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a b s t r a c t

Medical data mining has recently become one of the most popular topics in the data mining community.
This is due to the societal importance of the field and also the particular computational challenges posed
in this domain of data mining. However, current medical data mining approaches oftentimes use identi-
cal costs or just ignore them for the different cases of classification errors. Thus, their outcome may be
unexpected. This paper applies a new meta-heuristic approach, called the Homogeneity-Based Algorithm
(or HBA), for optimizing the classification accuracy when analyzing some medical datasets. The HBA first
expresses the objective as an optimization problem in terms of the error rates and the associated penalty
costs. These costs may be dramatically different in medical applications as the implications of having a
false-positive and a false-negative case may be tremendously different. When the HBA is combined with
traditional classification algorithms, it enhances their prediction accuracy. It does so by using the concept
of homogenous sets. Five medical datasets, obtained from the machine learning data repository at the
University of California, Irvine (UCI), USA, were tested. Some computational results indicate that the
HBA, when it is combined with traditional methods, can significantly outperform current stand-alone
data mining approaches.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Increasing powerful mechanisms for storing data has made
available lots of datasets related to medicine in recent decades. A
motivation for extracting useful knowledge from such datasets
and thus discovering decision-making insights for the diagnosis
and treatment of diseases, is also increasingly recognized. In the
typical setting a dataset of historic data, which describe some type
of disease or a medical disorder, is assumed to be available. Such
datasets consist of records of patients describing physical and lab-
oratory examinations related to that type of disease or medical dis-
order. Then, the computational challenge is how to develop a
diagnostic system, which could assist in diagnosing this type of ail-
ment based on the knowledge extracted from the historic dataset.
At this point, human analysts need special computational tools to
process and comprehend such large and complex datasets.

Medical data mining can assist in addressing such challenges.
Data mining analysts can extract decision regions from a given his-
toric dataset related to a medical condition or disease. Usually,
such decision regions consist of medical indicators, which could
be used to diagnose the condition or disease. In medical diagnosis

(as in most other domains), usually there are three different cases
of possible errors:

� The false-negative case in which a patient, who in reality has the
disease, is diagnosed as disease free.

� The false-positive case in which a patient, who in reality does
not have the disease, is diagnosed as having the disease.

� The unclassifiable case in which the prediction system cannot
diagnose a given case. This happens due to insufficient knowl-
edge extracted from the historic data.

Under the above considerations, current medical data mining
approaches oftentimes assign identical penalty costs for the
false-positive and the false-negative cases or just ignore the pen-
alty cost for the unclassifiable cases. Such approaches will be dis-
cussed in Section 2. Thus, their outcome may be unexpected or
even unacceptable.

The two penalty costs for the false-positive and the false-nega-
tive cases could be dramatically different in a medical application.
For instance, in the case of a life threatening condition where time
is of essence, if one diagnoses a given case as false-negative, then
his/her medical condition goes untreated or is treated inade-
quately. Thus precious time may be wasted and the situation
may turn out to be eventually fatal to the patient. On the other
hand, for the same situation, a false-positive diagnosis may just
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add some financial costs and anxiety to the patient but not result in
a life threatening condition.

A penalty cost for unclassifiable cases in medical data mining is
needed as well. A diagnosis of a patient as an unclassifiable case
may require additional medical examinations and involve some
costs. However, that particular case may not necessarily result in
a wrong diagnosis.

For the above reasons, this paper applies a new meta-heuristic
approach, called the Homogeneity-Based Algorithm (or HBA) as
developed by Pham and Triantaphyllou (2007, part 4, chap. 5)
and Pham and Triantaphyllou (2008, chap. 2), on some well-known
medical datasets. The HBA first defines the total misclassification
cost of models extracted from classification algorithms as an opti-
mization problem in terms of the false-positive, the false-negative,
and the unclassifiable rates along with their penalty costs. The HBA
then organizes the extracted models as mutually exclusive deci-
sion regions represented by homogeneous sets. These decision re-
gions are refined based on their density by employing a genetic
algorithm (GA) approach. This is done in order to minimize the
total misclassification cost. The HBA is motivated by the large dis-
crepancy in the previous three penalty costs.

The next section provides a literature review of some related
developments. The third section has a brief description of the
HBA as adopted from Pham and Triantaphyllou (2007) and Pham
and Triantaphyllou (2008). That section shows how the HBA can
yield an optimal or near optimal misclassification total cost. The
fourth section discusses some computational results from the
medical domain. These results give an indication of how this meth-
odology may improve the prediction accuracy in computerized
medical diagnosis. The paper ends with some conclusions and an
appendix, which describes the key algorithmic aspects of the HBA.

2. Previous work

This paper studies five medical datasets, which current data
mining approaches have often used for their analyses. The main
characteristics of these datasets are depicted in Table 1. These
datasets were selected because the number of attributes were in
the range of values that the HBA can handle easily (i.e. approxi-
mately less than 9 or 10). Other reasons for selecting these datasets
were that traditional approaches have analyzed them with variable
success and these datasets represent a variety of important medi-
cal diseases and disorders.

The first dataset is the Pima Indian diabetes (PID) as described
in Asuncion and Newman (2007). Attributes of 768 female patients
of Pima Indian heritage were recorded in this dataset. The class
variable denotes whether a person has diabetes or not. Smith, Ever-
hart, Dickson, Knowler, and Johannes (1998) achieved 76% accu-
racy by using an Early Neural Network (ENN). Jankowski and
Kadirkamanathan (1997) obtained 77.6% accuracy by using a radial
basis function network suite, called IncNet. Au and Chan (2001)
improved the correct classification percentage by using a fuzzy ap-
proach. Their approach achieved 77.6% accuracy. Rutkowski and
Cpalka (2003) obtained 78.6% accuracy by introducing a new neu-

ral-fuzzy structure, called a flexible neural-fuzzy inference system
(FLEXNFIS). Leon (2006) obtained 81.8% accuracy by using a Fuzzy
Neural Network (FNN) associated with the BK-Square products.
Different classification algorithms in the StatLog project in Michie,
Spiegelhalter, and Taylor (1994, chap. 9) obtained less than 78%
accuracy. Pham and Triantaphyllou (2008) applied the HBA in con-
junction with some Support Vector Machine (SVM), Artificial Neu-
ral Network (ANN), and Decision Tree (DT) algorithms. Their
accuracy reached about 93.8%.

The second medical dataset is the Haberman Surgery Survival
(HSS) as described in Asuncion and Newman (2007). This is one
of the most difficult datasets for classification algorithms. The
dataset contains records which describe 306 patients who have
undergone surgery for breast cancer. Kecman and Arthanari
(2001) proposed an SVM approach using linear terms in the objec-
tive function for analyzing the HSS dataset. Their approach yielded
71.2% accuracy. Fung and Mangasarian (2001) reformulated Kec-
man’s approach to decrease its complexity. Their approach is called
the Proximal Support Vector Machine (PSVM) classifier and it uses
a purely quadratic objective function with equality constraints.
Their approach yielded 72.5% accuracy. Domm, Engel, Louis, and
Goldberg (2005) proposed the Integer Support Vector Machine
(ISVM) classifier, which used binary indicator error variables in or-
der to directly minimize the number of potential errors. Their accu-
racy was 62.7%. Shevked and Dakovski (2007) represented sets of
positive and negative training points as logical functions. These
logical functions were then minimized in order to find the target
functions, which were prime implicants. Their approach yielded
66.2% accuracy.

Some classification approaches used the breast cancer (BC)
dataset as described in Asuncion and Newman (2007). This dataset
contains records which describe 286 patients who had either
breast cancer or no cancer. One of the tested algorithms on this
dataset was C4.5 as developed by Quinlan (1996). Quinlan’s ap-
proach reached 94.7% accuracy by using 10-fold cross-validation.
Hamilton, Shan, and Cercone (1996) used the Rule Induction (RI)
approach based on approximation of classification to enhance the
accuracy. Their approach obtained 96% accuracy. Similarly, Ster
and Dobnikar (1996) achieved 96.8% accuracy with the Linear Dis-
criminant Analysis (LDA) approach. Bennet and Blue (1997) used
an SVM approach. Their accuracy was 97.2%. In the following two
years, Nauck and Kruse (1999) achieved 95.1% accuracy by using
a Neuro-Fuzzy approach. At the same time, Pena-Reyes and Sipper
(1999) developed a Fuzzy-GA approach, which yielded 97.5% accu-
racy. Furthermore, Setiono’s approach (2000) reached 98.1% accu-
racy by using a Neuro-Rule approach. Abonyi and Szeifert (2003)
applied the Supervised Fuzzy Clustering (SFC) approach and
achieved 95.6% accuracy. Polat, Sahan, Kodaz, and Gunes (2007)
applied the Fuzzy Artificial Immune Recognition System (FAIRS)
to form fuzzy-logic rules. Their approach reached 98.5% accuracy.

The fourth medical dataset is the Liver Disorders (LD) as de-
scribed in Asuncion and Newman (2007) that many classification
approaches have used for their analyses in recent years. This data-
set contains records which describe 345 patients who had con-

Table 1
Characteristics of the five medical datasets.

Dataset No.
attributes

No.
records

No. positive
records

No. negative
records

No. records in the training dataset
T1

No. records in the testing
dataset

Pima Indian diabetes (PID) 8 768 268 500 576 192
Haberman Surgery Survival

(HSS)
3 306 225 81 230 76

Breast cancer (BC) 9 286 85 201 214 72
Liver disorders (LD) 6 345 145 200 276 69
Appendicitis (AP) 7 106 85 21 85 21
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firmed either liver disorders or no disorders. Pham, Dimov, and
Salem (2000) used the RULES-4 algorithm on the LD dataset. Their
approach yielded 55.9% accuracy. Cheung (2001) used different
classification algorithms and his analysis showed that C4.5, Naive
Bayes classifier, Bayesian Network with Naive Dependence (BNND)
classifier, and a combination of a Bayesian Network with Naive
Dependence and Feature Selection (BNNF) classifier obtained
65.5, 63.4, 61.8, and 61.4% classification accuracies, respectively.
Lee and Mangasarian (2001a) and Lee and Mangasarian (2001b)
used the following two SVM approaches: Smooth Support Vector
Machine (SSVM) and Reduced Support Vector Machine (RSVM) in
the same year. Their SVM approaches yielded 70.3 and 74.9% accu-
racies, respectively. Similarly, Van et al. (2002) with a Support Vec-
tor Machine approach reached 69.2% accuracy. Çomaka, Polatb,
Günes�b, and Arslana (2007) combined a Least Squares Support
Vector Machine (LSSVM) with Fuzzy Weighting Pre-processing
for analyzing the LD dataset. Their approach yielded 94.3% accu-
racy. Also in the same year Polat et al. (2007) used the FAIRS to
form fuzzy-logic rules. Their approach reached 83.7% accuracy.

The last dataset is the Appendicitis (AP) donated by Weiss and
Kapouleas (1989). This dataset consists of seven examinations of
106 records which describe patients who had confirmed acute
appendicitis. Weiss and Kapouleas then used the Predictive Value
Maximization (PVM) approach and achieved 89.6% accuracy. Naka-
shima, Nakai, and Ishibuchi (2003) proposed the use of a fuzzy
classification system for mapping the input space to a fuzzy rule-
based classification system. Their approach yielded 84% accuracy.
Blachnik and Duch (2006) used different classification algorithms.
Their analysis showed that C4.5, Decision Table, Nefclass, Hetero-
geneous Decision Tree (HDT), and Prototype Threshold Decision
List (PTDL) obtained 85.8, 82, 87.7, 85.8, and 83.8% accuracy,
respectively. Next, the following section provides a brief descrip-
tion of the HBA, which was used in this paper.

3. The meta-heuristic approach – HBA

3.1. Some key issues for the HBA

The HBA defines the total misclassification cost, denoted as TC,
in an optimization formulation as follows. Assume that CFP, CFN, and
CUC are the unit penalty costs for the false-positive, the false-nega-
tive, and the unclassifiable cases, respectively. The notations
RateFP, RateFN, and RateUC denote the false-positive, the false-neg-
ative, and the unclassifiable rates, respectively. Then, the desired
goal of the HBA is to minimize, or at least to significantly reduce,
the TC defined as follows:

TC ¼min ðCFP � RateFP þ CFN � RateFN þ CUC � RateUCÞ ð1Þ

As adopted from Pham and Triantaphyllou (2007), Pham and
Triantaphyllou (2008) there are two key assumptions in HBA’s
development. In order to explain these two assumptions, we will
use a simple hypothetical example. For simplicity of the demon-
stration, consider a hypothetical medical training dataset regard-
ing some type of cancer. The dataset is assumed to be defined on
two attributes only, as depicted in Fig. 1a. The X and Y values indi-
cate values for two laboratory examinations. These two values are
assumed in this demonstration to be adequate to derive whether a
patient has that type of cancer or not. Suppose that each circle de-
picted in Fig. 1a represents a patient who has cancer (also called a
positive point), while a rectangle shows a patient who is disease
free (also called a negative point).

We assume that a data mining approach has been applied on
this dataset and derived the positive and negative decision regions
(i.e. ovals) depicted in Fig. 1a. Decision regions A and B in Fig. 1a
define the positive decision regions, while region C defines the neg-
ative decision region.

Furthermore, assume that in Fig. 1a there are two new patients
P and Q, shown as small triangles. At this point, the system has not
diagnosed these two new patients. We would like to use the in-
ferred decision regions to diagnose these two patients. Because pa-
tients P and Q are covered by decision regions A and B,
respectively, both of these patients may be assumed to have
cancer.

A closer examination of Fig. 1 reveals that in decision region A,
there are some sub-regions of the state space that are not suffi-
ciently filled up by positive training points. We can see such sub-
regions in Fig. 1a at the upper left corner and the lower part of re-
gion A. Thus, unclassified points covered by decision region A and
also inside such sub-regions in region A may erroneously be as-
sumed to be positive points. One may now observe that patient P
is inside one of these sparely covered sub-regions in decision re-
gion A. Hence, the assumption that patient P has cancer may not
be very accurate.

In contrast, sparely covered sub-regions do not exist in decision
region B (see also Fig. 1a). Thus, it may be more likely that unclas-
sified points covered by region B can more accurately be assumed
to be positive points. Consequently, the assumption that patient Q
has cancer may be more accurate than P’s assumption. The above
simple observations lead to surmise the following key assumption:

Assumption 1: The more compact and homogenous the decision
regions are, the more accurate the inferred models are.

Next, let us consider a decision region D of size N (that is, it cov-
ers N training data points). Region D is first partitioned into smaller
bins of the same size h. Then, region D is a homogenous set if the
density of these bins is equal or almost equal to each other. How to
choose an appropriate value for h is discussed in Heuristic Rule 1
(in the Appendix). As it was mentioned earlier, from Fig. 1a it looks
like region A is a non-homogenous set, while region B is a homog-
enous set.

At this point, it is assumed that somehow decision region A is
fragmented into two more homogenous sets denoted as A1 and

Fig. 1. Region B is a homogenous set while region A is a non-homogenous set.
Region A can be fragmented into the two homogenous sets A1 and A2 as shown in
part (b).
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A2 as in Fig. 1b. These fragments are now more homogenous than
the original region A. Under this consideration, patient Q is inferred
to have cancer, while patient P is assumed to be of an unclassifiable
case. Clearly, the homogenous property of decision regions may be
used to affect the number of misclassification cases of the inferred
models.

Furthermore, the number of training points covered by a
homogenous set may be another factor that affects the accuracy
of the overall inferred models. In fact, suppose that all decision re-
gions A1, A2 and B in Fig. 2 correspond to homogenous sets and a
new patient S (indicated as a triangle) is covered by region A1. A
closer examination of this figure shows that region B has many
more training points than A1. Although both patients Q and S are
inside homogenous sets, the assumption that patient S has cancer
may be less accurate than the assumption that patient Q has can-
cer. This is because there seems to be less support in sub-region A1

when compared with that for region B (as B has more training
points than A1). This simple observation leads to surmise the sec-
ond key assumption:

Assumption 2: The denser the decision regions are, the more
accurate the inferred models are.

A density measure for a homogenous set is called the homogene-
ity degree and will be denoted as HD. This measure can be defined
as the number of training points in a given homogenous set per
unit of its area or volume. The Appendix shows an appropriate def-
inition for the homogeneity degree of a homogeneous set. The next
section shows how the HBA is implemented and it is adopted from
Pham and Triantaphyllou (2007), Pham and Triantaphyllou (2008).

3.2. Details of the HBA

As mentioned in the introduction section, the HBA is used in
combination with other classification approaches in order to en-
hance their classification accuracy. Fig. 3 shows how the HBA can
be used in the above manner.

Assume that a medical training dataset is given. We first apply a
traditional classification approach (such as a DT, ANN, and SVM) on
the training dataset to infer the first pair of classification models.
That is, the positive model, with decision areas defined on positive
training data points, and the negative model with decision areas
defined on negative training data points. Next, the HBA adjusts
the two inferred models by using the two assumptions discussed
in Section 3.1. In this way it is hoped that the accuracy of the tra-
ditional classification approach will be enhanced.

A detail description of the HBA algorithm is depicted in Fig. 4.
There are five controlling parameters in the HBA:

� a+ and a� to be used for expanding the positive and the negative
homogenous sets, respectively.

� b+ and b� to be used for fragmenting the positive and the nega-
tive decision regions, respectively.

� c to be used for determining whether a decision region is
approximately a homogenous set.

The algorithms and the illustrative examples for steps 4, 5, 7,
and 8 are described in more detail in the appendix of this paper
and in Pham and Triantaphyllou (2007), Pham and Triantaphyllou
(2008). The following section presents some computational results.
Furthermore, the following website gives an overview of the HBAFig. 2. An illustrative example of homogenous sets.

Fig. 3. The role of the HBA.

Fig. 4. The HBA decision process.
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and some computational tools for its implementation:
www.csc.lsu.edu/~huypham/HBA_guide.html.

4. A computational study

4.1. The experimental methodology

The procedure for conducting the experiments in this study is
described next. The HBA divided the datasets into the training
and the testing datasets as depicted in Table 1. For a fair compar-
ison, the number of records in each training dataset was the same
as in the studies described in Section 2. However, we had no infor-
mation on which exact records were used for training. The stand-
alone algorithms used in the experiments were SVMs, ANNs, and
DTs. Let us consider a certain 3-tuple of the unit penalty costs
(CFP,CFN,CUC). The experiments were done as follows:

Step 1: The value for TC1 was obtained by applying the training
dataset T on the stand-alone algorithms and then testing
the models by using the testing dataset.

Step 2: The value for TC2 was obtained by applying the training
dataset T on the HBA and then by using the testing data-
set as in step 1. In the experiments, we assumed that b+

and b� were in the interval [0,2] while a+ and a� were in
the interval [0, 20].

Step 3: Finally, the two values for TC1 and TC2 were compared
with each other and all results were recorded.

In other words, for a given 3-tuple (CFP,CFN,CUC), we expect that
the values for TC after applying the HBA would be less than or at
most equal to the one achieved by the stand-alone algorithms.

4.2. The experimental results

We ran the experiments on a PC with 2.8 GHz speed and 3 GB
RAM under the Windows XP operating system. There were more
than 300 experiments done on the PID, HSS, BC, LD, and AP data-
sets with different values for the 3-tuple (CFP,CFN,CUC). The libraries
in Neural Network Toolbox 6.0, Genetic Algorithm and Direct
Search Toolbox 2.1, and Statistics Toolbox 6.0 (Artificial Neural
Network) were used for HBA’s implementation. The experimental
details are follows:

Test 1: This test would set identical costs, say all costs were
equal to one unit, for the false-positive and the false-positive cases,
while it would not penalize at all for the unclassifiable cases (i.e.,
that cost was set equal to 0). This scenario is the same as with most
current classification approaches (see Tables 3–7). Thus, the objec-
tive function under this test could be:

TC ¼ minð1� RateFP þ 1� RateFNÞ

The results for this test are presented in Table 2. This table
shows the three failure rates and the values for TC as obtained un-
der the various algorithms. Please notice that the notation ‘‘SVM-
HBA” means that the HBA was used in conjunction with the SVM
algorithm. Similar interpretation holds for DT-HBA (the Decision
Tree algorithm and the HBA) and ANN-HBA (the Artificial Neural
Network algorithm and the HBA).

Table 2 shows that after 100 generations of the GA approach,
the SVM-HBA, DT-HBA, and ANN-HBA approaches when were ap-
plied on the medical datasets found the optimal values of the TC.
By ‘‘optimal” we mean in the GA sense as the actual global opti-
mum value for TC may not have been determined yet. The average
values of the TC obtained from the HBA based approaches on the
PID, HSS, BC, LD, and AP datasets were 6.2, 9.6, 1.9, 1.9, and 0.0
units, respectively. These values for TC were less (i.e., superior)

than the average values of the TC achieved by the stand-alone algo-
rithms based approaches on the PID, HSS, BC, LD, and AP datasets
by about 81.6%, 68.5%, 93.2%, 95.2%, and 100.0%, respectively. Fur-

Table 3
Results in the PID dataset.

Algorithm Accuracy
(%)

Avg. improvement
(%)

ENN in Smith et al. (1998) 76.0
IncNet in Jankowski and Kadirkamanathan

(1997)
77.6

Fuzzy approach in Au and Chan (2001) 77.6
FLEXNFIS in Rutkowski and Cpalka (2003) 78.6
FNN in Leon (2006) 81.8
Different approaches in Michie et al. (1994) 77.7
SVM-HBA 94.8 16.5
ANN-HBA 94.8 16.5
DT-HBA 91.7 13.5

Table 4
Results in the HSS dataset.

Algorithm Accuracy
(%)

Avg. improvement
(%)

SVM using linear terms in Kecman and
Arthanari (2001)

71.2

PSVM in Fung and Mangasarian (2001) 72.5
ISVM in Domm et al. (2005) 62.7
Logical functions in Shevked and Dakovski

(2007)
66.2

SVM-HBA 90.8 22.6
ANN-HBA 90.8 22.6
DT-HBA 89.5 21.6

Table 2
Results in minimizing TC = 1 � RateFP + 1 � RateFN.

Dataset Algorithm RateFP
(%)

RateFN
(%)

RateUC
(%)

TC Improvement
(%)

PID SVM 0.0 38.5 56.8 38.5
DT 14.1 18.8 61.5 32.8
ANN 11.5 20.3 61.5 31.8
SVM-HBA 0.0 5.2 74.5 5.2 86.5
DT-HBA 0.0 8.3 58.9 8.3 74.6
ANN-HBA 0.0 5.2 74.5 5.2 83.6

HSS SVM 7.9 22.4 35.5 30.3
DT 21.1 14.5 32.9 35.5
ANN 11.8 15.8 36.8 27.6
SVM-HBA 1.3 7.9 27.6 9.2 69.6
DT-HBA 1.3 7.9 27.6 9.2 74.1
ANN-HBA 1.3 9.2 18.4 10.5 61.9

BC SVM 12.5 15.3 52.8 27.8
DT 16.7 12.5 51.4 29.2
ANN 18.1 5.6 56.9 23.6
SVM-HBA 1.4 0.0 29.2 1.4 95.0
DT-HBA 2.8 0.0 12.5 2.8 90.5
ANN-HBA 1.4 0.0 15.3 1.4 94.1

LD SVM 43.5 0.0 55.1 43.5
DT 23.2 17.4 52.2 40.6
ANN 23.2 17.4 50.7 40.6
SVM-HBA 0.0 0.0 97.1 0.0 100.0
DT-HBA 1.4 0.0 89.9 1.4 96.4
ANN-HBA 4.3 0.0 87.0 4.3 89.3

AP SVM 0.0 4.8 95.2 4.8
DT 19.0 4.8 76.2 23.8
ANN 0.0 4.8 95.2 4.8
SVM-HBA 0.0 0.0 100.0 0.0 100.0
DT-HBA 0.0 0.0 100.0 0.0 100.0
ANN-HBA 0.0 0.0 100.0 0.0 100.0
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thermore, the number of false-negative cases obtained from the
HBA on these datasets was on the average less than the one
achieved by the stand-alone algorithms by about 84.6%.

A comparison between the accurate percentages achieved by
the different classification algorithms is presented in Tables 3–7.
In all the derived results, the HBA based approaches were signifi-
cantly more accurate than the stand-alone approaches.

Test 2: Now we consider the test in which the penalty costs for
all three error types is assigned to an identical value, say equal to
three units (actually the value of 3 makes no difference as long all
three costs are identical with each other). Although this test could
somehow not be realistic, we would like to consider it to better
understand HBA’s performance. Thus, the objective function under
this test is as follows:

TC ¼ minð3� RateFP þ 3� RateFN þ 3� RateUCÞ

The results for this test are presented in Table 8. After 100 gen-
erations (again, in the GA sense), the SVM-HBA, DT-HBA, and ANN-
HBA approaches found the optimal values of TC. The average values
of TC obtained from the HBA based approaches on the PID, HSS, BC,
LD, and AP datasets were 140.1, 76.3, 80.5, 201.4, and 300.0 units,
respectively. These values for TC were less than the average values
of TC achieved by the stand-alone algorithms based approaches on
the PID, HSS, BC, and LD datasets by about 50.5%, 61.6%, 66.7%, and
28.5%, respectively. Table 8 also shows that the optimal values for
TC when running the HBA based approaches on the AP dataset are
the same as the values of TC achieved by the stand-alone algo-
rithms. A reason for achieving the identical values for TC is that
the stand-alone algorithms may have reached the global optimal
values (or close to that) for TC. Furthermore, the HBA meta-heuris-
tic may have also found the same values. The number of false-neg-
ative cases obtained from the HBA on these datasets was on the
average less than the one achieved by the stand-alone algorithms
by about 55.3%.

An analysis of the impact of the false-positive, the false-nega-
tive, and the unclassifiable rates is driven by the corresponding
penalty costs. A higher penalty cost placed on one compared to
the others implies that the system has more to lose from that type
of inaccurate performance than from the others. The following type
of experiments show such cases.

Test 3: Now we consider the test in which the application would
penalize considerably more for the false-negative case than for the
other two cases. This scenario is the most realistic one in situations
which deal with life threatening conditions in medical data mining.
It is hoped that the higher the penalty cost for the false-negative
case is, the fewer cases of the false-negative will be found. In
these tests we assumed that the penalty cost for the false-negative
case is 20 times higher, while for the false-positive and the

Table 5
Results in the AP dataset.

Algorithm Accuracy
(%)

Avg. improvement
(%)

PVM in Weiss and Kapouleas (1989) 89.6
Fuzzy classification system in Nakashima et al.

(2003)
84

C4.5 in Blachnik and Duch (2006) 85.8
Decision table in Blachnik and Duch (2006) 82
Nefclass in Blachnik and Duch (2006) 87.7
HDT in Blachnik and Duch (2006) 85.8
PTDL in Blachnik and Duch (2006) 83.8
SVM-HBA 100 14.5
ANN-HBA 96.4 10.9
DT-HBA 89.3 3.7

Table 6
Results in the BC dataset.

Algorithm Accuracy
(%)

Avg. improvement
(%)

C4.5 in Quinlan (1996) 94.7
RI in Hamilton et al. (1996) 96.0
LDA in Ster and Dobnikar (1996) 96.8
SVM in Bennet and Blue (1997) 97.2
Neuro-Fuzzy in Nauck and Kruse (1999) 95.1
Fuzzy-GA in Pena-Reyes and Sipper (1999) 97.5
Neuro-Rule in Setiono and Diagnosis (2000) 98.1
SFC in Abonyi et al. (2003) 95.6
FAIRS in Polat et al. (2007) 98.5
SVM-HBA 98.6 2.0
ANN-HBA 98.6 2.0
DT-HBA 97.2 0.6

Table 7
Results in the LD dataset.

Algorithm Accuracy (%) Avg. improvement (%)

RULES-4 in Pham and Dimov (2000) 55.9
C4.5 in Cheung (2001) 65.5
Naïve Bayes in Cheung (2001) 63.4
BNND in Cheung (2001) 61.4
BNNF in Cheung (2001) 61.8
SSVM in Lee and Mangasarian (2001a) 70.3
RSVM in Lee and Mangasarian (2001b) 74.9
SVM in Van et al. (2002) 69.2
LSSVM in Çomaka et al. (2007) 94.3
FAIRS in Polat et al. (2007) 83.7
SVM-HBA 100 30.1
ANN-HBA 98.6 28.6
DT-HBA 95.7 25.7

Table 8
Results in minimizing TC = 3 � RateFP + 3 � RateFN + 3 � RateUC.

Dataset Algorithm RateFP
(%)

RateFN
(%)

RateUC
(%)

TC Improvement
(%)

PID SVM 0.0 38.5 56.8 285.9
DT 14.1 18.8 61.5 282.8
ANN 11.5 20.3 61.5 279.7
SVM-HBA 1.0 20.8 28.1 150.0 47.5
DT-HBA 0.5 31.8 12.5 134.4 52.5
ANN-HBA 0.5 29.7 15.1 135.9 51.4

HSS SVM 7.9 22.4 35.5 197.4
DT 21.1 14.5 32.9 205.3
ANN 11.8 15.8 36.8 193.4
SVM-HBA 1.3 14.5 10.5 78.9 60.0
DT-HBA 1.3 14.5 9.2 75.0 63.5
ANN-HBA 1.3 13.2 10.5 75.0 61.2

BC SVM 12.5 15.3 52.8 241.7
DT 16.7 12.5 51.4 241.7
ANN 18.1 5.6 56.9 241.7
SVM-HBA 15.3 0.0 12.5 83.3 65.5
DT-HBA 15.3 1.4 8.3 75.0 69.0
ANN-HBA 15.3 0.0 12.5 83.3 65.5

LD SVM 43.5 0.0 55.1 295.7
DT 23.2 17.4 52.2 278.3
ANN 23.2 17.4 50.7 273.9
SVM-HBA 29.0 1.4 31.9 187.0 36.8
DT-HBA 13.0 4.3 53.6 213.0 23.4
ANN-HBA 14.5 2.9 50.7 204.3 25.4

AP SVM 0.0 4.8 95.2 300.0
DT 19.0 4.8 76.2 300.0
ANN 0.0 4.8 95.2 300.0
SVM-HBA 0.0 0.0 100.0 300.0 No

improvement
DT-HBA 0.0 0.0 100.0 300.0 No

improvement
ANN-HBA 0.0 0.0 100.0 300.0 No

improvement
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unclassifiable cases these penalty costs are equal to one and three
units, respectively. Thus, the objective function under this type of
testing is as follows:

TC ¼ minð1� RateFP þ 20� RateFN þ 3� RateUCÞ

These results are presented in Table 9. After 100 generations (in
the GA sense), the SVM-HBA, DT-HBA, and ANN-HBA approaches
found the optimal values for TC. The average values for TC obtained
from the HBA based approaches on the PID, HSS, BC, LD, and AP
datasets were 325.9, 279.0, 50.0, 326.6, and 300.0 units, respec-
tively. These values for TC were less than the average values of
TC achieved by the stand-alone algorithms based approaches on
the PID, HSS, BC, LD, and AP datasets by about 51.6%, 40.1%,
87.0%, 11.8%, and 18.3%, respectively. Furthermore, the number
of false-negative cases obtained from the HBA based approaches
on these datasets was on the average less than the one achieved
by the stand-alone algorithms by about 81.3%. Next, we also as-
sumed that the false-negative cases could be penalized much
more. Thus, the next objective function was as follows:

TC ¼ minð1� RateFP þ 100� RateFN þ 3� RateUCÞ

These results are presented in Table 10. After 100 generations
(in the GA sense), the SVM-HBA, DT-HBA, and ANN-HBA ap-
proaches found the optimal values for TC. The average values for
TC obtained from the HBA based approaches on the PID, HSS, BC,
LD, and AP datasets were 110.1, 50.0, 1250.4, 263.3, and 300.0
units, respectively. These values for TC were less than the average
values of TC achieved by the stand-alone algorithms based ap-
proaches on the PID, HSS, LD, and AP datasets by about 95.7%,
97.3%, 56.1%, and 59.9%, respectively. Please observe that only
the SVM-HBA approach was it was applied on the BC dataset
yielded a better value for the TC than the one achieved by the
stand-alone algorithms by about 47.3%. A reason for reaching the
higher values (and thus inferior) for TC under the DT-HBA and
the ANN-HBA approaches on the BC dataset is that the stand-alone
algorithms may have reached optimal (or near optimal) values for
TC. The HBA meta-heuristic could not reach these values. Further-
more, the number of false-negative cases obtained under the HBA
on these datasets was on the average less than the one achieved by
the stand-alone algorithms by about 82.1%. By comparing the aver-
age percentages of the number of false-negative cases achieved un-

Table 9
Results in minimizing TC = 1 � RateFP + 20 � RateFN + 3 � RateUC.

Dataset Algorithm RateFP
(%)

RateFN
(%)

RateUC
(%)

TC Improvement
(%)

PID SVM 0.0 38.5 56.8 941.1
DT 14.1 18.8 61.5 573.4
ANN 11.5 20.3 61.5 602.1
SVM-HBA 0.0 8.3 54.7 330.7 64.9
DT-HBA 2.6 5.2 70.8 319.3 44.3
ANN-HBA 0.0 5.2 74.5 327.6 45.6

HSS SVM 7.9 22.4 35.5 561.8
DT 21.1 14.5 32.9 409.2
ANN 11.8 15.8 36.8 438.2
SVM-HBA 1.3 13.2 11.8 300.0 46.6
DT-HBA 1.3 9.2 18.4 240.8 41.2
ANN-HBA 1.3 13.2 10.5 296.1 32.4

BC SVM 12.5 15.3 52.8 476.4
DT 16.7 12.5 51.4 420.8
ANN 18.1 5.6 56.9 300.0
SVM-HBA 15.3 0.0 11.1 48.6 89.8
DT-HBA 15.3 0.0 12.5 52.8 87.5
ANN-HBA 15.3 0.0 11.1 48.6 83.8

LD SVM 43.5 0.0 55.1 1034.8
DT 23.2 17.4 52.2 527.5
ANN 23.2 17.4 50.7 523.2
SVM-HBA 1.4 0.0 89.9 271.0 No

improvement
DT-HBA 0.0 8.7 84.1 426.1 19.2
ANN-HBA 0.0 0.0 94.2 282.6 45.9

AP SVM 0.0 4.8 95.2 381.0
DT 19.0 4.8 76.2 342.9
ANN 0.0 4.8 95.2 381.0
SVM-HBA 0.0 0.0 100.0 300.0 21.3
DT-HBA 0.0 0.0 100.0 300.0 12.5
ANN-HBA 0.0 0.0 100.0 300.0 21.3

Table 10
Results in minimizing TC = 1 � RateFP + 100 + RateFN + 3 � RateUC.

Dataset Algorithm RateFP (%) RateFN (%) RateUC (%) TC Improvement (%)

PID SVM 0 38.5 56.8 4024.5
DT 14.1 18.8 61.5 2073.4
ANN 11.5 20.3 61.5 2227.1
SVM-HBA 31.8 0.5 12.5 121.4 96.9
DT-HBA 29.2 0.5 16.7 131.3 93.8
ANN-HBA 30.7 0 15.6 77.6 96.5

HSS SVM 7.9 22.4 35.5 2351.3
DT 21.1 14.5 32.9 1567.1
ANN 11.8 15.8 36.8 1701.3
SVM-HBA 14.5 0 13.2 53.9 97.7
DT-HBA 14.5 0 9.2 42.1 97.3
ANN-HBA 14.5 0 13.2 53.9 96.8

BC SVM 12.5 15.3 52.8 1698.6
DT 16.7 12.5 51.4 1420.8
ANN 18.1 5.6 56.9 744.4
SVM-HBA 2.8 8.3 19.4 894.4 47.3
DT-HBA 0 13.9 15.3 1434.7 No improvement
ANN-HBA 0 13.9 11.1 1422.2 No improvement

LD SVM 43.5 0 55.1 208.7
DT 23.2 17.4 52.2 1918.8
ANN 23.2 17.4 50.7 1914.5
SVM-HBA 15.9 0 65.2 211.6 No improvement
DT-HBA 0 0 97.1 291.3 84.8
ANN-HBA 0 0 95.7 287 85.1

AP SVM 0 4.8 95.2 761.9
DT 19 4.8 76.2 723.8
ANN 0 4.8 95.2 761.9
SVM-HBA 0 0 100 300 60.6
DT-HBA 0 0 100 300 58.6
ANN-HBA 0 0 100 300 60.6

9246 H.N.A. Pham, E. Triantaphyllou / Expert Systems with Applications 36 (2009) 9240–9249



Author's personal copy

der the HBA from Tables 9 and 10, one can see that the higher the
penalty cost for the false-negative is, the fewer cases of the false-
negative type can be found. Clearly, this is a highly desirable prop-
erty in many medical situations in which these costs may be highly
different (as when one deals with life threatening conditions).

5. Conclusions

Medical datasets may possess large amounts of useful informa-
tion about patients and their medical conditions which may still be
unknown to the medical community. Relationships among key
attributes of the data and decision regions within these datasets
could unveil new and important medical knowledge by using med-
ical data mining approaches. However, current medical data min-
ing approaches oftentimes use identical costs or just ignore the
costs for the three different types of classification errors. Thus,
the performance of such data mining approaches may be
coincidental.

This paper applied a meta-heuristic approach, called the Homo-
geneity-Based Algorithm (HBA). That is, the HBA first defined the
main objective as an optimization problem in terms of the false-po-
sitive, false-negative, and unclassifiable rates along with their asso-
ciated penalty costs. When the HBA is combined with traditional
classification algorithms (such as SVMs, DTs, ANNs) then it may sig-
nificantly enhance their prediction accuracy by using the concept of
homogenous sets. The HBA was analyzed on the following well-
known medical datasets: the one for the Pima Indian diabetes, the
one known as the Haberman Surgery Survival dataset, the Breast
Cancer dataset, the Liver Disorders dataset, and the Appendicitis
dataset. Each dataset was analyzed under some representative dif-
ferent penalty costs. The derived results clearly show that the total
misclassification costs (TCs) obtained under the HBA approach are
less than the TCs achieved by the traditional stand-alone ap-
proaches. This appears to have important implications for the com-
puterized diagnosis and treatment of these diseases.

Regarding the penalty costs for classification errors, a theoreti-
cal model proposed by Thomas and Hofer (1999) can be used to
find their optimal values. Furthermore, analyses on the HBA show
that medical datasets which have higher numbers of attributes
(i.e., greater than 9 or 10) cannot be tested because of HBA’s high
complexity. An appropriate solution to decrease HBA’s complexity
might be to use certain distance based approaches for determining
homogenous sets as described in Turner (1989). Current work by
the authors of this paper now focuses on developing such alterna-
tive approaches, which could also be used in conjunction with tra-
ditional data mining methods.

Appendix A

A.1. An algorithm for fragmenting regions into hyperspheres

Let us consider a decision region C of size nC. Fig. 5 shows a heu-
ristic algorithm to find the minimum number of hyperspheres that
can cover C. At first, the densities of the nC points in C are estimated
by using Eq. (11) as described in Appendix A.5. Next, the algorithm
sets the values for K from 1 to nC. Each iteration will pick K points
in C with the highest densities and use them as centroids in the K-
means clustering approach to form hyperspheres. The loop will
stop if the K hyperspheres cover C. Otherwise, we do the same with
the next value for K.

A.2. An algorithm for determining homogenous sets

Let us consider a hypersphere C of size nC. At first, hypersphere
C is divided into a number of small bins of the same size h and then

the density at the center x of each bin is estimated. If the densities
at all centers are approximately equal to each other, then C is a
homogenous set. The algorithm is summarized in Fig. 6.

One can relax the condition which requires to have identical
densities at all centers of the bins. That is, if the standard deviation
of the densities at all centers of the bins is approximately less or
equal to some threshold c, say for c = 0.01, then the hypersphere
C may be considered to be a homogenous set.

As mentioned in Section 3.1, one needs to determine an appro-
priate definition for HD(C). Pham and Triantaphyllou (2007) and
Pham and Triantaphyllou (2008) proposed a way for computing
HD(C) as follows:

HDðCÞ ¼ lnðnCÞ
h

ð2Þ

The value for HD(C) depends on the value h defined in Heuristic
Rule 1 as mentioned next in Appendix A.5 and nC. In fact, if h in-
creases, then the average distance between pairs of points in C in-
creases. This issue leads HD(C) to decrease. Furthermore, if nC

increases, then HD(C) would somewhat increase since the volume
of C does not change and C has more points. Hence, the value for
HD(C) is inversely proportional to h, while HD(C) is directly propor-
tional to nC. In Eq. (2), the function ln(nC) is used to show the slight
effect of nC on HD(C).

A.3. Expansion algorithms

Let us consider a positive (or negative) hypersphere F with its
homogeneity degree HD(F), the fragmenting threshold value b+,
and the expansion threshold value a+. There are two types of
expansion: a radial expansion in which the hypersphere F is ex-
panded in all directions and a linear expansion in which the hyper-
sphere F is expanded in a certain direction. The following section
shows the details for these two expansion types.

Fig. 6. The algorithm for determining homogeneous sets.

Fig. 5. The algorithm for fragmenting regions into hyperspheres.
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A.3.1. Radial expansion
In the radial type, let a hypersphere M be a region, which has

been formed by expanding the hypersphere F. The notations RF

and RM stand for the radiuses of F and M, respectively. In the radial
expansion algorithm depicted in Fig. 7, the radius RF is increased by
a certain value denoted as T and is called a step-size increase:

RM ¼ RF þ T ð3Þ

Pham and Triantaphyllou (2007) and Pham and Triantaphyllou
(2008) proposed a value for T as follows:

T ¼ RG � RF

2
� 1

L� HDðFÞ ð4Þ

A threshold value L in Eq. (4) ensures that HD(F) is always great-
er than one. If we substitute Eq. (4) back into Eq. (3), RM becomes:

RM ¼ RF þ
RG � RF

2
� 1

L� HDðFÞ ð5Þ

A.3.2. Linear expansion
In the linear type, a hypersphere F is first expanded to form

hypersphere M by using the radial expansion. Then, the hyper-
sphere M is expanded in given directions by using the radial ap-
proach until it meets the stopping conditions mentioned next in
Appendix A.3.3. The final expanded region is the union of all the
expanded regions.

A.3.3. Stopping conditions for radial expansion
The stopping conditions for expanding a hypersphere F size of

nF should:

� Depend on HD(F).
� Stop when F’s expanded region meets other decision regions. In

the expansion process, the expanded region can accept several
noisy data points if the value of HD(F) is high.

In the first stopping condition, the radius RM of the expanded re-
gion M should not be greater than the product of HD(F), a+, and RF.
The second stopping condition can be determined while expand-
ing. The number of noisy points should be directly proportional
to HD(F) and inversely proportional to nF. The stopping conditions
are shown in Eq. (6) (a similar way exists for a�):

RM 6 HDðFÞ � RF � aþ and

The number of noisy points 6
HDðFÞ � aþ

nF
ð6Þ

A.4. The GA approach

As it was described in the previous algorithms, the four thresh-
old values (a+, a�, b+, b�) are used to control the number of mis-

classification cases of the final models. If the values for b+ and b�

are too high, then the regions will be fragmented into hyper-
spheres of size one. This results in the overfitting problem. Other-
wise, too low value for the fragmenting thresholds may not be
adequate to deal with overgeneralization problem. The opposite
situation is true with a+ and a�. Furthermore, the search space
for a+, a�, b+, and b� may be large. Therefore, an exhaustive search
would be impractical.

Pham and Triantaphyllou (2007) and Pham and Triantaphyllou
(2008) proposed to use a GA approach for finding approximate
optimal values for a+, a�, b+, and b�. The HBA uses Eq. (1) as the fit-
ness function and the dataset T2 mentioned in Section 3.2 as a cal-
ibration dataset. The GA approach has been applied here because
Eq. (1) is not unimodal. Each chromosome in the GA approach con-
sists of four genes which correspond to the four threshold values
(a+, a�, b+, b�) as depicted in Fig. 8.

The crossover function creates children by combining pairs of
parents in the current population. At each coordinate of the child,
the crossover function randomly picks the gene up at the same
coordinate from one of the two parents and then assigns it to the
child. The mutation function creates a child (g1, g2, g3, g4) by ran-
domly changing the genes of the parent chromosome (a+, a�, b+,
b�). Let us consider the first two genes a+ and a� belonging to
the range [a, b], while the last two genes b+ and b� are in the range
[c, d]. The mutation function first randomizes a chromosome (t1, t2,
t3, t4) by using the Gaussian distribution (this random distribution
was determined empirically). Next, the genes of the mutation child
are created by using one of the following Eqs. (7) and (8):

g1 ¼ ððaþor t1Þ or aÞ and b; g2 ¼ ðða� or t2Þ or aÞ and b ð7Þ
g3 ¼ ððbþ or t3Þ or cÞ and d; g4 ¼ ððb� or t4Þ or cÞ and d ð8Þ

The GA approach is terminated when the fitness function during
successive iterations results in no improvement.

A.5. Non-parametric density estimation

As seen in the previous sections, the density estimation of a typ-
ical bin is used in many algorithms. Pham and Triantaphyllou
(2007) and Pham and Triantaphyllou (2008) proposed to use Par-
zen Windows, a non-parametric density estimation described in
Duda and Hart (1973), for the density estimation. A fundamental
assumption in the Parzen Windows approach states that a bin R
is a D-dimensional hypercube of unit size h. Under this consider-
ation, the Parzen Windows approach defines a kernel function
u(u) to find the number of points that fall within this bin as
follows:

uðuÞ ¼
1; juj 6 1=2:
0; otherwise:

�
ð9Þ

Eq. (9) shows that the value for uðx�xi
h Þ is equal to unity if the

point xi is inside the bin of unit size h and centered at x, and zero
otherwise. For the extension, the kernel function in the D-dimen-
sional space can be formed as follows:

u
x � xi

h

� �
¼
YD

m¼1

u
xm � xm

i

h

� �
ð10Þ

Let us consider a region C of size N. Point x is in C and d(x) de-
notes x’s density, then:

dðxÞ � 1

N � hD

XN

i¼1

YD

m¼1

u
xm � xm

i

h

� �
ð11Þ

Fig. 8. A chromosome.

Fig. 7. The algorithm for the radial expansion.
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As it can be seen in Eq. (11), choosing an appropriate value for h
provides a smoother value for d(x). Let us define S as a set of the
distances of pairs of training points within C that have the highest
frequency. Pham and Triantaphyllou (2007) and Pham and Trianta-
phyllou (2008) proposed an appropriate value for h to be as
follows:

Heuristic Rule 1: If the minimum value in set S is assigned to h
and we use h to compute d(x) with Eq. (11), then d(x) approaches
to a true density.
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