N different part types
into groups based on a predetermined set of features.

Typical group technology methods classify the parts using codes which describe the
parts’ features. Such codes are standard and imply artificial dichotomy. No matter how
the coding system is designed, there are always similar parts that are forced to have
different codes.

Methodology presented in this paper identifies two main types of features: crisp
features and fuzzy features. The crisp features are features that are uniquely and
unambiguously defined by the feature’s magnitude. Fuzzy features, on the other hand,
have unclear or vague value. More specifically, we consider three types of features used
for part grouping:

(1) Quantitative features. Such features represent properties of the parts that can
be expressed numerically. They include a part’s length, diameter, etc., and can
be extracted from the CAD database, or measured directly if such a part exists.

(2) Qualitative (fuzzy) features. These features describe the part attributes in fuzzy
terms such as ‘large, medium, small’, or other terms agreed upon by the system
users. An example to such a feature is surface roughness which can be expressed
as ‘type A’, ‘type B’, etc.
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(3) Quantitative features with subjective meaning. Features of this type have
numerical values which do not quantitatively represent the actual meaning of
these features in the relevant environment. Therefore, these features are also
fuzzy. A feature of this type can be the length tolerance of a part. In a specific
manufacturing environment a given tolerance may imply a different machining
operation, or even an outside contract. Therefore, the interpretation of this
feature type is specific to a particular design or manufacturing environment.

Itis hard to underestimate the importance of the features of the second and third typein
modern group technology applications, where traditional GT applications look only at
features of the first type.

It is important to note that this paper is not intended to recommend what features
to use for classification, but when such features are selected by a domain expert
(designer, manufacturing engineer, etc.) the methodology presented defines the values
these features have in the grouping process.

It is assumed that some of the features required for parts grouping are specific to the
industry type and even the facility in use. This assumption is supported by the
proliferation of coding systems that address diverse needs and users. Moreover, many
classification systems allow the user to introduce his own information in order to
incorporate the specific properties of the system into the classification algorithm.

This paper is structured as follows: section 2 presents a literature review of relevant
group technology and clustering methods. Section 3 describes decision-making
techniques based on fuzzy data. This background information is relevant since the
present methodology is founded on the theory of decision making with fuzzy data.

Section 4 presents the methodology of analysing the three feature types previously
described. The proposed methodology is demonstrated using an example throughout
the paper. Section 5 demonstrates the clustering of the parts based on the features’
values and weights (importance). Section 6 summarizes the methodology, and
highlights future research needs.

2. Related work and background

2.1. Group technology approaches

Group technology (GT) is a manufacturing concept aimed at alleviating the
production problems of a proliferation of products with decreasing life expectancy and
improved quality. The GT methodology takes advantage of possible parts similarities.
Parts can be grouped together based on design or manufacturing features (Groover
1987).

There are two main systematic approaches toward parts classification: parts
coding, and production flow analysis (PFA). Parts coding is based on giving each part
an individual code depending on its drawing or manufacturing features. Parts with
similar codes belong to the same group. Part coding is a practical approach for various
types of parts: mass produced parts; A B C part type analysis in a small quantity
production (Opitz and Wiendahl 1971), electronic assembly (Styslinger and Melkanoff
1985), etc.

Part classification using PFA typically analyses a machines-parts binary matrix
using a diversity of analytical techniques. Some of the matrix analysis methods used are
single linkage cluster analysis (McAuley 1972), the bond energy method (McCormick
et al. 1972), and the rank order clustering method (King 1980). Other approaches for
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PFA grouping include integer programming (Kusiak 1987b), a graph theoretical
approach (Faber and Carter 1986), expert systems (Kusiak 1987a), and heuristic
methods (Askin and Subramanian 1987). PFA classification is based on rearranging
the machine-parts matrix in such a way as to identify clusters of parts that share a
group of machines. A more general approach is the analysis of a parts—properties
matrix, in which the matrix can contain any numerical values.

However, in both contemporary group technology approaches part features used
for the grouping are perfectly known, and discretized. Be it a part code, a routeing sheet,
or a machines—parts matrix, all values must be perfectly known for the grouping
process. Moreover, the properties by which the grouping is done are ‘discretized’ and
therefore impose a dichotomy.

As an example, the first digit in the Opitz coding system (Opitz 1971) for rotational
parts defines the length to diameter ratio. For ratios below 0-5 this digit has the value 0,
while ratios from 05 to 3, gives the digit the value 1. Therefore, two parts with length to
diameter ratios of 0-45 and 0-55 will be grouped based upon different properties (code
digits in this example).

2.2. Clustering procedures

Techniques for cluster analysis seek to separate a set of data points into groups
(clusters) of ‘similar’ points. Ideally there should be a unique clustering technique that
would yield an obvious set of clusters for a given set of data. In practice, however, there
have been a proliferation of clustering techniques, each using a different approach (for a
review of clustering techniques see, for example, Everitt 1980).

Clustering techniques can be classified into five groups:

e Hierarchical techniques. In this case the classification is not performed in one
step, but the classes themselves are classified into larger ones. This procedure
forms a tree of clusters. Hierarchical techniques can be of two types: divisive or
agglomerative. The divisive methods start with the set of N entities, and
successively partition the set of finer and finer groups. Agglomerative methods
work in the other direction.

e Optimization techniques. In this case the clusters are formed by the optimization
of a clustering criterion.

e Density techniques form clusters by searching for regions containing a relatively
dense concentration of points.

e Clumping techniques in which classes can overlap.

e Others.

All the above clustering techniques examine a set of parts in terms of a number of
features. Information regarding these features is then used to cluster these parts. Since
features might be quantitative, qualitative, or quantitative with subjective meaning, it is
important to develop a clustering methodology which can deal with all these types of
features in a unified manner.

In addition, it is necessary to transfer the data of these features into the same unit,
otherwise, one may have to face a scaling problem. In this case features measured in one
unit (e.g. kg) yields a different grouping than the same features expressed in a different
unit (e.g. 1bs).

In the proposed methodology data about different features are expressed in terms of
membership values. That is, for each part we need to determine the membership value
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of a given feature in the part. Usually, these values are numbers from the interval [0-00,
1-00]. The value 1-00 means that a feature is fully present in the current part, while a
value of 0-00 means that the feature is not present at all. Values between 0-00 and 1-00
indicate different degrees of presence of the feature in the part. This method of data
representation eliminates the scaling problem all together.

Since some features cannot be qualified precisely, the membership value problem
here is similar to the membership value problem in fuzzy sets. For this reason the next
section has a brief presentation of decision making with fuzzy data.

3. Decision making with fuzzy data

3.1. Reciprocal matrices with pairwise comparisons

Let A, A,,..., A, be the members of a fuzzy set. We are interested in evaluating the
membership values (relative weights) of the above members. Saaty (1977, 1980)
proposes use of matrix A of rational numbers taken from the finite set:
{1/9,1/8,...,1,2,...,8,9}. Each entry of the above matrix A represents a pairwise
judgment. Specifically, the entry a;; denotes the number that estimates the relative
membership of element A; when it is compared with element 4;. Obviously, a;;=1/a;
and a;=1. That is, the matrix A is a reciprocal one. The pairwise comparisons are
quantified by using the scale depicted in Table 1.

Besides the scale depicted in Table 1, other scales are possible as well. An evaluation
of two families of scales can be found in Triantaphyllou et al. (1991). This idea of using
pairwise comparisons has attracted the interest of many researchers (see for example,
Federov et al. 1982, Khurgin and Polyakov 1986, Lootsma 1988, Triantaphyllou et al.
1990 a).

The main motivation of the pairwise approach is based on the fact that humans
have serious difficulties evaluating many entities simultaneously. However, humans
can perform rather well when they are asked to evaluate only two entities at a time.
Therefore, it is highly desirable to develop a methodology that is based on data that can
be derived from a sequence of pairwise comparisons.

Intensity of

importance Definition Explanation
1 Equal importance Two activities contribute
equally to the objective
3 Weak importance of Experience and judgement slightly
one over the other favour one activity over another
5 Essential or strong importance Experience and judgement strongly
favour one activity over another
7 Demonstrated importance An activity is strongly favoured

and its dominance is demonstrated
in practice
9 Absolute importance The evidence favouring one activity
over another is of the highest
possible order of affirmation
2,4,6,8 Intermediate values between When compromise is needed
the two adjacent judgements

Table 1. Scale of relative importances.
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Note that if object i has one of the above non-zero values when compared with
object j, then j has the reciprocal value when compared with i.

Let us first examine the case in which it is possible to have perfect values for a;;. In
this case a;;= W,/W; (W, denotes the actual value of element s) and the previous
reciprocal matrix A is consistent. That is
=0y G; (,j,k=1,2,3,...,n) (1)

i

It can be proved that A has rank 1 with 4 =n its non-zero eigenvalue (to be explained
below). Then we have

Ax=nx where x is an eigenvector 2

From the fact that a;;= W,/W; the following are obtained:

Y a;W;=3 Wi=nW, i=12,...,n (3)
i=1 j=1
or
AW =nW 4)

Equation (4) states that n is an eigenvalue of A with W as the corresponding
eigenvector. The same equation also states that in the perfectly consistent case (i.e.
a;;=ay " ;) the vector W with the membership values of the elements 4,, 4,,..., 4,
is the principal right-eigenvector (after normalization) of the matrix A.

3.2. Eigenvalue approach

In the non-consistent case (which is more common in practice) the pairwise
comparisons are not perfect, that is, the entry a;;might deviate from the real ratio W/W,
(i.. from the ratio of the real membership values W, and W)). In this case, the previous
expression (1) does not hold for all the possible combinations.

Now the new matrix A can be considered as a perturbation of the previous
consistent case. When the entries g;; change slightly then the eigenvalues change in a
similar fashion (Saaty 1980). Moreover, the maximum eigenvalue is close to n (greater
than n) while the remaining eigenvalues are close to zero. Thus, in order to find the
membership values in the non-consistent cases, one should find an eigenvector that
corresponds to the maximum eigenvalue 4.,,.. That is to say, to find the principal right-
eigenvector W that satisfies

AW=/ .. W

max

where A, xn.

One way to estimate the reciprocal right-eigenvector W is by multiplying the entries
in each row of matrix A together and taking the nth root (nis the number of the elements
in the fuzzy set). Since we desire to have values that add up to 1-0 we normalize the
previously found vector by the sum of the above values. If we want to have the element
with the highest value to have membership value equal to 1-0 we divide the previously
found vector by the highest value.

The consistency of the judgements is not obvious and has to be examined. A
measure of the consistency is the consistency ratio. The consistency ratio (CR) is
obtained by first estimating 4,,,,. Saaty estimates 4,,,, by adding the columns of matrix
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A and then multiplying the resulting vector by the vector W. Then he uses what he calls
the consistency index (CI) of the matrix A. He defined CI as follows:

CI:'I'"“;"
n—1

Then, the consistency ratio CR is obtained by dividing the CI by the random
consistency index (RC) as given in the following table:

n 1 2 3 4 5 6 7 8 9

Random consistency index (RC) 0 0 058 09 1112 124 132 141 145

Each RC is an average random consistency index derived from a sample of
500 randomly generated reciprocal matrices with entries from the set:
{1/9,1/8,...,1,2,...,8,9}. If the previous approach yields a CR greater than 0-10 then a
re-examination of the pairwise judgements is recommended until a CR less than or
equal to 0-10 is achieved. However, evaluations of the eigenvalue approach reveal that
the CI coefficient needs to take very small values (almost 0-00) in order for the final
results to be reliable (see for example Triantaphyllou and Mann 1990 and
Triantaphyllou et al. 1990 b).

3.3. Analytic hierarchy process

Part of the analytic hierarchy process (AHP), (Saaty 1977, 1980), deals with the
structure of an N x M matrix where N is the number of alternatives (e.g. part types), and
M is the number of criteria (features in our case). The problem is to optimize the
alternative selection decision. This matrix is constructed using the relative importances
of the alternatives in terms of each criterion. The vector {a;,a;,,...,a;y} describes the
impact of the ith criterion on each alternative. This vector is the principal eigenvector of
an N x N reciprocal matrix which is determined by pairwise comparisons of the N
alternatives with regards to each criterion: M such matrices are constructed.

Some evidence is presented in Saaty (1980) that supports this technique for eliciting
numerical evaluations of qualitative phenomena from experts and decision-makers.
The above N x N reciprocal matrices are processed as in the previous sections. That is,
the a;; values are determined by using the pairwise comparison approach. The entry a;,
in the N x M matrix, represents the relative value of the alternative A; when it is
considered in terms of criterion j.

In AHP

N
Zaii:l

According to AHP the best alternative (in the maximization case) is indicated by the
following relationship:

M
AAHP*=MaX,{Z aijEj} fori=1,2,3,...,N
i=1

A variation of this method is further detailed in the following section.
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3.4. Revised analytic hierarchy process

Belton and Gear (1983) proposed a revised version of the AHP model. They
demonstrate that an inconsistency can occur when the AHP is used. According to the
authors the root of that inconsistency is the fact that the relative values for each
criterion sum up to one. Instead of having the relative values of the alternatives
Ay, As,..., Ay sum up to one, they propose to divide each relative value by the
maximum of the relative values.

In Triantaphyllou and Mann (1989) the AHP, revised AHP and two other
multicriteria decision-making methods were evaluated. These analyses suggested that
the revised AHP seems to be the best method from the ones examined. Therefore, the
proposed GT methodology is based on the revised AHP method.

4. Deriving membership values

This section discusses the process of generating membership values for the selected
features using a variation of the revised AHP method. This methodology however, does
not require pairwise comparisons of all parts combination, which is impractical for a
large collection of parts. Instead, the fuzzy features which have discrete number of
values are compared. This comparison results in a K x K matrix for each feature with K
discrete values. Each such matrix describes the degree of which a certain feature is

. present in the parts, therefore M such matrices are generated for M different features.

Clearly, the number K of different feature values may vary in the different features.

Methodology of deriving the data required for grouping parts is demonstrated
using an example. In this example there are seven parts which can be characterized in
terms of four features. The features used in this example are: length’, ‘diameter’, ‘surface
roughness’, and ‘central hole depth’, as depicted in Table 2. The meaning of these
features is implied by their names. From these four features the first two are considered
to be quantitative. The ‘surface roughness’ feature is considered to be a qualitative one,
while the ‘central hold depth’ is a quantitative feature with qualitative (subjective)
meaning.

This example is used extensively in the rest of the paper, and the first step is the
derivation of the membership values of the four features in the seven parts.

4.1. Membership values for quantitative features
This is the simplest case. Since the seven parts can be expressed precisely in terms of
quantitative features, the pertinent membership values can be derived directly from the

Part Surface Centre
type Length Diameter roughness hole depth

A 10-00 2:25 very high 7-00

B 8-50 4-00 high 0

C 550 500 medium 2:00

D 375 325 low 1-00

E 625 1-75 very low 0

F 800 2:50 high 4-00

G 7-50 3:00 very high 300

Table 2. Parts features matrix.
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Part Length Diameter
A 1-000 0450
B 0-850 0-800
C 0-550 1-000
D 0-375 0-650
E 0-625 0-350
F 0-800 0-500
G 0750 0-600

Table 3. Membership values of length and diameter.

quantitative data. For the case of the ‘length’ feature, the data are represented by the
vector [10-00, 8-50, 5-50, 3-75, 6-25, 800, 7-50]. The relative membership values of this
feature can be derived by dividing each of the length values by the largest number in
that vector (i.e. 10-00). That is, the pertinent membership values are: [ 1-000, 0-850, 0-550,
0-375, 0-625, 0-800, 0-7507.

Similarly, the relative membership values for the ‘diameter’ feature are represented
by the vector [0-450, 0-800, 1-000, 0-650, 0-350, 0-500, 0-600]. Membership values for the
two quantitative features are described in Table 3.

However, when qualitative or quantitative with subjective meaning features are
present, the situation is more complicated. The next subsection illustrates this
situation.

4.2. Membership values for qualitative features

Consider the qualitative feature ‘surface roughness’. The seven parts A,B,C,...,G
can be characterized in terms of this feature by using one of the following five
descriptors (Table 2.): very high, high, medium, low, very low. The problem on hand is
to quantify these five descriptors.

As was mentioned before, a method based on pairwise comparisons is applicable.
These pairwise comparisons need to compare each of the previous five descriptors with
each other. In other words, we need to answer questions like ‘how much more
important is very high when it is compared with medium? By using the set of answers
given in Table 1, this process leads to the construction of a reciprocal matrix with
pairwise comparisons. Once this matrix is constructed, the eigenvalue approach
presented in section 3 can be applied, and the previous five descriptors can be
quantified.

Suppose that when the previous five descriptors are compared by using the set of
answers depicted in table 1, the following matrix with pairwise comparisons is derived
(Table 4).

For instance, the (1, 2) entry in the previous matrix is 3 because when the ‘very high’
descriptor was compared with ‘high’ the answer was assumed to be ‘weak importance’
which is assigned the numerical value 3 in Table 1. The interpretation of the remaining
numerical values in the previous matrix is similar.

In order to generate the eigenvector for this matrix, the following computation is
used (as mentioned in section 3.2):

V,~=< I a.-,)wv 5
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Very high High Medium Low Very low
Very high 1-00 3 5 7 9
High 0-333 1-00 3 5 7
Medium 0-200 0-333 1-00 3 5
Low 0-143 0-200 0-333 1-00 3
Very low 0111 0-143 0-200 0333 1-00

Table 4. Pairwise comparisons for the surface roughness feature.

Where V; is the value pertinent to row i. For example V,=(1*¥3*5*7*9)!/5 =3-936.

1}

When the eigenvector approach is applied to the previous reciprocal matrix, the
following vector of numerical values is derived:

Numerical Normalized
Descriptor value value
Very high 3-936 1-000
High 2:036 0-517
Medium 1-000 0254
Low 0-491 0125
Very low 0-254 0-064

Note, that the previous numerical values were normalized by dividing them by the
maximum entry in that vector. This is the reason why ‘very high’ is associated with the
entry 1-00. Once the five descriptors have been quantified the seven parts can be
expressed numerically in terms of the ‘surface roughness’ feature by simply replacing
the qualitative descriptors by their corresponding numerical values. In other words, the
corresponding membership values are as in the following vector.

Surface
Part roughness

1-000
0-517
0-254
0125
0-064
0-517
1-000

QMoo aOw»>

4.2.1. Consistency verification
In order to accept the recommended feature values, the consistency of the

judgements has to be verified. This is done by testing that the CR (consistency ratio) is
less than 0-1. The CR is calculated as follows:
(1) The eigenvector is normalized such that its entries sum to 1. The resulting
vector is

v=[0:5100, 0-2638, 0-1295, 00636, 0-0329]
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(2) Amayx is estimated. This is done in the following way: add the columns of the
comparison matrix A to form a new vector w. 4., =vw. In the example

Ay = 52429

(3) Calculate CI (consistency index) where

,{ _
CI :%:0-06073.

(4) Find the consistency ratio:

Cl
— =0054<0-10
CR—RC—OOS <

where RC =112 from the table in section 3.2.

In this case the comparisons are consistent enough to allow further grouping of the
parts based on these data points.

4.3. Membership values for quantitative features with subjective meaning

The last feature ‘central hold depth’ is a quantitative feature with subjective
meaning. This case can also be treated similarly to a qualitative feature.

Observe that the six descriptors [7-00, 4-00, 3-00, 2-00, 1-00, 2:00] are quantitative
but with some qualitative characteristics with respect to this feature. Therefore, it is
necessary to fully quantify them as well. This can be accomplished, as in the case of the
qualitative descriptors, by using pairwise comparisons in a similar process.

Suppose that when an analysis similar to the one performed on qualitative features
is concluded, the associated numerical value of the six descriptors are as follows.

Numerical
Descriptor value
“7-00° 1-000
‘4-00° 0-850
3-00° 0-750
2:008 0-450
‘1-00° 0-100
‘000 0-005

Therefore, the seven parts can be expressed quantitatively in terms of the fourth feature
as follows:

Central
Part hole depth

1-000
0-005
0-450
0-100
0-005
0-850
0750

QmmOOw»>

When the membership values of all the four features are considered together, Table
5 is derived. This table represents the previously described N x M matrix.
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Part Surface Centre
type Length Diameter roughness hole depth

A 1-000 0-450 1-000 1-000

B 0-850 0-800 0-517 0-005

C 0-550 1-000 0-254 0-450

D 0-375 0-650 0-125 0-100

E 0-625 0-350 0-064 0-005

F 0-800 0-500 0-517 0-850

G 0-750 0-600 1-000 0-750

Table 5. Feature membership values.

Numerical
Feature weight
Length 0-250
Diameter 0-10
Surface roughness 0-60
Central hole depth 0-05

Table 6. Feature weights vector.

Surface Centre
Part Length Diameter roughness hole depth
(0-250) 0-10) (0-60) (0-05)
A 1-000 0-450 1-000 1-00
B 0-850 0-300 0-517 0-005
C 0-550 1-000 0254 0-450
D 0-375 0-650 0-125 0-100
E 0-625 0-350 0-064 0-005
F 0-800 0-500 0-517 0-850
G 0-750 0-600 1-000 0750

Table 7. Summary of feature values and weights.

4.4. Finding the relative weight of each feature

The parts to be grouped are judged by evaluating their similarities based on the
given M features. However, the features are not of equal importance, and the clustering
process needs to consider the relative importance of each feature. Finding the relative
importance of each feature can also be done using pairwise comparisons among the
features, therefore, yielding an M x M matrix.

Such a process requires M(M —1)/2 comparisons, similarly to the fuzzy features
matrix construction. This process results in a matrix which represents the preferences of
the user. Different users with diverse grouping needs (and preferences) may get different
matrices. Suppose that a user compares all the four features of the current example, and
that when the corresponding reciprocal matrix is processed, the eigenvector presented
in Table 6 represents the weights of the four features. These values are normalized to
sum to 1. When these weights are combined with the membership values depicted in
Table 5 the decision-making problem is formed, as described in Table 7.
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5. Clustering the parts

Once the features that are used for the part grouping are described in terms of their
membership values, and their relative importance, it is possible to cluster the parts into
groups.

This section demonstrates two ways to conduct the grouping process. One is to use
the entire membership value matrix (Table 7). The other way is to summarize the
features of each part into an aggregate measure. The clustering then uses these values.
The rest of this section demonstrates both approaches using the seven-parts example.

5.1. Matrix-based clustering

By multiplying the membership values of the features by the features’ weight
(importance) a new matrix is generated. In this matrix each part is represented as an M
dimensional point in Euclidean space (each feature is a different dimension).

Using this matrix grouping is accomplished using any clustering method,
preferably the hierarchical agglomerative approach. By applying the ‘average distance
between groups’ (Sokal and Michener 1958) the dendogram (Fig. 1) is derived.

The dendogram presented in Fig. 1 shows that for a threshold value of 075 the parts
families formed are {A,G}, {B,C,D,E}, and {F}.

5.2. Aggregate-value clustering
A somewhat simpler approach is to represent each part i using one aggregate value
v;. This value is calculated as follows:

In this case there are M features, w; is the weight associated with feature j, and a;; is the
membership value of feature jin part i (matrix value of cell (i, j)), as previously discussed.
In the example the vector V is:

v, [ 0945
v, 0-603
v 0412
V= v, = 0-239
vs 0-230
v 0:603
L v . 0-885 |

Distance

0.2S
0.50
1.0

Figure 1. Dendrogram for matrix-based clustering.
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Distance

0.25
0.50
1.0

Figure 2. Clustering results using an aggregate feature.

Clustering the parts based on this single value constitutes the dendogram presented
in Fig. 2. As before, the clustering method is agglomerative using average distance
between groups.

Figure 2 shows that similar grouping results from this approach. The groups
formed at the threshold value of 075 are {A,G}, {C,D,E}, and {B,F}.

5.3. Comparison with non-fuzzy GT methods

In order to shed more light on the approach presented here, a comparison to two
other non-fuzzy GT methods is provided.

Opitz code. The seven parts presented in the example differ in their L/D ratio,
therefore, they may have a different first digit in the code. All the other properties of the
parts in the example do not affect the Opitz code, therefore the parts constitute the
following two groups: {A,E,F}, {B,C,D,G}. These groups are very coarse; for
example, group {A, E, F} contains parts with very high and very low surface roughness,
and also parts with a large centre hole and a part with no hole at all.

Regular clustering. In this approach the same agglomerative method presented in
section 5.1 is applied to the parts, considering the quantitative data presented in Table
2. Therefore, the surface roughness property is not considered at all in this approach.
The groups resulting from a threshold value of 0-85 are: {A}, {C, D}, {B, E, F,G}. These
results are closer to the results presented in section 5.1, but still this approach is less
informative, and less precise than the one presented earlier.

6. Conclusions

This paper presents a methodology for quantifying part features for grouping. The
features can be of three types: quantitative, qualitative, and quantitative with subjective
meaning. In the latter case the numerical value of the feature does not correspond to its
actual meaning in the given context. Both latter feature types are considered fuzzy.

Methodology presented is based on a modification to the revised analytical
hierarchy process (revised AHP). In this methodology the discrete values of the fuzzy
features are compared to each other. This allows the same feature to be used for
classification of a large coliection of parts, unlike the more traditional part to part
comparison. For fuzzy features M such matrices are generated. Calculating the
eigenvector for each such matrix generates a vector which expresses the feature value
for each part.

The next step is to find the relative weight (importance) of each feature. This is also
done by using pairwise comparisons. The last step is to cluster the parts based on the
features’ values and weights. The paper presents two approaches towards the clustering
procedure.
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Advantages of the methodology presented are several: first, it allows adoption of the
group technology methodology to specific features and specific needs. It enables the
user to define the features used for parts grouping, even if they are not strictly
numerical. Also the user can define the importance of the features in the specific
scenario of interest. In addition this methodology generates homogeneous data for the
clustering, thus eliminating the scaling problem of the different measures. This method
is not constrained by the number of parts to be grouped, but by the number of different
values the features can have.

The main disadvantage of the proposed methodology arises from the need to
estimate K x (K —1)/2 pairwise comparisons (K is the number of the qualitative
descriptors). When K increases, then the required number of comparisons increases
very fast. However, for average sizes of K the number of required comparisons is rather
moderate. Furthermore, the need to reach an acceptable CI (consistency index) value of
0-10 or smaller, may require re-evaluation of the comparisons during the process, thus
resulting is a smaller number of comparisons generated.

Also, the difficulty in estimating a comparison of the type ‘How much more
important is very high when it is compared with medium’, is not a severe limitation of
this method. Simply, the proposed method attempts to capture the fuzziness and
imprecision involved when one deals with qualitative features. It is very important to
keep in mind that the proposed method asks the decision-maker to do his best in
evaluating two items at a time.

There are several topics for further research in this area. Minimizing the number of
features required to achieve a reliable grouping is one. Some features are either very
important or very polarized and allow clustering based on a minimum number of
features. This approach can save a large amount of data storage and processing used in
group technology. In other words, the sensitivity of the final clustering to the features’
weights is of great importance. A related study in the area of multi-attribute decision
making (Sanchez and Triantaphyllou 1991) has revealed that sometimes criteria (or
features in our case) with the highest weights may not be the most critical ones. Clearly,
more research in this direction, from a group technology point of view, is needed.

Another question of interest is to optimize the grouping for a given objective. Such
an objective can be fuzzy as well, for example assemblability of the groups. These topics
expand to the group technology methodology to new areas such as grouping for
assembly.

Hence, the proposed methodology is expected to expand the range of group
technology applications to new arcas such as feature-based design (and grouping), GT
for assembly design and operation, etc.
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