
Computers & Operations Research 38 (2011) 174–189
Contents lists available at ScienceDirect
Computers & Operations Research
0305-05

doi:10.1

� Corr

E-m

etrianta
journal homepage: www.elsevier.com/locate/caor
A meta-heuristic approach for improving the accuracy in some
classification algorithms
Huy Nguyen Anh Pham, Evangelos Triantaphyllou �

Department of Computer Science, 298 Coates Hall, Louisiana State University, Baton Rouge, LA 70803, USA
a r t i c l e i n f o

Available online 28 April 2010

Keywords:

Classification

Fitting

Generalization

False positive

False negative

Unclassifiable

Convex region

Optimization

Genetic algorithms
48/$ - see front matter & 2010 Elsevier Ltd. A

016/j.cor.2010.04.011

esponding author. Tel.: +1 225 578 1348; fax

ail addresses: hpham15@lsu.edu (H.N. Pham)

phyllou@yahoo.com (E. Triantaphyllou).
a b s t r a c t

Current classification algorithms usually do not try to achieve a balance between fitting and

generalization when they infer models from training data. Furthermore, current algorithms ignore

the fact that there may be different penalty costs for the false-positive, false-negative, and unclassifiable

types. Thus, their performance may not be optimal or may even be coincidental. This paper proposes a

meta-heuristic approach, called the Convexity Based Algorithm (CBA), to address these issues. The new

approach aims at optimally balancing the data fitting and generalization behaviors of models when

some traditional classification approaches are used. The CBA first defines the total misclassification cost

(TC) as a weighted function of the three penalty costs and the corresponding error rates as mentioned

above. Next it partitions the training data into regions. This is done according to some convexity

properties derivable from the training data and the traditional classification method to be used in

conjunction with the CBA. Next the CBA uses a genetic approach to determine the optimal levels of

fitting and generalization. The TC is used as the fitness function in this genetic approach. Twelve real-

life datasets from a wide spectrum of domains were used to better understand the effectiveness of the

proposed approach. The computational results indicate that the CBA may potentially fill in a critical gap

in the use of current or future classification algorithms.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The capacity and capabilities of systems for data storage and
analysis have increased dramatically in recent years. The typical
setting of interest in this paper involves availability of some
historic data. Such data describe observations about a system or
phenomenon. Each observation belongs to one of two classes,
which will be referred to, without loss of generality, as the
positive and negative classes. This is not a real restriction as any
multi-class problem reverts to a number of two-class problems
(see, for instance, [1–3]). Then the main problem is to use such
historic data (also known as the training data) to infer a model
that would accurately classify new observations of unknown class
values.

Many theoretical and practical developments have been made
in the last years regarding the development of approaches for
inferring classification models from training data. The most recent
approaches include the Statistical Learning Theory [4], Artificial
Neural Networks (ANNs) [5,6], Decision Trees (DTs) [7–9], and
ll rights reserved.

: +1 225 578 1465.

, trianta@lsu.edu,
Support Vector Machines (SVMs) [10,4]. In such classification
approaches, there are three different types of possible errors:
�
 The false-negative type, where a data point that in reality is
positive is predicted as negative.

�
 The false-positive type, where a data point that in reality is

negative is predicted as positive.

�
 The unclassifiable type, where the classification approach

cannot predict a new point. This happens due to insufficient
information being extracted from the historic dataset.
Current classification approaches may work well with some
training datasets, while they may perform poorly with other
datasets for no obvious reason. Pham and Triantaphyllou [11–13]
argued that such approaches usually did not try to achieve a
balance between fitting and generalization when they inferred
models from datasets. Thus, the models they infer may suffer
from overfitting and overgeneralization problems, and this causes
their poor performance. Overfitting occurs when a model can
accurately classify data points that are very closely related to the
training data but performs poorly with data that are not closely
related to the training data. Overgeneralization occurs when a
model erroneously claims to be able to accurately classify vast
amounts of data that are not closely related to the training data.

www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2010.04.011
mailto:hpham15@lsu.edu
mailto:trianta@lsu.edu
mailto:etriantaphyllou@yahoo.com
dx.doi.org/10.1016/j.cor.2010.04.011
dx.doi.org/10.1016/j.cor.2010.04.011

H.N.A. Pham, E. Triantaphyllou / Computers & Operations Research 38 (2011) 174–189 175
Usually, current classification approaches attempt to minimize
the sum of false-negative and false-positive error rates without
considering these two error rates in a weighted fashion. They also
do not consider the case of having unclassifiable instances. To
appreciate the magnitude of this situation, let us consider, for
instance, the case of a diagnostic system for some serious diseases
(say some kind of aggressive cancer). In a case like this a false-
positive diagnosis would subject a patient to some emotional
challenge and unnecessary medical tests and treatments. On the
other hand, a false-negative diagnosis may cause loss of critical
time, which in turn may turn out to be fatal to the patient. It is
reasonable to argue here that these two cases of diagnostic errors
should be associated with significantly different penalty costs
(i.e., much higher for the false-negative case). Similar situations
may occur when approving large lines of credit (as the current
financial crisis is demonstrating), in oil exploration, issuing
evacuation orders to avoid natural disasters (such as when a
hurricane is approaching a vulnerable area), classification of
targets as enemy or not, and so on. The type of unclassifiable cases
is more subtle. Now the system does not make any diagnosis due
to limited input information. However, in an extreme case a
system may avoid any false-positive and false-negative types by
reverting to unclassifiable outcomes for most diagnostic in-
stances. That is, such a system would offer advice only when a
new instance is of an obvious nature (i.e., either clearly positive or
clearly negative) and avoid any challenging instance. This would
result in high numbers of unclassifiable cases. Thus, this outcome
should be related to a penalty value as well.

Pham and Triantaphyllou in [11–13] recognized the previous
problems related to the above three error types and the need to
have different penalty costs associated with them. Furthermore,
given the three penalty costs, an optimal or near optimal total
misclassification cost (TC) could be reached if the fitting and
generalization behaviors of the inferred models were treated
differently for the positive and negative training data. They
achieved this by first identifying regions in the space of the
training data where the training data are located in a rather
homogenous manner. A region of the data is considered as
homogenous if it can be divided into sub-regions of the same size
whose densities are approximately equal. Next, they applied
existing classification methods on the training data within such
homogenous regions, and the final model was an aggregation of
the models inferred from such regions. This method was called
the Homogeneity Based Algorithm (HBA). In computational
experiments reported in [12,13], the HBA performed rather well.
That is, the TC was reduced quite significantly when compared
with the application of some traditional approaches without the
use of the HBA.

However, a problem with the HBA is that it may require
excessive computing time. This is due to the way homogenous
regions are determined. For the HBA, Greig’s approach of
quadrants [14] was used to determine whether a region is
homogenous or not. This step strongly depends on the dimen-
sionality (i.e., primarily the number of attributes) of the training
data. This is the reason why the HBA may be impractical for data
of high dimensionality.

The new approach (i.e., the CBA) bypasses this problem by
considering the classification of some strategically selected
points outside the training dataset. Now the partitioning
procedure does not depend on the dimensionality of the training
data. The new method is much faster but the derived systems may
not be as accurate as the ones achieved by the HBA, but still more
accurate than the stand alone traditional classification
approaches. However, the CBA may be used to derive systems
in situations where the HBA cannot work due to excessive
computing time.
The rest of the paper is organized as follows. The next section
summarizes some related developments regarding model fitting
and generalization. The third section provides a description of the
main research problem and the fundamental assumptions for the
CBA. The proposed methodology is highlighted in the fourth
section. This section shows how a balance between fitting and
generalization has the potential to enhance the classification
accuracy of existing classification algorithms. The fifth section
discusses some promising computational experiments. Finally,
the last section summarizes the main contribution and offers
directions for future research.
2. Some related developments

The following classification approaches have typically focused
on minimizing the sum of the false-positive and false-negative
error rates without considering the two error rates in a weighted
fashion. They do so by controlling either fitting or generalization.
Decision Tree (DT) approaches use one of two methods: pre- and
post-pruning methods to control the fitting or generalization
problems. Under the pre-pruning approaches described in
[15–19], the approach for growing a tree is halted by some early
stopping rules before generating a fully grown tree. That is,
pruning occurs during the tree growing phase. The post-pruning
approaches described in [7–10,20–23] operate in the reverse
direction, allowing a DT to first grow to its maximum size, and
then they work from the bottom up by trimming branches
deemed as weak according to some evaluative criteria until no
such branches remain. However, DT approaches have met with
difficulty in choosing a suitable threshold value for the stopping
or trimming criteria. The threshold values in the above studies
have been proposed for particular applications rather than as a
general threshold value.

In order to control the fitting or generalization problems, Rule-
Based Classifiers, which directly infer classification rules from a
training dataset, use one of two strategies: general-to-specific or
specific-to-general. Under these two strategies, as described in
[24–26], a classification rule is initialized by either finding all
possible candidates or randomly choosing some candidates. The
rule is then refined until some stopping criteria are met. The
derived rules are treated by an approach described in [27].
Specifically, the approach first estimates the resemblance
between each data point in the calibration dataset and the rules.
Next, the results are used to exclude redundant attributes and
rules. However, as with the DT case, the above approaches have
difficulty in choosing a suitable threshold value for the stopping
criteria.

K-Nearest Neighbor Classifiers, as described in [28,29], find K

training points that are relatively similar to a testing point in
order to determine its class value. The way for choosing the value
for K affects the accuracy of these approaches [30,31]. A non-
suitable value for K can lead to either overfitting or over-
generalization [32].

Bayes Classifiers use the modeling probabilistic relationships
between the attribute set and the class variable for solving
classification problems. There are two well-known implementa-
tions of Bayesian Classifiers. First, Naı̈ve Bayes Classifiers (NBCs)
assume that all attributes are conditionally independent, given
the value of the class variable. Second, Bayesian Belief Networks
(BBNs) allow for pairs of attributes to be conditionally dependent
when the value of the class variable is known. The BBNs described
in [33–38] improve their classification accuracy by relaxing some
independence assumptions. However, these approaches may
quickly degrade to overfitting when one probabilistically com-
bines the data with prior knowledge.

H.N.A. Pham, E. Triantaphyllou / Computers & Operations Research 38 (2011) 174–189176
The goal of an Artificial Neural Network (ANN) is to determine
the weights of the network in order to minimize the total sum of
squared differences between the expected and the predicted
outputs. During the training phase of an ANN, the weight
parameters are adjusted until the outputs of the perceptron
become consistent with the true outputs of the training datasets
[5,6]. The importance of choosing an appropriate ANN topology
for a given problem can affect the accuracy of such approaches
[39–42]. An inappropriate ANN topology may lead to either
overfitting or overgeneralization.

The basic concept behind Support Vector Machines (SVMs) is
to find a maximal margin hyperplane or set of hyperplanes that
can separate training points [4,43,44]. In general, SVMs attempt to
formulate learning as a convex optimization problem for which
efficient algorithms are available to find a global solution. For
many datasets, however, an SVM cannot formulate the learning
problem as a convex optimization problem because of excessive
misclassifications. This may lead to overgeneralization.
3. Formal problem definition and fundamental assumptions

3.1. Problem description

Let us denote as CFP, CFN, and CUC the penalty costs for the false-
positive, the false-negative, and the unclassifiable types, respec-
tively. The values for these parameters depend on the particular
application under consideration. Let RateFP, RateFN, and RateUC be
the false-positive, the false-negative, and the unclassifiable rates,
respectively. The problem addressed in this paper is how to
modify an existing classification model such that the following
weighted TC (i.e., the total misclassification cost) will be
minimized or significantly reduced:

TC ¼minðCFP � RateFPþCFN � RateFNþCUC � RateUCÞ: ð1Þ

Next, some key assumptions are described.

3.2. Fundamental assumptions in the development of the CBA

The CBA assumes that all attributes in a dataset are numerical.
If the data are not numerical, then there are procedures for
converting them into equivalent numerical data. This cannot be
done for all cases as ordering relations in the converted numerical
data may impose undesirable effects into the data. The interested
reader may refer to the recent book [45] for a discussion on some
related key problems in data analysis.

The HBA, as described in [11–13], identifies regions in the
space of the training dataset where training points are located in a
homogenous manner. It is this step of the HBA that makes it
computationally expensive. Instead of the concept of homogenous
regions, the new approach (i.e., the CBA) uses the concept of
convex regions as defined by Melnik [46]. Notice that regions
derived from a given classification approach are also called
decision regions. A region is convex if and only if for every pair
of points within the region, every point along the line segment
between them is also within the region. A concave region is
complementary to a convex region.

Melnik’s approach represents the training dataset as a graph.
Any node of this graph uniquely corresponds to a training data
point from the training dataset and vice versa. Thus, we have
positive nodes and negative nodes depending on whether they
correspond to positive or negative training data points, respec-
tively. Two positive nodes are considered to be connected in this
graph if and only if the following test is satisfied. First, we
consider the line segment in the data space that connects these
two nodes. Next, we sample along this line segment according to a
predefined step length. The sample points defined in this way are
classified according to the given classification approach. If all of
these points are of the same class value as the two nodes, then we
say that these two nodes are connected with each other.
Otherwise, they are not connected. A similar graph can be defined
for the negative training data points.

A clique in this graph corresponds to a set of training data
points that can be connected with each other in any possible pair.
Therefore, in the way defined by Melnik [46] such a clique
corresponds to a convex region, while remaining parts of this
graph not forming such cliques are considered as concave regions.
The CBA approach uses this type of convex regions as a substitute
for the homogenous regions applied in the more time consuming
HBA approach. However, there are a number of differences
between the convex regions described above and the homogenous
regions used in the HBA.

The ways in which a convex region and a homogenous region
are determined are different. That is, each homogenous region is
determined by training data points located in a homogeneous
manner [11–13]. However, each convex region includes training
data points not necessarily located in such a manner.

The convex regions depend on two other factors that do not
apply to the homogenous regions. The first factor is the number of
sample points used to examine a connection between two
positive (or two negative) nodes. If many points along the line
segment between the two nodes are sampled, then the assump-
tion that there is a connection between the two nodes is more
accurate. Hence, we can have more confidence in the results when
we work with the derived convex regions. This kind of sampling
may, however, result in excessive computing time. Conversely, if
too few points are sampled, then points belonging to different
class values may be overlooked, thereby decreasing the accuracy
of the assumption. A heuristic way to determine sample points is
discussed in Section 4.1. The second factor is the accuracy of the
original model obtained from a given classification approach. If
the original model is inaccurate, then the sample points used to
examine a connection between two nodes are classified less
accurately, thereby decreasing the validity of the assumption. This
could make the derived convex regions to be inaccurate in some
cases.

The above observations indicate that the CBA may not always
be superior to the HBA when it comes to improving the accuracy.
Thus, classification models derived from the CBA may not be as
accurate as those of the HBA. However, because the convex
regions do not depend on the dimensionality of the training
points, the CBA is much faster than the HBA.

Similar to the concept of the homogeneity degree used in the
HBA, each convex region in the CBA is associated with a density
measure, called convex density (CD). This value measures the
density of the training points within a given convex region. An
appropriate definition of CD value is discussed in Section 4.2.

The key assumptions for the CBA are summarized as follows. If
an unclassified point is covered by a convex region that has a high
CD value, then that point may be more accurately assumed to be
of the same class value as the nodes (or training points) within the
convex region. On the other hand, the performance of a given
classification approach may be enhanced when regions derived
from the original approach are convex regions that have high CD

values. This could be done if such regions are used to find an
optimal balance between fitting and generalization.
4. Proposed approach—the CBA

Assume that two classification models denoted as M1 (one for
positive data and the other for negative data) and a training

H.N.A. Pham, E. Triantaphyllou / Computers & Operations Research 38 (2011) 174–189 177
dataset T are given. The desired goal of the CBA is to enhance
models M1 in order to obtain an optimal TC as described in Eq. (1).
There are five control parameters used in the CBA.
�
 Two expansion coefficients a+ and a� to be used when
expanding positive and negative convex regions, respectively.

�
 A breaking threshold value b+ to be used when determining

whether a positive convex region should be broken. A similar
concept is applied on the breaking threshold value b� for
negative convex regions.

�
 A density threshold value g to be used when determining

whether a region is convex.

�
 The main steps of the CBA are depicted in Fig. 1 and are

summarized in terms of the following phases.

�
 Phase 1 (Steps 1 and 2): Normalize the values of the attributes

in T. Normalization is due to the fact that the Euclidean
distance is used in the CBA. This distance requires that T’s
attributes should be defined in the same unit (i.e., as
percentages). Next, the CBA divides T into two random sub-
datasets: T1 whose size is, says, 90% of T’s size and T2 whose
size is the remaining (i.e., 10%) of T’s size. These percentages
can be determined empirically by trial and error. Finally, the
CBA randomly initializes the four parameters (a+ , a� , b+, b).

�
 Phase 2 (Step 3): Define the graphs and represent them as two

connectivity matrices for the positive and the negative points
in T1 using the method described in Section 3.2. Next, we use
clustering to identify concave and convex regions from the two
graphs. These regions are represented by smaller connectivity
matrices extracted from the above matrices.

�
 Phase 3 (Steps 4–7): Break the concave regions obtained in

Phase 2 into convex regions. The breaking task is used because
concave regions do not describe the interrelationship of
training points as convex regions [46]. A heuristic algorithm
for this task is shown in Section 4.3. Step 5 starts with
computation of CD values of the convex regions. Some convex
regions are broken again if their CD values are less than either
b+ (for positive regions) or b� (for negative regions). For
example, we may have a convex region whose nodes are
separated into two groups that are far away from each other.
Under this consideration, the CD value of the convex region
might be too small. Thus, it should be broken into smaller
convex regions. Step 7 covers the convex regions by
Input: The positive and negative classification models M
value γ, and the three cost coefficients CFP, CFN, and CUC.

1. Normalize T and divide T into two random sub-datasets:
dataset T2.

2. Randomly initialize the values of the four parameters (α+,
3. Define the positive and negative graphs for T1 and use clu

from these graphs.
4. Break concave regions (if any) into convex regions.
5. Compute the CD values of the convex regions.
6. Break the convex regions into sub-convex regions, if

positive and negative data, respectively.
7. Cover the convex regions obtained in Steps 4 and 6 with h
8. For each hypersphere C in decreasing order of the CD val
 Expand C by using CD(C) and + or - for the positiv
9. Apply the GA approach to Steps 6 to 8 with Equation (1

dataset T2. The GA approach finds the optimal
as),,,(****

−+−+ ββαα .

10. Use the optimal values),,,(****
−+−+ ββαα on the

and infer the final pair of models M2.

Output: The positive and negative classification pair of mod

α α

Fig. 1. CBA.
hyperspheres by using the algorithm discussed in Section 4.4.
The covering task is based on the fact that each hypersphere is
determined by a center and a radius. Hyperspheres do not
depend on dimensionality of the training dataset.

�
 Phase 4 (Step 8): Expand the hyperspheres obtained in Phase 3

in decreasing order of their CD values. The expansion
algorithms are shown in Section 4.5.

�
 Phase 5 (Step 9): Apply the genetic algorithm (GA) described in

Section 4.6 to Phases 3 and 4 with Eq. (1) as the fitness
function and T2 as the calibration dataset. The GA approach
finds the four optimal parameters ðaþ� ,a�� ,bþ� ,b�� Þ, given the
three cost coefficients CFP, CFN, and CUC.

�
 Phase 6 (Step 10): Use the optimal parameters ðaþ� ,a�� ,bþ� ,b�� Þ

on the entire training dataset T to repeat Phases 2–4 and infer
the final pair of models M2.
The following sections provide details about the above phases.
4.1. A heuristic to determine sample points

As described in Section 3.2, whether two positive (or two
negative) nodes (training data points) are connected depends on
the classifications of the sample points between the two nodes.
Assume that we are given a training dataset T1 and the positive
and negative models M1. This section shows a heuristic way to
determine these sample points. Assume that a value for d is
defined as follows:

d¼minfEuclidean distance of all pairs of training data points in T1g:

ð2Þ

Two positive (or two negative) nodes are assumed to be
connected if and only if the following test is satisfied. We divide
the line segment between these two nodes into smaller segments
of size d. Sample points derived from the above segmentation are
classified using M1. If all of these points are of the same class value
as the two end nodes, then it is assumed that these two nodes are
connected with each other. A distance equal to d, defined as
above, worked well on our tests when used to sample the line
segment between a pair of end nodes. If the sampling distance
(step) is too large, then we have under-sampled. Conversely, if the
distance is too small, then we have over-sampled.
1, the training dataset T, the density threshold

the actual training dataset T1 and the calibration

α-, β+, β -).
stering to identify concave and convex regions

their CD values are less than β + or β - for the

yperspheres.
ues do:
e and negative data, respectively.
) as the fitness function and use the calibration
 values of the four parameters denoted

 entire training dataset T to repeat Steps 3 to 8

els M2.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0
x

y

D

E

A

B C

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 3. Example of convex regions in T1.

H.N.A. Pham, E. Triantaphyllou / Computers & Operations Research 38 (2011) 174–189178
4.2. Determining whether a region is convex

By using a sampling step of size d as defined in Section 4.1, the
CBA derives positive and negative graphs. Next, the CBA uses
clustering to break a graph into regions. This section describes an
algorithm that is used to determine whether a region is convex
and is depicted in Fig. 2. As discussed in Section 3.2, a convex
region corresponds to a clique whose connectivity matrix includes
all ‘1’s. The connectivity matrix is symmetric and all elements of
the first diagonal are equal to 0 (‘0’ is used here in accordance
with Matlab convention). Thus, whether a region P of size NP is
convex is determined by checking whether P’s connectivity
matrix includes all ‘1’s. A softer condition for P’s connectivity
matrix can be applied. That is, if the percentage of number of ‘1’s
in P’s connectivity matrix is greater than or equal to g, say for g
equal to 0.9, then P is considered to be convex. The value of 0.90
was used for the parameter g as a result of some pilot tests. If a
value closer to 1.0 is used, then more and smaller regions will
qualify to be designated as convex. This would result in more
computing time for the rest of the steps of the CBA and also the
derived models may be affected by overfitting of the training data.
The reverse would happen if the value of g is a rather small
number.

As seen in Step 3 in Fig. 2, each convex region is associated
with a CD value. Tichy [47] proposed CD(P) to be the proportion of
P’s training points over the total number of points in T1 for a given
class value. This definition, however, has its drawbacks. For
instance, Fig. 3 presents some positive and negative training
points in 2-D of a given dataset T1. Suppose that M1 is applied on
T1 and the convex regions are derived. The derived convex regions
are assumed to be the circles A–E as depicted in Fig. 3. Such
regions do not always have to be circles but this is assumed here
for simplicity. According to Tichy’s definition, CD(B) and CD(D)
have the same value, equal to 9/18¼0.5. This is apparently a
contradiction since circle B is denser than D. The value for CD(P) is
directly related to NP and to the average minimum distance to
neighbors denoted as h, which is defined as follows:

h¼
XNP

i

minðdiÞ

NP
: ð3Þ

The notation min(di) in Eq. (3) is the Euclidean distance
between each node and its nearest neighbor. If P has a higher NP

value and a smaller h value, then P is denser. We propose CD(P) to
be calculated as follows, where D is the number of dimensions of
the training points in T1:

CDðPÞ ¼
lnðNPÞ

hD
: ð4Þ

Eq. (4) shows that if NP increases, then CD(P) slightly increases
since P has more nodes. Furthermore, if h decreases, then P’s
nodes are closer together. This leads to an increase in the value of
CD(P). Hence, CD(P) is inversely proportional to h, while CD(P) is
directly proportional to ln(NP). The function ln(NP) achieves
a slighter effect of NP on CD(P). For instance, the CD(A), CD(B),
CD(C), CD(D), and CD(E) values for Fig. 3 now are equal to
Input: Region P of size NP and the density threshold val

1. Consider P’s connectivity matrix denoted as L.
2. Set num = the number of 1’s in L.
3. If

)1(−× PP NN

num ≥ , then P is convex and CD(P) is com

Output: Whether P is convex.

Fig. 2. Algorithm for determining
lnð16Þ=12
� 2:77, lnð9Þ=12

� 2:19, lnð4Þ=12
� 1:38, lnð9Þ=22

� 0:55,
and lnð4Þ=12

� 1:38, respectively. Intuitively, these density values
make better sense than the ones derived from Tichy’s definition.
4.3. A heuristic algorithm for breaking a region into convex regions

The problem of finding the minimum number of convex
regions that cover a concave region P of size NP is similar to a form
of the set cover problem, an NP-complete problem [48]. Melnik
[46] proposed the Hamming distance for breaking P into smaller
convex regions. The Hamming distance between two strings is
defined by the number of positions for which corresponding
attributes are different. If the Hamming distance between a pair of
rows in P’s connectivity matrix is small enough, then Melnik
groups the nodes together. However, this method does not take
into account the distances between P’s nodes as constraints for
grouping them. Thus, Melnik’s approach may derive convex
regions that overlap with each other.

A heuristic approach for breaking a region into a set of convex
regions is proposed in Fig. 4. This approach is based on
Hierarchical Clustering (HC) as described in [49–51]. HC is a
deterministic approach and produces a hierarchy of clusters
represented by a dendrogram. This dendrogram may be used to
partition a dataset (of size Np) into K desired clusters, where
K¼1, 2,y, or Np (see also [51]).

The algorithm depicted in Fig. 4 may end up with Np clusters
(in the degenerative case), each defined on a single data point
only. This would happen if no partition of the dataset with convex
regions was produced or the derived convex regions had CD

values that were too small because the current breaking threshold
ue .

puted by Equation (4).

whether a region is convex.

Input: A concave or convex region P of size NP (in the form of a graph) and the breaking threshold values
β+ or β - (for positive or negative data, respectively).

1. Use the HC approach to produce a dendrogram with a hierarchy of all possible clusters (the maximum
number of which is equal to NP).

2. For K = 1 to NP do
3. Begin {for}
4. Use the dendrogram produced by the HC approach to partition the region P into K clusters.
5. If all of these regions are convex, then
6. If their CD values are greater than or equal to the breaking threshold value (β + or β -), then these

regions are returned and we stop the iterations.
7. End {for}

Output: A set of convex regions.

Fig. 4. Heuristic algorithm for breaking a region.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x

y

CD(D)=0.55

CD(E)=1.38

CD(A)=2.77

CD(B)=2.19 CD(C)=1.38

Fig. 5. Example of the expansion approach.

H.N.A. Pham, E. Triantaphyllou / Computers & Operations Research 38 (2011) 174–189 179
values were inadequate (i.e., they were too large). If this is the
case, then the GA approach will run again as the fitting function
given as Eq. (1) would suffer gross overfitting of the data.
Successive runs of the GA approach should converge to an optimal
(or near optimal) set of threshold values and thus the final
partition would represent a balance between overfitting and
overgeneralization, or in other words, the misclassification total
cost would be minimum or very small.

4.4. A method for covering a convex region by a hypersphere

A hypersphere can cover a convex region by using the linear
algorithm developed by Ritter [52]. Let us consider a convex
region P of size NP. A hypersphere that covers P is determined by a
center CP and radius RP. The algorithm is initialized by a good
guess for creating a hypersphere B1 for P. This is done by finding
two nodes of P that are far from each other and using the line
between them as the initial diameter. Let CP be located at the
center of the diameter and RP be half the length of the diameter.
Next, each node Si +1 of P is tested for inclusion in the current
hypersphere. This is done by checking whether its distance from
CP is less than or equal to RP. If Si + 1 is in Bi, then Bi + 1¼Bi, and the
algorithm goes to the next node. Otherwise, Bi is expanded just
enough to include itself as well as Si + 1. This is done by drawing a
line from Si +1 to the current center CP of Bi and extending it
further to intersect the far side of Bi. This segment is then used as
the new diameter for an expanded hypersphere Bi + 1 and CP is
relocated at the center of the new diameter.

4.5. Methods for expanding a hypersphere

This section shows how to expand a hypersphere F of size NF

using the value of CD(F) and the expansion coefficient. In order to
illustrate the expansion approach, consider the example depicted
in Fig. 5, which is based on the one shown in Fig. 3.

Recall that the CD values for the convex regions A–E are
2.77, 2.19, 1.38, 0.55, and 1.38, respectively. Let the two breaking
threshold values b+ and b� be 0.5 (both equal). No convex
regions are broken because their CD values are greater than the
breaking threshold values. Let the two expansion coefficients a+

and a� be 2.00 (both equal). In decreasing order of CD values, the
regions A, B, C, E, and D are expanded as shown in Fig. 5. The
expanded regions are covered by the solid line circles (or
hyperspheres) as discussed in Section 4.4. Regions A and D are
portrayed as they are initially. This is due to the fact that at the
first expansion step region A intersects region E. Similarly,
region D intersects region A.

There are two types of expansion: a radial expansion in which
a hypersphere F is expanded in all directions and a linear
expansion in which a hypersphere F is expanded in a certain
direction. The following section shows in detail these two
expansion types.

4.5.1. Radial and linear expansions

Let M be a region that is expanded from F. Let RF and RM denote
the radiuses of F and M, respectively. In the radial expansion
algorithm depicted in Fig. 6, RF is increased by a step-size

increment denoted as W. One gets

RM ¼ RFþW : ð5Þ

Using a dichotomous search methodology, Pham and
Triantaphyllou [11–13] proposed a value for W as described in
Eq. (6). If CD(F) is less than one, then an additional parameter Q is
applied. This parameter ensures that the step-size increase is not
too fast. Furthermore, if CD(F) is too small, F is not expanded:

W ¼
RG�RF

2

1

Q � CDðFÞ
: ð6Þ

Thus, when one substitutes Eq. (6) back into Eq. (5), RM

becomes

RM ¼ RFþ
RG�RF

2

1

Q � CDðFÞ
: ð7Þ

Let us consider the example indicated in Fig. 7 which is based
on the one shown in Fig. 5. Assume that Q is 1.00. A closer

Input: Hypersphere F of density CD(F) and radius RF, and the expansion coefficient α+ or α- (for positive
or negative regions, respectively).

1. Set M = F (i.e., RF = RM). /*initialization*/
2. Set hypersphere G covering M with radius RG = 2 × RM.
3. Repeat
 Set E = M (i.e., RE = RM).
 Expand M by using Equation (7).
 Until (RM satisfies the stopping conditions discussed in Section 4.5.2 or RM = RG).
4. If RM satisfies the stopping conditions, then STOP.
 Else, go to Step 2.

Output: An expanded region E.

Fig. 6. Algorithm for radial expansion.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x

y

CD(D)=0.55

CD(E)=1.38

CD(A)=2.77

CD(B)=2.19 CD(C)=1.38

RG

RB

RM

Fig. 7. Example for the radial expansion algorithm.

H.N.A. Pham, E. Triantaphyllou / Computers & Operations Research 38 (2011) 174–189180
examination of Fig. 7 reveals that circle B (i.e., the one-line circle
with RB¼1.8019) is covered by three circles: a double-line circle G

with RG¼1.8019�2¼3.6038, a solid-line circle that shows the
final expanded region, and a dashed-line circle M of radius RM

given as follows:

RM ¼ RFþ
RG�RM

2

1

Q � CDðBÞ

¼ 1:8019þ
3:6038�1:8019

2

1

1� 2:19
� 2:2133:

Eq. (7) computes the following successive values for RM:
2.5308, 2.7758, 2.9648, and so on, until RM is 3.6036. At that
moment, the iterations are terminated because of the stopping
conditions discussed in the next section.

The linear type first expands hypersphere F into hypersphere
M using the radial expansion. Next, M is expanded in a given
direction using the radial approach until it satisfies the stopping
conditions (given next). The final region is the union of all
expanded regions.

4.5.2. Description of the stopping conditions

The stopping conditions for expanding a hypersphere F of size
NF into M depend on CD(F) and the expansion coefficient a+ or a�

(for positive or negative regions, respectively). If CD(F) is high,
then a hypersphere F is expanded wider. However, the expanded
region should not be too wide as this may lead to the
overgeneralization problem. We propose that the radius RM

should not be greater than the product of the following terms:
CD(F), a+ , and RF. The stopping conditions also include that M

should not intersect other regions. This can be determined while
expanding M. The expanded region M can accept several noisy
points if CD(F) is high enough. Thus, for positive regions the radial
expansion approach is stopped if any one of the following two
conditions is not satisfied:

RM rCDðFÞ � RF � aþ and the number of noisy points within M is

less than or equal to CDðFÞ � aþ : ð8Þ

A similar equation exists for negative regions:

RM rCDðFÞ � RF � a� and the number of noisy points within M is

less than or equal to CDðFÞ � a�: ð9Þ

4.6. A genetic algorithm (GA) to find optimal values of the control

parameters

The four parameters (a+ , a� , b+ , b�) control the number of
misclassification cases for the final classification models. Since the
ranges for the four parameters depend on each individual
application, the search space might be too large. An exhaustive
search could be impractical.

The GA approach is of the type described in [53,54] and has
been applied to find the optimal parameters denoted as
ðaþ� ,a�� ,bþ� ,b�� Þ. The use of the GA approach for the CBA was
decided because the objective function (i.e., Eq. (1)) of the CBA
may have multiple extreme points as the error rates may vary
across the input data space in ways that cannot be expressed by
usual mathematical functions.

At each step, the GA approach selects chromosomes from the
current population as parents for the next population and uses
them to produce (via crossover and mutation operations) children
for the next generation. The selection of parents is done using
Eq. (1) as the fitness function and the set T2 for calibration. Each
chromosome consists of four genes that correspond to the four
control parameters (a+ ,a� ,b+ ,b�). The initial population size
was 20 (this size was determined empirically). One of the 20
chromosomes was initialized to values (1, 1, 0, 0). When the value
of a+ or a� is equal to 1, this indicates no expansion of a region is
required. Similarly, when the value of b+ or b� is equal to 0, this
indicates no breaking of a region is required. Over the given
number of generations, the population evolves toward an optimal
chromosome.

A crossover function creates children by combining pairs of
parents from the population. At each coordinate of a child, the
crossover function randomly picks the gene up at the same
coordinate from one of the parents and then assigns it to the child.
The mutation function creates a child (g1, g2, g3, g4) by changing
the genes of the parent chromosome (a+ ,a� ,b+ ,b�). Let us

g1 g2 g3 g4

(((2 OR 1) OR 0) AND 3) = 3 (((1 OR 1) OR 0) AND 3) = 1 (((5 OR 3) OR 0) AND 10) = 2 (((7 OR 7) OR 0) AND 10) = 2

Fig. 8. Example of the mutation function.

H.N.A. Pham, E. Triantaphyllou / Computers & Operations Research 38 (2011) 174–189 181
consider the first two genes a+ and a� , which are in the range
[a, b], while the last two genes b+ and b� are in the range [c, d].
The mutation function first randomizes a chromosome (t1, t2, t3, t4)
using a Gaussian distribution (this distribution was selected
empirically by trial and error). Next, genes of the mutation child
are created using Eqs. (10) and (11). These equations attempt to
generate genes that are quite different from the parent genes.
Furthermore, these equations try to prevent the mutated genes
from assuming values outside the valid ranges of the four key
control parameters described above.

g1 ¼ ððaþ OR t1Þ OR aÞ AND b and g2 ¼ ðða� OR t2Þ OR aÞ AND b:

ð10Þ

g3 ¼ ððb
þ OR t3Þ OR cÞ AND d and g4 ¼ ððb

� OR t4Þ OR cÞ AND d:

ð11Þ

In order to help motivate the use of the mutation function, we
consider the parent chromosome (a+ ,a� ,b+ ,b�) to be (2, 1, 5, 7).
Assume that (a+ ,a�) is in the range [0, 3], while (b+ ,b�) is in the
range [0, 10]. Suppose that the chromosome (t1, t2, t3, t4) created
using a Gaussian distribution is (1, 1, 3, 7). The mutation child is
presented in Fig. 8. In this figure, (g1, g2, g3, g4) is equal to
(3, 1, 2, 2).

Under the above settings, the GA approach runs during
successive iterations and stops if there is no successive improve-
ment for the fitness function.
5. Complexity analysis

Next, we analyze time complexity of the CBA for the general
case. Let N be the number of training points in T. Step 1
normalizes T and then divides T into T1 and T2. This takes linear
time on the size of T or O(N). Step 2 takes O(1). Step 3 defines the
positive and negative graphs for T1 and takes O(N3) time [46].

Steps 4 and 6 operate in the same manner. These steps break
either a concave or a convex region into smaller convex regions.
The breaking algorithm depicted in Fig. 4 is related to the
algorithm depicted in Fig. 2. Each iteration of the breaking
algorithm includes two steps: breaking a region into smaller
regions using the hierarchical clustering approach and determin-
ing whether a region is a convex region. The time complexity of
the hierarchical clustering approach is O(N2) [49,50]. The time
complexity for determining whether a region is a convex region is
O(N2). Thus, the time complexity of Steps 4 and 6 is O(N3). The
time complexity for Step 5 includes the time complexity of the
breaking algorithm.

Each convex region is covered by a hypersphere using Ritter’s
linear algorithm. Thus, Step 7 takes O(N2) time. Step 8 expands
convex regions by using the algorithm depicted in Fig. 6. There are
two loops on Lines 3 and 4 of the algorithm. The loop on Line 3 is
inside the loop on Line 4. The quadratic time applies to the loop
on Line 3. Thus, the total time complexity of Step 8 is O(N3). Step 9
applies the GA approach on Steps 6–8. We assume that the GA
approach is executed for 100 generations. Thus, the time
complexity of the GA approach is O(100�N3)¼O(N3) [53]. Step
10 repeats Steps 3–8 with the four optimal parameters
ðaþ� ,a�� ,bþ� ,b�� Þ on T. This step makes the total time complexity
of Steps 3–8 equal to O(N3)+O(N2)+O(N2)¼O(N3). Therefore, the
overall time complexity of the CBA is equal to O(N3).
6. Some empirical studies

This section starts with a brief summary of the CBA. Please
recall that for a given classification approach, the CBA first
represents a given training dataset as two graphs: one for the
positive data and one for the negative data. Next, the CBA
analyzes these two graphs using clustering to identify concave
and convex regions in the training data. Any concave regions are
broken into convex ones. Densities of the convex regions (for the
positive and the negative data points) are used to shrink or
expand these regions. This is done using a GA approach in a way
that attempts to minimize the total misclassification cost by
determining an optimal balance between fitting and general-
ization. This is achieved by taking into consideration the false-
positive, false-negative, and unclassifiable rates and penalty costs
as expressed in Eq. (1).

6.1. Datasets and the environment for the experiments

The original classification algorithms used in the experiments
were SVMs, ANNs, and DTs. For a given 3-tuple of error penalty
costs (CFP, CFN, CUC), each original algorithm was run alone and also
in conjunction with the HBA [11–13] and with the CBA. We used
the four-fold cross-validation method to analyze their perfor-
mance. The TCs obtained from the original algorithms and those in
conjunction with the HBA and with the CBA when applied on the
same dataset were compared.

The experiments used the 12 datasets found in [55–57]. The
results of some previous studies on these datasets are shown in
Table 1. These datasets were selected because current
classification algorithms have analyzed them with variable
success and are considered as a kind of benchmark datasets. In
the experiments, a given dataset T was normalized using Eq. (12),
so all units are dimensionless. The term Ti,j in this equation shows
the value of the data point i in terms of attribute j in T. A
coefficient equal to 10,000 units was applied in Eq. (12) instead of
100 units. This was due to the fact that if the percentage
normalization was applied directly, then the value normalized
this way might be too small. Such small values might lead to
difficulties in comparisons and computations.

Ti,j ¼
Ti,j � 10,000P

i

Ti,j
ð12Þ

The CBA assumed that b+ and b� were in the range [0, 1],
while a+ and a� were in the range [0, 30]. These ranges were
determined empirically. The experiments were run on a PC with a
CPU of 2.8 GHZ speed and 3 GB RAM under the Windows XP
operating system. We used the libraries associated with the
default settings in Matlab [58] to implement the original
algorithms. The following section shows the results on four
families of tests that were based on four different settings of
penalty costs.

6.2. Experimental results

Family #1 of tests—the first family of tests did not penalize for
the unclassifiable type (i.e., its cost is 0), but penalized at the same
level, say of one unit, for the false-positive and false-negative
types. This family of tests was equivalent to the analyses of

Table 1
Datasets used in the experiments.

Dataset No. of points No. of attributes Previous studies Accuracy (%)

Pima Indians Diabetes (PID) [55] 768 8 Early Neural Networks [59] 76.0

IncNet [60] 77.6

Fuzzy approach [61] 77.6

Flexible Neural-Fuzzy Inference System [62] 78.6

Fuzzy Neural Networks [63] 81.8

Statlog Project [64] 78.0

Haberman Surgery Survival (HSS) [55] 306 3 SVMs using linear terms in the objective function [65] 71.2

Proximal SVMs [66] 72.5

Integer SVMs [67] 62.7

Logical functions [68] 66.2

Wisconsin Breast Cancer (WBC) [55] 286 10 C4.5 [9] 94.7

Rule Induction approach [69] 96.0

Linear Discriminant Analysis approach [70] 96.8

SVMs [71] 97.2

Neuro-Fuzzy approach [72] 95.1

Fuzzy-GA approach [73] 97.5

Neuro-Rule approach [74] 98.1

Supervised Fuzzy Clustering [75] 95.6

Fuzzy Artificial Immune Recognition System [17] 98.5

Classification through ELECTRE and data mining [27] 94.4

Liver-Disorder (LD) [55] 345 6 RULES-4 algorithm [76] 55.9

C4.5 [77] 65.5

Reduced SVMs [78,79] 74.9

SVMs [80] 69.2

Least Squares SVMs [81] 94.3

FAIRS [17] 83.4

Statlog Heart (SH) [55] 270 13 Different approaches in Statlog Project [82] 76.7

Attribute weighted artificial immune system [83] 87.4

Australian Credit Approval (ACA) [55] 690 14 C4.5 [34] 85.7

Eight genetic programming approaches [84] 83.0

Different approaches in Statlog Project [85] 86.9

Extend Naive Bayes [86] 76.7

SVMs [87] 85.5

Appendicitis (AP) [57] 106 7 Predictive Value Maximization approach [57] 89.6

Fuzzy Rule-Based Classification System [88] 84.0

Nefclass [89] 87.7

FourClass [56] 862 2 Fuzzy Kernel Multiple Hyperspheres [90] 99.8

KNN-SVM [91] 100.0

German Credit Data (GCD) [55] 1000 24 Graph-based relational concept learner [92] 71.5

DTs [93] 72.9

SVMs [87] 77.9

Ionosphere (INS) [55] 351 34 Features selection in conjunction with ANNs and KNNs [94] 90.6

Integration between fuzzy class association rules and SVMs [95] 89.2

Parkinsons (PA) [55] 195 23 ANNs [96] 81.3

SVMs [97] 91.4

SPECTF [55] 267 45 CLIP 3 [98] 77.0

Rough set-base multiple criteria linear programming [99] 68.0

H.N.A. Pham, E. Triantaphyllou / Computers & Operations Research 38 (2011) 174–189182
previous studies. Thus, the objective function in this family was
assumed to be

TC ¼minð1� RateFPþ1� RateFNÞ:

The results for this family of tests are presented in Table 2. This
table shows the three failure rates (as percentages) and the TCs
obtained under various algorithms. The column ‘‘Improvement 1’’
shows any improvements (as a percentage) of the TC achieved by
the HBA when compared with that of the original algorithm. The
column ‘‘Improvement 2’’ shows any improvements (as a
percentage) of the TC achieved by the CBA when compared to
that of the original algorithm. Values in the columns
‘‘Improvement 1’’ and ‘‘Improvement 2’’ are defined by the
percent decrease between the TC achieved by the original
algorithm and the TC obtained from the HBA and CBA,
respectively. Similarly, the column ‘‘Improvement 3’’ shows any
improvements (as a percentage) of the TC achieved by the
CBA when compared with that of the HBA. Each value in this
column is defined by the difference between the corresponding
values in the columns ‘‘Improvement 1’’ and ‘‘Improvement 2.’’ A
negative or zero value in column ‘‘Improvement 3’’ shows that
the CBA in terms of TC values had no improvement when
compared to that of the HBA. The above notation is also used in
Tables 3–9.

In particular, Table 2 shows that the HBA, when applied on the
PID, HSS, WBC, LD, AP, and FourClass datasets, found the average
TCs to be less than those of the original algorithms by about 85.9%,
57.4%, 55.4%, 87.2%, 100.0%, and 26.2%, respectively. The results
show that the HBA could not run (i.e., it is N/A) with the SH, ACA,
GCD, INS, PA, and SPECTF datasets because of its excessive

Table 2
TC¼min(1�RateFP+1�RateFN).

Dataset Algorithm Original algorithm Original algorithm in conjunction with the

HBA

Original algorithm in conjunction with the CBA

RateFP RateFN RateUC TC RateFP RateFN RateUC TC Improvement 1 RateFP RateFN RateUC TC Improvement 2 Improvement 3

PID SVM 0.5 31.3 1.0 31.8 7.3 0.0 59.4 7.3 77.0 26.0 5.2 1.0 31.3 1.6 –75.4

DT 5.2 29.7 0.0 34.9 2.6 0.0 71.4 2.6 92.5 18.2 4.2 15.6 22.4 35.8 –56.7

ANN 3.1 22.9 11.5 26.0 3.1 0.0 71.4 3.1 88.0 8.3 7.8 22.9 16.1 38.0 –50.0

HSS SVM 26.0 5.2 5.2 31.2 0.0 10.4 44.2 10.4 66.7 27.3 1.3 0.0 28.6 8.3 –58.3

DT 19.5 15.6 0.0 35.1 0.0 15.6 26.0 15.6 55.6 26.0 1.3 2.6 27.3 22.2 –33.3

ANN 18.2 10.4 11.7 28.6 0.0 14.3 27.3 14.3 50.0 22.1 3.9 16.9 26.0 9.1 –40.9

WBC SVM 0.0 27.8 8.3 27.8 11.1 1.4 47.2 12.5 55.0 0.0 15.3 11.1 15.3 45.0 –10.0

DT 6.9 18.1 16.7 25.0 8.3 1.4 48.6 9.7 61.1 5.6 13.9 22.2 19.4 22.2 –38.9

ANN 1.4 18.1 22.2 19.4 8.3 1.4 50.0 9.7 50.0 4.2 8.3 31.9 12.5 35.7 –14.3

LD SVM 0.0 37.2 1.2 37.2 0.0 0.0 90.7 0.0 100.0 11.6 17.4 12.8 29.1 21.9 –78.1

DT 18.6 15.1 2.3 33.7 0.0 8.1 79.1 8.1 75.9 10.5 9.3 12.8 19.8 41.4 –34.5

ANN 10.5 22.1 11.6 32.6 0.0 4.7 80.2 4.7 85.7 7.0 11.6 19.8 18.6 42.9 –42.9

AP SVM 11.1 0.0 14.8 11.1 0.0 0.0 81.5 0.0 100.0 11.1 0.0 14.8 11.1 0.0 –100.0

DT 7.4 0.0 22.2 7.4 0.0 0.0 81.5 0.0 100.0 7.4 0.0 22.2 7.4 0.0 –100.0

ANN 7.4 0.0 25.9 7.4 0.0 0.0 81.5 0.0 100.0 7.4 0.0 25.9 7.4 0.0 –100.0

FourClass SVM 4.6 1.9 1.9 6.5 0.5 4.2 41.7 4.6 28.6 4.6 1.9 1.9 6.5 0.0 –28.6

DT 2.8 3.7 1.4 6.5 0.5 2.8 35.6 3.2 50.0 2.8 3.7 1.4 6.5 0.0 –50.0

ANN 0.0 3.2 2.8 3.2 0.5 2.8 31.0 3.2 0.0 0.0 3.2 2.8 3.2 0.0 0.0

SH SVM 0.0 44.1 2.9 44.1 N/A 13.2 16.2 14.7 29.4 33.3 N/A

DT 8.8 23.5 1.5 32.4 7.4 14.7 16.2 22.1 31.8

ANN 2.9 22.1 5.9 25.0 2.9 11.8 26.5 14.7 41.2

ACA SVM 0.0 35.8 6.9 35.8 N/A 0.0 35.8 6.9 35.8 0.0 N/A

DT 1.2 28.3 2.3 29.5 1.2 28.3 2.3 29.5 0.0

ANN 0.6 24.3 1.2 24.9 0.6 24.3 1.2 24.9 0.0

GCD SVM 28.0 0.0 0.4 28.0 N/A 6.0 8.0 21.6 14.0 50.0 N/A

DT 23.6 5.6 1.2 29.2 5.6 8.8 12.4 14.4 50.7

ANN 21.2 8.4 1.2 29.6 4.0 8.4 10.0 12.4 58.1

INS SVM 0.0 30.7 5.7 30.7 N/A 6.8 19.3 17.0 26.1 14.8 N/A

DT 0.0 31.8 2.3 31.8 6.8 15.9 21.6 22.7 28.6

ANN 5.7 17.0 10.2 22.7 6.8 9.1 18.2 15.9 30.0

PA SVM 18.4 0.0 2.0 18.4 N/A 6.1 12.2 2.0 18.4 0.0 N/A

DT 2.0 18.4 0.0 20.4 10.2 0.0 10.2 10.2 50.0

ANN 4.1 16.3 4.1 20.4 14.3 0.0 6.1 14.3 30.0

SPECTF SVM 20.9 0.0 1.5 20.9 N/A 6.0 9.0 13.4 14.9 28.6 N/A

DT 1.5 22.4 3.0 23.9 20.9 0.0 3.0 20.9 12.5

ANN 20.9 0.0 1.5 20.9 13.4 0.0 10.4 13.4 35.7

Table 3
Accuracy percentages of the HBA and CBA.

Dataset Original algorithm HBA CBA Improvement 1 Improvement 2 Improvement 3

PID 69.1 95.7 76.7 26.6 7.6 –19.0

HSS 68.4 86.6 72.7 18.2 4.3 –13.9

WBC 75.9 89.4 84.3 13.5 8.4 –5.1

LD 65.5 95.7 77.5 30.2 12 –18.2

AP 91.4 100.0 91.4 8.6 0.0 –8.6

FourClass 94.6 96.3 94.6 1.7 0.0 –1.7

SH 66.2 N/A 77.9 N/A 11.7 N/A

ACA 66.9 N/A 69.9 N/A 3.0 N/A

GCD 71.1 N/A 86.4 N/A 15.3 N/A

INS 71.6 N/A 78.4 N/A 6.8 N/A

PA 80.3 N/A 85.7 N/A 5.4 N/A

SPECTF 78.1 N/A 83.6 N/A 5.5 N/A

H.N.A. Pham, E. Triantaphyllou / Computers & Operations Research 38 (2011) 174–189 183
computing time. Furthermore, Table 2 shows that the CBA when
applied on the PID, HSS, WBC, LD, AP, FourClass, SH, ACA, GCD,
INS, PA, and SPECTF datasets found the average TCs to be less than
or equal to those of the original algorithms by about 25.2%, 13.2%,
34.3%, 35.4%, 0.0%, 0.0%, 35.4%, 0.0%, 52.9%, 24.5%, 26.7%, and
25.6%, respectively. All results by the CBA in terms of the TC values
had no improvement when compared to those by the HBA. Table 2
also shows that some RateUCs achieved by the HBA and CBA were
typically dominated by the sum of RateFP and RateFN. This was
due to the fact that we did not penalize (i.e., that cost was equal to
0) for the unclassifiable type. Thus, the HBA and CBA attempted to
minimize the TC by classifying as many cases as possible in the
unclassifiable type. This situation might lead to degenerative
results. An extreme situation might occur when all the cases are

Table 4
TC¼min(1�RateFP+20�RateFN+3�RateUC).

Dataset Algorithm Original algorithm Original algorithm in conjunction with the

HBA

Original algorithm in conjunction with the CBA

RateFP RateFN RateUC TC RateFP RateFN RateUC TC Improvement

1

RateFP RateFN RateUC TC Improvement

2

Improvement 3

PID SVM 0.5 31.3 1.0 628.6 12.5 7.8 31.3 262.5 58.2 2.1 0.0 96.4 291.1 53.7 –4.6

DT 5.2 29.7 0.0 599.0 8.9 0.0 53.6 169.8 71.7 0.0 0.0 99.5 298.4 50.2 –21.5

ANN 3.1 22.9 11.5 495.8 8.3 2.6 52.6 218.2 56.0 0.0 0.0 100.0 300.0 39.5 –16.5

HSS SVM 26.0 5.2 5.2 145.5 20.8 1.3 1.3 50.6 65.2 27.3 1.3 0.0 53.2 63.4 –1.8

DT 19.5 15.6 0.0 331.2 15.6 1.3 3.9 53.2 83.9 26.0 1.3 2.6 59.7 82.0 –2.0

ANN 18.2 10.4 11.7 261.0 15.6 1.3 16.9 92.2 64.7 22.1 3.9 16.9 150.6 42.3 –22.4

WBC SVM 0.0 27.8 8.3 580.6 8.3 1.4 20.8 98.6 83.0 1.4 0.0 86.1 259.7 55.3 –27.8

DT 6.9 18.1 16.7 418.1 8.3 1.4 23.6 106.9 74.4 22.2 0.0 58.3 197.2 52.8 –21.6

ANN 1.4 18.1 22.2 429.2 8.3 1.4 22.2 102.8 76.1 1.4 0.0 86.1 259.7 39.5 –36.6

LD SVM 0.0 37.2 1.2 747.7 4.7 1.2 30.2 118.6 84.1 0.0 0.0 98.8 296.5 60.3 –23.8

DT 18.6 15.1 2.3 327.9 2.3 0.0 24.4 75.6 77.0 0.0 0.0 95.3 286.0 12.8 –64.2

ANN 10.5 22.1 11.6 487.2 4.7 0.0 54.7 168.6 65.4 26.7 0.0 53.5 187.2 61.6 –3.8

AP SVM 11.1 0.0 14.8 55.6 11.1 0.0 14.8 55.6 0.0 11.1 0.0 14.8 55.6 0.0 0.0

DT 7.4 0.0 22.2 74.1 7.4 0.0 22.2 74.1 0.0 7.4 0.0 22.2 74.1 0.0 0.0

ANN 7.4 0.0 25.9 85.2 7.4 0.0 25.9 85.2 0.0 7.4 0.0 25.9 85.2 0.0 0.0

FourClass SVM 4.6 1.9 1.9 47.2 29.6 0.5 0.9 41.7 11.8 4.6 1.9 1.9 47.2 0.0 –11.8

DT 2.8 3.7 1.4 81.0 2.8 0.5 4.6 25.9 68.0 2.8 3.7 1.4 81.0 0.0 –68.0

ANN 0.0 3.2 2.8 73.1 2.8 0.5 7.4 34.3 53.2 0.0 3.2 2.8 73.1 0.0 –53.2

SH SVM 0.0 44.1 2.9 891.2 N/A 0.0 0.0 100.0 300.0 66.3 N/A

DT 8.8 23.5 1.5 483.8 0.0 0.0 100.0 300.0 38.0

ANN 2.9 22.1 5.9 461.8 13.2 0.0 48.5 158.8 65.6

PA SVM 18.4 0.0 2.0 24.5 N/A 18.4 0.0 2.0 24.5 0.0 N/A

DT 2.0 18.4 0.0 369.4 10.2 0.0 10.2 40.8 89.0

ANN 4.1 16.3 4.1 342.9 14.3 0.0 6.1 32.7 90.5

SPECTF SVM 20.9 0.0 1.5 25.4 N/A 20.9 0.0 1.5 25.4 0.0 N/A

DT 1.5 22.4 3.0 458.2 20.9 0.0 3.0 29.9 93.5

ANN 20.9 0.0 1.5 25.4 20.9 0.0 1.5 25.4 0.0

H.N.A. Pham, E. Triantaphyllou / Computers & Operations Research 38 (2011) 174–189184
classified as the unclassifiable type. An illustration of this
situation is when the HBA was applied on the LD and AP datasets.
In such situations, the TC is equal to zero, but this is misleading.

Table 3 shows the accuracy percentages of the HBA and CBA in
terms of the sum of RateFP and RateFN. The negative numbers
show the CBA had no improvement when compared to the HBA.
The HBA (when it was possible to use) results were more accurate
than the results obtained from the CBA. There were six datasets
(HSS, LD, AP, FourClass, GCD, and SPECTF) for which the HBA and
CBA were more accurate than the results obtained from the
previous studies. However, there were six datasets (PID, WBC, SH,
ACA, INS, and PA) for which the CBA was less accurate than the
results obtained from previous studies.

Analyses of the impact of RateFP, RateFN, and RateUC are driven
by the corresponding penalty costs. A higher penalty cost for a
given type of error implies that the system will result in fewer
cases of that type. The following families of tests describe such
situations.

Family #2 of tests—this family of tests analyzed the medical
datasets: PID, HSS, WBC, LD, AP, FourClass, SH, PA, and SPECTF.
Now we penalized considerably more for the false-negative type
than for the false-positive and unclassifiable types. For the
medical datasets, the false-negative type means that a patient
who in reality has a disease is diagnosed as disease free. The false-
positive type means that a patient who in reality is disease free is
diagnosed as having the disease. It was hoped that the higher
penalty cost for the false-negative type would result in fewer
false-negative cases. We assumed that the penalty cost for the
false-negative type was 20 units. The penalty costs for the false-
positive and unclassifiable types were 1 and 3 units, respectively.
Thus, the objective function for this family of tests was
assumed to be:

TC ¼minð1� RateFPþ20� RateFNþ3� RateUCÞ:

The results for this family of tests are presented in Table 4. This
table shows that the HBA when applied on the PID, HSS, WBC, LD,
AP, and FourClass datasets found the average TCs to be less than
those of the original algorithms by about 62.0%, 71.3%, 77.8%,
75.5%, 0.0%, and 44.3%, respectively. The HBA could not run with
the SH, PA, and SPECTF datasets because of its excessive
computing time. Furthermore, Table 4 shows that the CBA when
applied on the PID, HSS, WBC, LD, AP, FourClass, SH, PA, and
SPECTF datasets found the average TCs to be less than or equal to
those of the original algorithms by about 47.8%, 62.5%, 49.2%,
44.9%, 0.0%, 0.0%, 56.6%, 59.8%, and 31.2%, respectively. The results
show that the CBA could run with all nine medical datasets. All
results by the CBA in terms of the TC values had no improvement
when compared to those by the HBA. Since we penalized more for
the false-negative type, the average RateFN achieved by the CBA in
Table 4 was less than that of the CBA in Table 2 by about 90.6%.

Furthermore, we penalized even more for the false-negative
type. In particular, we considered the following objective function:

TC ¼minð1� RateFPþ100� RateFNþ3� RateUCÞ:

The results for this family of tests are presented in Table 5. This
table shows that the HBA when applied on the PID, HSS, WBC, LD,
AP, and FourClass datasets found the average TCs to be less than
those of the original algorithms by about 95.0%, 81.0%, 90.2%,
93.7%, 0.0%, and 29.0%, respectively. The HBA was not applicable
to the SH, PA, and SPECTF datasets because of its excessive

Table 5
TC¼min(1�RateFP+100�RateFN+3�RateUC).

Dataset Algorithm Original algorithm Original algorithm in conjunction with the

HBA

Original algorithm in conjunction with the CBA

RateFP RateFN RateUC TC RateFP RateFN RateUC TC Improvement

1

RateFP RateFN RateUC TC Improvement

2

Improvement

3

PID SVM 0.5 31.3 1.0 3128.6 12.5 0.5 40.6 186.5 94.0 0.0 0.0 100.0 300.0 90.4 –3.6

DT 5.2 29.7 0.0 2974.0 53.6 0.0 1.6 58.3 98.0 67.2 0.0 0.0 67.2 97.7 –0.3

ANN 3.1 22.9 11.5 2329.2 12.5 0.0 50.5 164.1 93.0 2.1 0.0 95.3 288.0 87.6 –5.3

HSS SVM 26.0 5.2 5.2 561.0 18.2 1.3 2.6 155.8 72.2 27.3 1.3 0.0 157.1 72.0 –0.2

DT 19.5 15.6 0.0 1577.9 15.6 1.3 2.6 153.2 90.3 26.0 1.3 2.6 163.6 89.6 –0.7

ANN 18.2 10.4 11.7 1092.2 15.6 1.3 22.1 211.7 80.6 22.1 2.6 16.9 332.5 69.6 –11.1

WBC SVM 0.0 27.8 8.3 2802.8 8.3 1.4 20.8 209.7 92.5 1.4 0.0 86.1 259.7 90.7 –1.8

DT 6.9 18.1 16.7 1862.5 8.3 1.4 15.3 193.1 89.6 22.2 0.0 58.3 197.2 89.4 –0.2

ANN 1.4 18.1 22.2 1873.6 8.3 1.4 23.6 218.1 88.4 1.4 0.0 86.1 259.7 86.1 –2.2

LD SVM 0.0 37.2 1.2 3724.4 7.0 0.0 80.2 247.7 93.3 0.0 0.0 98.8 296.5 92.0 –1.3

DT 18.6 15.1 2.3 1537.2 2.3 0.0 24.4 75.6 95.1 50.0 0.0 16.3 98.8 93.6 –1.5

ANN 10.5 22.1 11.6 2254.7 4.7 0.0 54.7 168.6 92.5 26.7 0.0 53.5 187.2 91.7 –0.8

AP SVM 11.1 0.0 14.8 55.6 11.1 0.0 14.8 55.6 0.0 11.1 0.0 14.8 55.6 0.0 0.0

DT 7.4 0.0 22.2 74.1 7.4 0.0 22.2 74.1 0.0 7.4 0.0 22.2 74.1 0.0 0.0

ANN 7.4 0.0 25.9 85.2 7.4 0.0 25.9 85.2 0.0 7.4 0.0 25.9 85.2 0.0 0.0

FourClass SVM 4.6 1.9 1.9 195.4 3.2 0.9 29.6 184.7 5.5 4.6 1.9 1.9 195.4 0.0 –5.5

DT 2.8 3.7 1.4 377.3 2.3 1.4 43.1 270.4 28.3 2.8 3.7 1.4 377.3 0.0 –28.3

ANN 0.0 3.2 2.8 332.4 4.6 0.0 50.5 156.0 53.1 0.0 3.2 2.8 332.4 0.0 –53.1

SH SVM 0.0 44.1 2.9 4420.6 N/A 0.0 0.0 100.0 300.0 93.2 N/A

DT 8.8 23.5 1.5 2366.2 0.0 0.0 100.0 300.0 87.3

ANN 2.9 22.1 5.9 2226.5 13.2 0.0 48.5 158.8 92.9

PA SVM 18.4 0.0 2.0 24.5 N/A 18.4 0.0 2.0 24.5 0.0 N/A

DT 2.0 18.4 0.0 1838.8 10.2 0.0 10.2 40.8 97.8

ANN 4.1 16.3 4.1 1649.0 14.3 0.0 6.1 32.7 98.0

SPECTF SVM 20.9 0.0 1.5 25.4 N/A 20.9 0.0 1.5 25.4 0.0 N/A

DT 1.5 22.4 3.0 2249.3 20.9 0.0 3.0 29.9 98.7

ANN 20.9 0.0 1.5 25.4 20.9 0.0 1.5 25.4 0.0

Table 6
TC¼min(20�RateFP+1�RateFN+3�RateUC).

Dataset Algorithm Original algorithm Original algorithm in conjunction with the CBA

RateFP RateFN RateUC TC RateFP RateFN RateUC TC Improvement 2

ACA SVM 0.0 35.8 6.9 56.6 0.0 35.8 6.9 56.6 0.0

DT 1.2 28.3 2.3 58.4 1.2 28.3 2.3 58.4 0.0

ANN 0.6 24.3 1.2 39.3 0.6 24.3 1.2 39.3 0.0

GCD SVM 28.0 0.0 0.4 561.2 0.0 0.0 100.0 300.0 46.5

DT 23.6 5.6 1.2 481.2 0.0 65.2 8.4 90.4 81.2

ANN 21.2 8.4 1.2 436.0 0.0 6.8 89.2 274.4 37.1

INS SVM 0.0 30.7 5.7 47.7 0.0 30.7 5.7 47.7 0.0

DT 0.0 31.8 2.3 38.6 0.0 31.8 2.3 38.6 0.0

ANN 5.7 17.0 10.2 161.4 0.0 19.3 20.5 80.7 50.0

H.N.A. Pham, E. Triantaphyllou / Computers & Operations Research 38 (2011) 174–189 185
computing time. Furthermore, Table 5 shows that the CBA when
applied on the PID, HSS, WBC, LD, AP, FourClass, SH, PA, and
SPECTF datasets found the average TCs to be less than those of the
original algorithms by about 91.9%, 77.1%, 88.8%, 92.4%, 0.0%, 0.0%,
91.1%, 65.3%, and 32.9%, respectively. The results show that the
CBA could again run with all nine medical datasets. All results by
the CBA in terms of the TC values had no improvement when
compared to those by the HBA. Since we penalized considerably
more for the false-negative type, the average RateFN achieved by
the CBA in Table 5 was less than that of the CBA in Table 2 and 4
by about 92.2% and 16.7%, respectively. These results show that as
the penalty cost for the false-negative type became higher, even
fewer false-negative cases were found.
Some results achieved by the CBA when applied on the medical
datasets in Table 5 were the same as those in Table 4. This is due
to the fact that the CBA optimized the TC by attempting to
minimize RateFN. This rate was almost equal to zero when the
CBA was applied on these datasets with the penalty cost equal to
20 units. Thus, the higher penalty costs for the false-negative type
could not result in an even smaller value for RateFN. Hence, the TC

was the same. Similarly, the results achieved by the CBA when
applied on the AP and FourClass datasets in Tables 2, 4, and 5
were the same as those under the original algorithms. The reason
is that the CBA optimized the TC by attempting to minimize
RateFN. This rate was almost equal to zero when the original
algorithms were applied on these datasets. Tables 4 and 5 also

Table 7
TC¼min(100�RateFP+1�RateFN+3�RateUC).

Dataset Algorithm Original algorithm Original algorithm in conjunction with the CBA

RateFP RateFN RateUC TC RateFP RateFN RateUC TC Improvement 2

ACA SVM 0.0 35.8 6.9 56.6 0.0 35.8 6.9 56.6 0.0

DT 1.2 28.3 2.3 150.9 1.2 28.3 2.3 150.9 0.0

ANN 0.6 24.3 1.2 85.5 0.0 24.3 19.7 83.2 2.7

GCD SVM 28.0 0.0 0.4 2801.2 0.0 0.0 100.0 300.0 89.3

DT 23.6 5.6 1.2 2369.2 0.0 65.2 8.4 90.4 96.2

ANN 21.2 8.4 1.2 2132.0 0.0 10.8 80.4 252.0 88.2

INS SVM 0.0 30.7 5.7 47.7 0.0 30.7 5.7 47.7 0.0

DT 0.0 31.8 2.3 38.6 0.0 31.8 2.3 38.6 0.0

ANN 5.7 17.0 10.2 615.9 0.0 19.3 20.5 80.7 86.9

Table 8
Computing times (in hours) of the original algorithm, HBA, and CBA applied on the datasets.

Dataset Original algorithm HBA CBA Times the CBA was faster than the HBA

PID 0.76 14.95 4.14 3.61

HSS 0.26 2.05 0.65 3.15

WBC 0.06 14.81 0.45 32.91

LD 0.06 10.17 0.89 11.43

AP 0.01 12.09 0.20 60.45

FourClass 0.97 4.33 4.31 1.00

SH 0.13 N/A 0.38 N/A

ACA 1.11 N/A 3.34 N/A

GCD 3.94 N/A 6.55 N/A

INS 0.53 N/A 1.05 N/A

PA 0.11 N/A 0.22 N/A

SPECTF 0.13 N/A 0.36 N/A

Table 9
TCs achieved by the original algorithms, HBA, and CBA when were applied on the datasets.

Dataset Original-TC HBA-TC CBA-TC Improvement 1 Improvement 2 Improvement 3

PID 30.9 4.3 23.3 86.0 24.7 –61.3

HSS 31.6 13.4 27.3 57.5 13.7 –43.8

WBC 24.1 10.6 15.7 55.8 34.6 –21.2

LD 34.5 4.3 22.5 87.6 34.8 –52.8

AP 8.6 0.0 8.6 100.0 0.0 –100.0

FourClass 5.4 3.7 5.4 31.4 0.0 –31.4

SH 33.8 N/A 22.1 N/A 34.8 N/A

ACA 30.1 N/A 30.1 N/A 0.0 N/A

GCD 28.9 N/A 13.6 N/A 53.0 N/A

INS 28.4 N/A 21.6 N/A 24.0 N/A

PA 19.7 N/A 14.3 N/A 27.6 N/A

SPECTF 21.9 N/A 16.4 N/A 25.0 N/A

H.N.A. Pham, E. Triantaphyllou / Computers & Operations Research 38 (2011) 174–189186
show that some degenerative results occurred when the HBA and
CBA were applied on the PID, WBC, LD, and SH datasets.

Family #3 of tests—this family of tests analyzed the ACA, GCD,
and INS datasets, which are related to applications of credit
approval and physics. The HBA was not applicable to these
datasets because of its excessive computing time. We created a
greater penalty for the false-positive type than for the false-
negative and unclassifiable types. It was hoped that the higher
penalty cost for false-positive type would result in fewer false-
positive cases. We assumed that the penalty cost for the false-
positive type was 20 units. The penalty costs for the false-negative
and unclassifiable types were 1 and 3 units, respectively. Thus, the
objective function in this family of tests was assumed to be

TC ¼minð20� RateFPþ1� RateFNþ3� RateUCÞ:

Table 6 presents the results for this family of tests. This table
shows that the CBA when applied on the ACA, GCD, and INS
datasets found the average TCs to be less than or equal to those of
the original algorithms by about 0.0%, 54.9%, and 16.7%,
respectively. Since we penalized more for the false-positive type,
the average RateFP achieved by the CBA in Table 6 was less than
that of the CBA in Table 2 by about 95.2%.

Furthermore, we penalized even more for the false-positive
type. In particular, we considered the following objective
function:

TC ¼minð100� RateFPþ1� RateFNþ3� RateUCÞ:

The results for this family of tests are presented in Table 7. This
table shows that the CBA when applied on the ACA, GCD, and INS
datasets found the average TCs to be less than or equal to those of
the original algorithms by about 0.9%, 91.2%, and 29.0%,
respectively. Since we penalized considerably more for the
false-positive type, the average RateFP achieved by the CBA in
Table 7 was less than that of the CBA in Table 2 and 6 by about
97.6% and 50.0%, respectively. The above results show that as the

-2
0
2
4
6
8
10
12
14
16
18
20

0 10 20 30 40 50 60 70 80 90 100

Penalty cost for the RateFN

R
at
eF
N

Fig. 10. For different costs of RateFN, the CBA in conjunction with a DT was applied

on the PA dataset.

H.N.A. Pham, E. Triantaphyllou / Computers & Operations Research 38 (2011) 174–189 187
penalty cost for the false-positive type became higher, fewer
false-positive cases were found.

Some results achieved by the CBA when applied on the ACA,
GCD, and INS datasets in Table 7 were the same as those of
Table 6. As before, this was due to the fact that the CBA optimized
the TC by attempting to minimize RateFP. This rate was almost
equal to zero when the CBA was applied on these datasets with
the penalty cost equal to 20 units. Thus, the higher penalty costs
for the false-negative type could not result in a smaller value for
RateFP. Hence, the TC was the same. In Tables 6 and 7, some
degenerative results also occurred when the CBA was applied on
the GCD dataset.

As seen in Tables 2 and 4–7, the HBA and CBA achieved TCs less
than or equal (i.e., better) to those of the original algorithms.
Some identical TCs occurred because the GA approach used in the
HBA and CBA was initialized by one of the 20 chromosomes
whose values were (1, 1, 0, 0). This setting was discussed in
Section 4.6. This is equivalent to the setting of the original
algorithms. If the GA approach did not find a better TC value, then
the HBA and CBA would return the TC value achieved by the
original algorithms.

Tables 2 and 4–7 show that the TCs obtained by the CBA were
typically greater (i.e., worse) than those by the HBA. The number
of cases in which the TCs obtained by the CBA were identical to
those achieved by the original algorithms was more frequent than
that achieved by the HBA. In fact, only ten cases under the HBA
were identical to those under the original algorithms compared to
37 cases under the CBA. The above results show that the
classification models derived under the CBA might not be as
accurate as those under the HBA.

Family #4 of tests—this family of tests analyzed the change of
only one of the penalty costs (say for the false-negative type) from
very low to very high values, while we kept the same level for the
other two types. The purpose of this family of tests was to
demonstrate that indeed the CBA can be very versatile with
changes in penalty costs. The HSS and PA datasets were used in
this family as demonstrations. The SVM and DT in conjunction
with the CBA were applied on the HSS and PA datasets,
respectively. We assumed the same penalty cost for the false-
positive and unclassifiable types and that was equal to one unit
each. The penalty cost for the false-negative type was set at
different values from 1 to 100 units.

The results for the HSS and PA datasets in this family of tests
are presented in Figs. 9 and 10, respectively. In these figures, the
X-axis represents the different penalty costs for RateFN, while the
Y-axis shows RateFN (as a percentage) obtained under different
penalty costs. The plots in these two figures show that the CBA
determined different levels of RateFN at costs equal to 1, 5, or 75
0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 10 20 30 40 50 60 70 80 90 100
Penalty cost for the RateFN

R
at
eF
N

Fig. 9. For different costs of RateFN, the CBA in conjunction with an SVM was

applied on the HSS dataset.
units for the HSS dataset and at 1 or 15 units for the PA dataset.
However, RateFN was at the same level for costs in the intervals
[1, 1], [5, 70], or [75, 100] with the HSS dataset and costs in the
intervals [1, 10] or [15, 100] with the PA dataset. These plots also
show that the level of RateFN was inversely proportional to the
penalty cost. The above observations show that the plots followed
stepwise patterns. There are two issues that can be seen from the
stepwise patterns. First, a higher penalty cost for one type of error
could indeed result in fewer errors of the corresponding type.
Second, suppose that the CBA finds two different penalty costs
whose error rates are at the same level. For any costs in the
interval between the two costs, the CBA also derives the same
level of the error rate. Thus, we may use a binary search to
determine all such intervals and the points of change.
7. Conclusions

When current classification approaches derive models from
training data, a balance between fitting and generalization is not
considered in a systematic manner. Moreover, error rates in
conjunction with penalty costs are not used in such approaches.
Some earlier studies (i.e., [11–13]) recognized the above problems
and proposed a method called the Homogeneity Based Algorithm
(HBA). However, the HBA may be impractical for large datasets
because of the excessive computing time required due to the way
the HBA determines homogenous regions.

A meta-heuristic approach, called the Convexity Based Algo-
rithm (CBA), was proposed to alleviate the problem of excessive
computing time with the HBA. Instead of the concept of
homogenous sets, the CBA uses the concept of convex regions
that do not depend on dimensionality of the training data. The
CBA was studied on 12 datasets with different penalty costs for
classification errors and was compared with (when it was possible
to use) the HBA. The results are summarized in Tables 8 and 9.

Table 8 presents the computing times of the HBA and CBA
when applied on the 12 datasets. Recall that the experiments
were run on a PC with a CPU of 2.8 GHZ speed and 3 GB RAM
under a Windows XP operating system. The CBA computing time
on each dataset was defined as the average of computing time of
the SVM, DT, and ANN in conjunction with the CBA. A similar
definition was used for the original algorithm and the HBA
computing time. Table 8 shows that the CBA was applicable to all
12 datasets, while the HBA was applicable to only 6 datasets.
Furthermore, the CBA computing time was always less than that
of the HBA (when it was possible to use).

Table 9 is a summary of the results derived from Table 2. In
this table, the value ‘‘CBA-TC’’ for each given dataset was defined

H.N.A. Pham, E. Triantaphyllou / Computers & Operations Research 38 (2011) 174–189188
as the average of the total misclassification cost (TC) achieved by
the SVM, DT, and ANN in conjunction with the CBA. A similar
definition was used for the ‘‘Original-TC’’ and ‘‘HBA-TC’’ cases.
Table 9 shows that ‘‘CBA-TC’’ was always less than or equal to that
of the original algorithms. However, ‘‘CBA-TC’’ was not less than
that of the HBA (when it was possible to use). The results in
Tables 8 and 9 indicate that the CBA was more efficient than the
HBA, but less accurate than the HBA. However, the CBA was able
to derive systems in situations where the HBA was not applicable
due to excessive computing time. Finally the website /www.csc.
lsu.edu/�huypham/CBA_guide.htmlS gives the CBA and HBA
approaches along with some related computational tools.

The CBA could be expanded in several ways. For instance, a
new approach may derive convex regions more accurately.
Additionally, the determination of suitable values for the density
threshold value g could also be considered in future work. One
may also need to study an approach that can determine
appropriate penalty costs for various types of error such as the
theoretical model proposed in [100].
Acknowledgements

The authors are very appreciative for valuable comments made
by the anonymous reviewers. These comments have helped the
authors to improve the quality of this paper.
References

[1] Pujol O, Radeva P, Vitri�a J. Discriminant ECOC: a heuristic method for
application dependent design of error correcting output codes. IEEE
Transactions on Pattern Analysis and Machine Intelligence 2006;28(6):
1001–7.

[2] Dietterich TG, Bakiri G. Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research 1995;2:
263–86.

[3] Crammer K, Singer Y. On the learnability and design of output codes for
multiclass problems. Machine Learning 2002;47(2–3):201–33.

[4] Vapnik V. Statistical learning theory. Wiley-Interscience; 1998. [p. 375–
567].

[5] Abdi H. A Neural Network primer. Journal of Biological Systems 2003;2:
247–81.

[6] Hecht-Nielsen R. Theory of the backpropagation neural network. In:
Proceedings of the international joint conference on neural networks,
Washington, DC, USA, 1989. p. 593–605.

[7] Quinlan JR. C4.5: programs for machine learning. San Mateo, CA, USA:
Morgan Kaufmann Publisher; 1993. [p. 35–42].

[8] Quinlan JR. Simplifying decision trees. International Journal of Man–
Machine Studies 1987;27:221–34.

[9] Quinlan JR. Improved use of continuous attributes in C4.5. Artificial
Intelligence Research 1996;4:77–90.

[10] Breiman L. Bagging predictors. Journal of Machine Learning 1996;24:
123–40.

[11] Pham HNA, Triantaphyllou E. Prediction of diabetes by employing a new
data mining approach which balances fitting and generalization. In: Yin Lee
R, editor. Studies in computation intelligence, vol. 131. Berlin, Germany:
Springer; 2008. [p. 11–26, chapter 2].

[12] Pham HNA, Triantaphyllou E. An application of a new meta-heuristic for
optimizing the classification accuracy when analyzing some medical
datasets. Expert Systems with Applications 2009;36(5):9240–9.

[13] Pham HNA, Triantaphyllou E. The impact of overfitting and overgeneraliza-
tion on the classification accuracy in data mining. In: Maimon O, Rokach L,
editors. Soft computing for knowledge discovery and data mining. New
York, NY, USA: Springer; 2007. [p. 391–431, part 4, chapter 5].

[14] Greig-Smith P. The use of random and contiguous quadrats in the study of
the structure of plant communities. Annals of Botany 1952;16:293–316.

[15] Cohen S, Rokach L, Maimon O. Decision-tree instance-space decomposition
with grouped gain-ratio. Journal of Information Science 2007;177(17):
3592–612.

[16] Kohavi R. Scaling up the accuracy of naive-Bayes classifiers: a decision-tree
hybrid. In: Proceedings of the second international conference on knowl-
edge discovery and data mining, Portland, OR, USA, 1996. p. 202–7.

[17] Polat KA, Sahan S, Kodaz H, Gunes S. Breast cancer and liver disorders
classification using artificial immune recognition system (airs) with
performance evaluation by fuzzy resource allocation mechanism. Expert
Systems with Applications 2007;32:172–83.
[18] Rokach L, Maimon O, Arad O. Improving supervised learning by sample
decomposition. Journal of Computational Intelligence and Applications
2005;5(1):37–54.

[19] Zhou Z, Chen C. Hybrid decision tree. Journal of Knowledge-Based Systems
2002;15:515–28.

[20] Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression
trees. Chapman & Hall/CRC Publisher; 1984. [p. 279–93].

[21] Breiman L. Random forests. Journal of Machine Learning 2001;45(1):5–32.
[22] Mansour Y, McAllester D. Generalization bounds for decision trees. In:

Proceedings of the 13th annual conference on computer learning theory,
San Francisco, CA, USA, 2000. p. 69–80.

[23] Webb GI. Further experimental evidence against the utility of Occam’s
razor. Journal of Artificial Intelligence Research 1996;4:397–417.

[24] Clark P, Boswell R. Rule induction with CN2: some recent improvements. In:
Kodratoff Y, editor. Machine learning—EWSL-91. Berlin, Germany: Spring-
er; 1991. [p. 151–63].

[25] Clark P, Niblett T. The CN2 algorithm. Journal of Machine Learning
1989;3:261–83.

[26] Cohen WW. Fast effective rule induction. In: Proceedings of the 12th
international conference on machine learning, Tahoe City, CA, USA, 1995.
p. 115–23.

[27] Mastrogiannis N, Boutsinas B, Giannikos I. A method for improving the
accuracy of data mining classification algorithms. Computers and Opera-
tions Research 2009;36(10):2829–39.

[28] Cover TM, Hart PE. Nearest neighbor pattern classification. Institute of
Electrical and Electronics Engineers Transactions on Information Theory
1967;13(1):21–7.

[29] Dasarathy BV, Sheela BV. A composite classifier system design: concepts
and methodology. Proceedings of the IEEE 1979;67(5):708–13.

[30] Dudani S. The distance-weighted k-nearest-neighbor rule. IEEE Transactions
on Systems, Man, and Cybernetics 1976;6(4):325–7.

[31] Keller JM, Gray MR, Givens Jr. JA. A fuzzy K-nearest neighbor algorithm.
Journal of IEEE Transactions on Systems, Man, and Cybernetics 1985;15(4):
580–5.

[32] Tan PN, Michael S, Vipin K. Introduction to data mining. Addison-Wesley
Publishers; 2005. [p. 145–315, chapters 4 and 5].

[33] Duda RO, Hart PE. Pattern classification and scene analysis. Wiley-
Interscience; 1973. [p. 56–64].

[34] Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers. Journal
of Machine Learning 1997;29:131–61.

[35] Kohavi R, George JH. Wrappers for feature subset selection. Journal of
Artificial Intelligence 1997;97(1–2):273–324. [special issue on relevance].

[36] Kononenko I. Semi-naı̈ve Bayesian classifier. In: Kodratoff Y, editor.
Proceedings of the sixth European working session on learning. Berlin,
Germany: Springer; 1991. p. 206–19.

[37] Langley P, Sage S. Induction of selective Bayesian classifiers. In: Proceedings
of UAI-94, Seattle, WA, USA, 1994. p. 399–406.

[38] Pazzani MJ. Searching for dependencies in Bayesian classifiers. In:
Proceedings of AI&STAT’95, 1995. p. 239–48.

[39] Geman S, Bienenstock E, Doursat R. Neural networks and the bias/variance
dilemma. Journal of Neural Computation 1992;4:1–58.

[40] Moody JE. The effective number of parameters: an analysis of generalization
and regularization in non-linear learning systems. Journal of Advances in
Neural Information Processing Systems 1992;4:847–54.

[41] Weigend A. On overfitting and the effective number of hidden units. In:
Proceedings of the 1993 connectionist models summer school, 1993.
p. 335–42.

[42] Smith M. Neural networks for statistical modeling. ITP New Media
Publisher; 1-850-32842-0. [p. 117–29].

[43] Cortes C, Vapnik V. Support-vector networks. Journal of Machine Learning
1995;20(3):273–97.

[44] Cristianini N, John ST. An introduction to support vector machines and other
kernel-based learning methods. Cambridge University Press; 2000.

[45] De Vaus D. Analyzing social science data: 50 key problems in data analysis,
1st ed. Sage Publications Ltd.; 2002.

[46] Melnik O. Decision region connectivity analysis: a method for analyzing
high-dimensional classifiers. Machine Learning 2002;48:321–51.

[47] Tichy N. An analysis of clique formation and structure in organizations.
Administrative Science Quarterly 1973;18(2):194–208.

[48] Karp RM. Reducibility among combinatorial problems. In: Proceedings of
the symposium, IBM Thomas J. Watson Research Center, Yorktown Heights,
NY, USA, 1972. p. 85–103.

[49] Seo J, Shneiderman B. Interactively exploring hierarchical clustering results.
Computer 2002;35(7):80–6. July.

[50] Karypis G, Han EH, Kumar V. CHAMELEON: a hierarchical clustering
algorithm using dynamic modeling. IEEE Computer 1999;32(8):68–75.
August.

[51] Moore AW. K-means and hierarchical clustering. Online tutorial at the
following URL: /http://www.autonlab.org/tutorials/kmeans.htmlS, Carne-
gie Mellon University, USA, 2010.

[52] Ritter J. An efficient bounding sphere. In: Graphics Gems, 1990. p. 301–3.
[53] Goldberg DE. Genetic algorithms in search, optimization, and machine

learning. Addison-Wesley Publishers; 1989.
[54] De Jong K. Genetic algorithms: a 30 year perspective. In: Booker L, Forrest S,

Mitchell M, Riolo R, editors. Perspectives on adaptation in natural and
artificial systems. Oxford University Press; 2005.

www.csc.lsu.edu/∼huypham/CBA_guide.html
www.csc.lsu.edu/∼huypham/CBA_guide.html
www.csc.lsu.edu/∼huypham/CBA_guide.html
www.csc.lsu.edu/∼huypham/CBA_guide.html
www.csc.lsu.edu/∼huypham/CBA_guide.html
www.csc.lsu.edu/∼huypham/CBA_guide.html
http://www.autonlab.org/tutorials/kmeans.html

H.N.A. Pham, E. Triantaphyllou / Computers & Operations Research 38 (2011) 174–189 189
[55] Asuncion A, Newman DJ. UCI-machine learning repository. Website
/archive.ics.uci.edu/ml/S, University of California, Irvine, School of In-
formation and Computer Sciences, CA, USA, 2010.

[56] Tin KH, Eugene MK. Building projectable classifiers of arbitrary complexity.
In: Proceedings of the 13th international conference on pattern recognition,
Vienna, Austria, August, 1996. p. 880–5.

[57] Weiss SM, Kapouleas I. An empirical comparison of pattern recognition,
neural nets, and machine learning classification methods. In: Proceedings of
the 11th international joint conference on artificial intelligence, Detroit, MI,
USA, 1989. p. 781–7.

[58] Artificial Neural Network Toolbox 6.0 and Statistics Toolbox 6.0. Matlab
Version 7.0. Website: /www.mathworks.com/products/S.

[59] Smith JW, Everhart JE, Dickson WC, Knowler WC, Johannes RS. Using the
ADAP learning algorithm to forecast the onset of diabetes mellitus. In:
Proceedings of the 12th symposium on computer applications and medical
care, Los Angeles, CA, USA, 1988. p. 261–5.

[60] Jankowski N, Kadirkamanathan V. Statistical control of RBF-like networks
for classification. In: Proceedings of the seventh international conference on
artificial neural networks, ICANN, Lausanne, Switzerland, 1997. p. 385–90.

[61] Au WH, Chan KCC. Classification with degree of membership: a fuzzy
approach. In: Proceedings of the first IEEE international conference on data
mining, San Jose, CA, USA, 2001. p. 35–42.

[62] Rutkowski L, Cpalka K. Flexible neuro-fuzzy systems. IEEE Transactions on
Neural Networks 2003;14:554–74.

[63] Leon IV WD. Enhancing pattern classification with relational fuzzy neural
networks and square BK-products. PhD dissertation, Computer Science,
Florida State University, FL, USA, 2006. p. 71–4.

[64] Michie D, Spiegelhalter DJ, Taylor CC. Machine learning, neural and
statistical classification, series artificial intelligence. Englewood Cliffs, NJ,
USA: Prentice Hall; 1994. [p. 157–60, chapter 9].

[65] Kecman V, Arthanari T. Comparisons of QP and LP based learning from
empirical data. In: Monostori L, V0ancza J, Ali M, editors. LNCS and LNAI.
New York, USA: Springer; 2001. p. 326–32.

[66] Fung G, Mangasarian OL. Proximal support vector machine classifiers. In:
Proceedings of the seventh ACM SIGKDD international conference on
knowledge discovery and data mining. San Francisco, CA, USA: ACM Press;
2001. p. 77–86.

[67] Domm M, Engel A, Louis PP, Goldberg J. An integer support vector machine.
In: Proceedings of the sixth international conference on software engineer-
ing, artificial intelligence, networking and parallel/distributed computing,
2005, Towson, MD, USA. p. 144–9.

[68] Shevked Z, Dakovski L. Learning and classification with prime implicants
applied to medical data diagnosis. In: Proceedings of the 2007 international
conference on computer systems and technologies, Rousse, Bulgaria, June
2007.

[69] Hamilton HJ, Shan N, Cercone N. RIAC: a rule induction algorithm based on
approximate classification. Technical report no. CS 96-06, University of
Regina, Regina, Canada, 1996.

[70] Ster B, Dobnikar A. Neural Networks in medical diagnosis comparison with
other methods. In: Proceedings of the international conference on
engineering applications of neural networks, EANN’96, London, UK, 1996.
p. 427–30.

[71] Bennet KP, Blue JA. A support vector machine approach to decision trees.
Math report, no. 97-100, Rensselaer Polytechnic Institute, Troy, NY, USA,
1997.

[72] Nauck D, Kruse R. Obtaining interpretable fuzzy classification rules from
medical data. Artificial Intelligence in Medicine 1999;16:149–69.

[73] Pena-Reyes CA, Sipper M. A fuzzy-genetic approach to breast cancer
diagnosis. Artificial Intelligence in Medicine 1999;17:131–55.

[74] Setiono R. Generating concise and accurate classification rules for breast
cancer diagnosis. Artificial Intelligence in Medicine 2000;18:205–19.

[75] Abonyi J, Szeifert H. Supervised fuzzy clustering for the identification of
fuzzy classifiers. Pattern Recognition Letters 2003;24:2195–207.

[76] Pham DT, Dimov SS, Salem Z. Technique for selecting examples in inductive
learning. In: Proceedings of the European symposium on intelligent
techniques, ESIT 2000, Aachen, Germany, 2000. p. 119–27.

[77] Cheung N. Machine learning techniques for medical analysis. BSc thesis,
School of Information Technology and Electrical Engineering, University of
Queensland, Australia, 2001.
[78] Lee YJ, Mangasarian OL. RSVM: reduced support vector machines. In:
Proceedings of the first SIAM international conference on data mining,
Chicago, IL, USA, 2001.

[79] Lee YJ, Mangasarian OL. SSVM: a smooth support vector machine for
classification. Computational Optimization and Applications 2001;20(1):
5–22.

[80] Van GT, Suykens JAK, Lanckriet G, Lambrechts A, De Moor B, Vandewalle J.
Bayesian framework for least squares support vector machine classifiers,
Gaussian processes and kernel Fisher discriminant analysis. Neural
Computation 2002;14:1115–47.

[81] Comaka E, Polatb K, Gunesb S, Arslana A. A new medical decision making
system: least square support vector machine (LSSVM) with fuzzy weighting
pre-processing. Expert Systems with Applications 2007;32(2):409–14.

[82] Heart S. Website: /www.is.umk.pl/projects/datasets-stat.html#HeartS,
August 2008.

[83] Ozs-en S, Gunes S. Attribute weighting via genetic algorithms for attribute
weighted artificial immune system (AWAIS) and its application to heart
disease and liver disorders problems. Expert Systems with Applications
2009;36(1):386–92.

[84] Sakprasat S, Sinclair MC. Classification rule mining for automatic credit
approval using genetic programming. In: Proceedings of the IEEE congress
on evolutionary computation, Singapore, 2007. p. 548–55.

[85] Statlog Australia Credit Approval. Website: /www.is.umk.pl/projects/
datasets-stat.html#AustralianS, 8/2009.

[86] Hsu CC, Huang YP, Chang KW. Extended naive Bayes classifier for mixed
data. Expert Systems with Applications 2008;35:1080–3.

[87] Huang CL, Chen MC, Wang CJ. Credit scoring with a data mining approach
based on support vector machines. Expert Systems with Applications
2007;33(4):847–56.

[88] Nakashima T, Nakai G, Ishibuchi H. Constructing fuzzy ensembles for
pattern classification problems. In: Proceedings of the international
conference on systems, man and cybernetics, Washington, DC, USA, vol. 4,
October 2003. p. 3200–5.

[89] Blachnik M, Duch W. Prototype-based threshold rules. In: Neural
Information Processing, LNCS, vol. 4234. Berlin, German: Springer; 2006.
[p. 1028–37].

[90] Lei G, Hui-Zhong W, Liang X. A novel classification algorithm based on fuzzy
kernel multiple hyperspheres. In: Proceedings of the fourth international
conference on fuzzy systems and knowledge discovery, FSKD 2007, Haikou,
Hainan, China, vol. 2, 2007. p. 114–8.

[91] Segata N, Blanzieri E. Empirical assessment of classification accuracy of local
SVM. Technical report # DISI-08-014, University of Trento, Italy, March
2008.

[92] Gonzalez JA, Holder LB, Cook DJ. Graph-based concept learning. In:
Proceedings of the 14th international FAIRS conference, FL, USA, 2001. p.
377–81.

[93] Eggermont J, Kok JN, Kosters WA. Genetic programming for data classifica-
tion: partitioning the search space. In: Proceedings of the 2004 symposium
on applied computing, 2004. p. 1001–5.

[94] Gavrilis D, Tsoulos LG, Dermatas E. Selecting and constructing features
using grammatical evolution. Pattern Recognition Letters 2008;29:
1358–65.

[95] Kianmehr K, Alshalalfa M, Alhajj R. Effectiveness of fuzzy discretization for
class association rule-based classification. In: LNCS, vol. 4994. Berlin,
Germany: Springer; 2008. [p. 298–308].

[96] Ene M. Neural network-based approach to discriminate healthy people from
those with Parkinson’s disease. Annals of the University of Craiova,
Mathematics and Computer Science Series 2008;35:112–6.

[97] Little MA, McSharry PE, Hunter EJ, Spielman J, Ramig LO. Suitability of
dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE
Transactions on Biomedical Engineering 2009.

[98] Kurgan LA, Cios KJ, Tadeusiewicz R, Ogiela M, Goodenday LS. Knowledge
discovery approach to automated cardiac SPECT diagnosis. Artificial
Intelligence in Medicine 2001;23(2):149–69.

[99] Zhanga Z, Shib Y, Gao G. A rough set-based multiple criteria linear
programming approach for the medical diagnosis and prognosis. Expert
Systems with Applications 2009;36(5):8932–7.

[100] Thomas JW, Hofer JP. Accuracy of risk-adjusted mortality rate as a measure
of hospital quality of care. Medical Care 1999;37(1):83–92.

archive.ics.uci.edu/ml/
www.mathworks.com/products/
www.mathworks.com/products/
www.mathworks.com/products/
www.mathworks.com/products/
www.is.umk.pl/projects/datasets-stat.html#Heart
www.is.umk.pl/projects/datasets-stat.html#Heart
www.is.umk.pl/projects/datasets-stat.html#Heart
www.is.umk.pl/projects/datasets-stat.html#Heart
www.is.umk.pl/projects/datasets-stat.html#Australian
www.is.umk.pl/projects/datasets-stat.html#Australian
www.is.umk.pl/projects/datasets-stat.html#Australian
www.is.umk.pl/projects/datasets-stat.html#Australian
www.is.umk.pl/projects/datasets-stat.html#Australian

	A meta-heuristic approach for improving the accuracy in some classification algorithms
	Introduction
	Some related developments
	Formal problem definition and fundamental assumptions
	Problem description
	Fundamental assumptions in the development of the CBA

	Proposed approach--the CBA
	A heuristic to determine sample points
	Determining whether a region is convex
	A heuristic algorithm for breaking a region into convex regions
	A method for covering a convex region by a hypersphere
	Methods for expanding a hypersphere
	Radial and linear expansions
	Description of the stopping conditions

	A genetic algorithm (GA) to find optimal values of the control parameters

	Complexity analysis
	Some empirical studies
	Datasets and the environment for the experiments
	Experimental results

	Conclusions
	Acknowledgements
	References

