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Abstract

This paper introduces an incremental algorithm for learning a Boolean function from examples. The
functions are constructed in the disjunctive normal form (DNF) or the conjunctive normal form (CNF)
and emphasis is placed in inferring functions with as few clauses as possible. This incremental algorithm
can be combined with any existing algorithm that infers a Boolean function from examples. In this paper
it is combined with the one clause at a time (OCAT) approach (Comput. Oper. Res. 21(2) (1994)
185) and (J. Global Optim. 5(1) (1994) 64) which is a non-incremental learning approach. An extensive
computational study was undertaken to assess the performance characteristics of the new approach.
As examples, we used binary vectors that represent text documents from di<erent categories from the
TIPSTER collection. The computational results indicate that the new algorithm is considerably more
e>cient and it derives more accurate Boolean functions. As it was anticipated, the Boolean functions
(in DNF or CNF form) derived by the new algorithm are comprised by more clauses than the functions
derived by the non-incremental approach.

Scope and purpose

There is a growing need for methods that can analyze information and infer patterns in a way
that can be useful to the analyst. This is the core of data mining and knowledge discovery from
databases. Such methods often infer a Boolean function from observations that belong to di<erent classes.
This paper presents a methodology that infers a Boolean function in an incremental setting. The pro-
posed approach can be used in conjunction with existing algorithms that infer a Boolean function from
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examples. The paper presents both algorithmic developments and also an extensive empirical study. The
results presented in the paper suggest that the proposed incremental approach is highly
promising. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper introduces a new incremental learning from examples (ILE) algorithm for the
inference of a Boolean function from examples. The derived functions are in disjunctive or
conjunctive normal form (DNF or CNF, respectively) and emphasis is given in having as few
DNF or CNF clauses (also known as “terms” in the literature) as possible. In this paper, the new
algorithm is combined with an existing algorithm for non-incremental learning from examples
(NILE) of Boolean functions from two disjoint collections of examples. However, the proposed
incremental approach can be combined with any non-incremental (NILE) approach for deriving
a Boolean function from examples. In this study, the NILE algorithm used with the proposed
ILE approach is the OCAT (for one clause at a time) approach [1,2] which attempts to minimize
(optimally or semi-optimally) the number of derived clauses. The OCAT approach is a data
mining approach and has been studied and used in various application domains. An extensive
description of the OCAT approach can be found in a special link from the homepage of the
second author (i.e., http:==www.imse.lsu.edu=vangelis=). Thus, in this paper the new approach
will be called IOCAT, for incremental OCAT.

In order to assess the comparative value of the new approach vs. the old one (i.e., the
non-incremental OCAT approach), we used examples derived by analyzing almost 3000 text
documents from the TIPSTER collection of documents [3,4]. For this purpose, we used the
document surrogate concept as introduced by Salton [5] in order to represent text documents as
binary vectors. The TIPSTER collection is often used to evaluate information retrieval systems
and machine learning algorithms. As classes for the training examples, we used documents from
four document categories. These were documents related to the Department of Energy (DOE),
Wall Street Journal (WSJ), Associated Press (AP), and technical documents from the ZIPFF
collection. In addition, in order to deKne two disjoint classes, the following three class-pairs were
formed: (DOE vs. ZIPFF), (AP vs. DOE), and (WSJ vs. ZIPFF). The various algorithms were
compared in terms of three measures of performance as follows: (i) CPU time requirements, (ii)
accuracy of the derived Boolean functions, and (iii) number of clauses in the derived Boolean
functions.

This paper is organized as follows. Section 2 presents a formal description of the research
problem studied in this paper. Section 3 brieNy reviews the main parts of the related literature.
Section 4 describes the proposed IOCAT (Incremental OCAT) algorithm. Sections 5 and 6
present and discuss the results of the computational study. The paper ends with a summary
section.
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2. Problem description

Suppose that collections of examples from two disjoint classes are somehow made available
to a computerized classiKcation system. Each example is a binary vector deKned on n attributes
(also known as Boolean variables or atoms). Each example comes with a class membership
designation. Furthermore, this setting is assumed to be deterministic and no errors are considered.
These two collections form the training examples. The task of a classiKcation system is to
analyze the information embedded in the training examples and infer a model that best captures
the behavior of the hidden system. That is, we assume that there is a system that can classify
these, and also more, examples. Thus, a main challenge is to use the available training examples
to infer a Boolean function that in turn can be used to accurately classify new (and thus
unclassiKed) examples. Therefore, the central problem studied in this paper can be summarized
as follows:

Given are two disjoint collections of training examples. These collections represent two
mutually exclusive classes of observations of the behavior of some hidden system of
interest. Then the central problem is to use these collections of examples to extract a
Boolean function that can best describe the behavior of the hidden system.

There are many di<erent types of classiKcation systems. Such systems are usually based in
neural networks (NN), K-nearest neighbor, discriminant analysis, etc. In this study, we focus on
classiKcation systems that express the underlying model in the form of a Boolean function. Such
a Boolean function is expressed in DNF or CNF form. The reason for focusing on a Boolean
function is that often one desires to express the classiKcation logic in terms of logical decision
rules. That is, “IF... THEN...” type of logical statements. For the latter reason, an additional
goal is to infer a Boolean function that is comprised of the minimal, or near minimal, number
of DNF or CNF clauses (since such clauses can directly be transformed into logical decision
rules).

For a given set of examples, the learned (inferred) Boolean function may not be an accurate
representation of the hidden system. This is especially true if the two collections of the training
examples are limited or they are not representative of the entire population of examples. The
very next example may negate the current Boolean function, and thus it can initiate a revision
of this function. In this paper it is also assumed that it is possible for the analyst to be able
to deKne the structure of new (and thus unclassiKed) examples. That is, a new example can
be sent to the hidden system (also known as the classi<cation expert or oracle) for the deter-
mination of its class. This process is usually associated with some kind of cost. Thus, another
main problem studied in this paper is how to decide which example to send for classiKcation
and include in the training set. The new example might be any one of the remaining unclas-
siKed binary vectors or may be one of a restricted subset of the remaining unclassiKed binary
vectors.

This situation is a familiar problem in machine learning that is usually called the “Guided
Learning” (GL) problem (see, for instance, [6–9]). One strategy in dealing with this prob-
lem is to randomly select the next example from the population of the remaining unclassiKed
binary vectors. An alternative approach is to use an identiKcation process that can determine
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the composition of a new example in a way that ensures the currently inferred Boolean function
to be modiKed. This is the main idea of the strategy proposed in [19]. That strategy will be the
foundation of the new strategy proposed in this paper.

A methodological problem closely associated with guided learning is how to best
modify an existing Boolean function when the classiKcation of a new example reveals that
the current Boolean function is inaccurate. A brutal force approach is to reconstruct the en-
tire function from the beginning by using the entire sets of the training examples augmented
with the new example. An alternative approach might be to repair only a few clauses of
the existing Boolean function in a way that the modiKed function correctly classiKes all the
available training examples (i.e., the old training examples plus the new one that revealed
the need for modifying the function). This is the main problem of interest in this
paper.

3. Related developments from the literature

Fig. 1 shows two mutually exclusive sets of binary examples. The Krst set, denoted as E+,
represents the Krst class of training example and it is called the set with the positive examples.
Similarly, the second set, denoted as E−, represents the set with the negative training examples.
All these examples are deKned by the presence (i.e., “1” value) or absence (i.e., “0” value) of
four attributes or atoms Ai (for i=1; 2; 3; 4). A Boolean function, denoted as F, that satisKes
the requirements of these examples is also provided in Fig. 1.

By deKnition, the hidden system (Boolean function) accepts each positive example while it
rejects each negative one. Consequently, the inferred Boolean function should also evaluate each
positive example as true and each negative example as false. Later, such examples are used
to evaluate the performance of the proposed approach on some large-scale simulated problems.
These examples were deKned by properly analyzing text documents. A text document can be
considered as text deKned over a Knite set of keywords. Then, the presence or absence of a
key word can be indicated with the zero-one value of a binary variable. The binary vectors
formed this way are called “document surrogates” or just “surrogates” in the text analysis lit-
erature (see, for instance, [10,5,11,12]). In our tests, we used such examples that were deKned
on 800 binary variables and were extracted by analyzing a total of almost 3000 text documents
(examples).

Fig. 1. A sample training set of six positive examples and a set of four negative examples and a Boolean function
implied by these data.
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Extracting a Boolean function from collections of positive and negative examples (expressed
as binary vectors) is an old problem. Some of the initial contributions are due to [13]. This is
also the problem addressed with the use of Karnaugh maps [14]. Some recent developments can
be found in [15]. This is an NP-complete problem (see, for instance, [16,17]). In such cases,
the inferred Boolean function is usually expressed in DNF or CNF [18] as deKned next as (1)
and (2), respectively

k∨
j=1


∧
i∈
j
ai


 (1)

and
k∧
j=1


∨
i∈
j
ai


 : (2)

In the previous expressions ai is either Ai or QAi. That is, a DNF expression is a disjunction of
conjunctions (clauses or terms), and a CNF expression is a conjunction of disjunctions.

Let {A1; A2; A3; : : : ; An} represent a set of n Boolean variables or atoms. Also, let v be a binary
vector that is deKned on these n atoms. Furthermore, let F be a Boolean function that evaluates
to either 0 or 1 depending on the combination of the values of the atoms in vector v. That
is, F(v)=1 or F(v)=0; depending whether the vector is a positive or a negative example,
respectively.

The OCAT approach [1,2] is a data mining approach. It infers a Boolean function by se-
quentially constructing one clause at each one of a Knite number of iterations (hence the name
“one clause at a time” or OCAT). The main steps are depicted in Fig. 2.

At the Krst iteration, the OCAT approach forms (for the CNF case) a clause that accepts all
the training positive examples while it rejects as many training negative examples as possible.
In the second iteration it constructs a clause that accepts all the positive examples and rejects
as many of the remaining negative examples as possible. This process continues until a set of
clauses is formed that accepts all the positive examples and collectively rejects all the negative
examples (for the CNF case). In [20], a simple data transformation procedure is described that
can be used with OCAT (or any algorithm that infers a Boolean function from examples) to
infer a Boolean function in DNF or CNF. This is achieved by Krst complementing the vectors
and then by treating the positive examples as negative and the negative examples as positive.
When this is applied on an algorithm that produces a CNF (DNF) function, then the result will
be a DNF (CNF) function and vice-versa.

The main step in the OCAT approach is Step 2 in Fig. 2. In [2], the inference of a single
clause is achieved by using a rather e<ective and e>cient branch-and-bound (B&B) approach.
In the computational study reported in [2], the resulting Boolean functions were of minimal or
near minimal size as far as the number of clauses is concerned. However, the B&B approach can
be CPU time consuming when the size of the training sets is large. Thus, in [21], a polynomial
time heuristic is proposed to deal with the task in Step 2.

This heuristic is described in Fig. 3. The proposed incremental OCAT (to be called IOCAT)
approach is combined with this heuristic. Its structure is based on the deKnition of two evaluative
functions termed POS(ai) and NEG(ai). The function POS(ai) returns the number of positive
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Input:   Training examples in two groups E+ and E_ .  
Output:  A Boolean function  (in CNF) that satisfies the requirements of the training 
                          examples.   
 
Begin 
   i = 0; C =  ∅ ;  /* initializations */      
  do while (E+ ≠  ∅ )     
      Step 1:   Let  i   i + 1;  /*  i  indicates the i-th iteration */  
      Step 2:   Find a clause  ci  which accepts all members of  E+  while it rejects as many
                          members of  E_  as possible;  
      Step 3:   Let  E_ (ci) be the set of the members of E_ which are rejected by ci;   
      Step 4:   Let  C     C ∪  ci;  
      Step 5:   Let  E_    E_ - E_(ci);            
  repeat; 

←

←
←

Fig. 2. The one clause at a time (OCAT) approach (for the CNF case).

Input:   Training examples in two groups E+ and E_ .  
Output:  A Boolean function  (in CNF) that satisfies the requirements of the training 
                   examples. 
   
q = 0;    /* counter initialization */ 
do while (E_ ≠  ∅ ) 
 q  ←   q + 1; 
 Let  E+  be the original set of positive examples; 
 Kq = ∅ ;   /* initializing a clause */ 
 do while (E+≠  ∅ ) 

 Step 1:    Calculate the POS(aj) / NEG(aj) ratio for all atoms aj  ; 
 Step 2:     Choose the aj according to the max[POS(aj) / NEG(aj)] value;  

   Step 3:     Let Kq   ←  Kq ∪   aj  ;  
 Step 4:     Let  E+(aj) be the set of members of E+ which are accepted  

      when aj is included in the current clause Kq ; 
    Step 5:    Let E+  ←   E+ - E+(aj) ; 
 repeat; 
 Let   E_(Kq) be the set of members of E_ which are rejected by Kq ; 
 Let   E_  ←   E_  - E_ (Kq) ; 
repeat; 

Fig. 3. A fast heuristic for Step 2 of the OCAT approach (for the CNF case).

examples accepted in the current clause (in CNF) under construction if the atom ai (where ai is
either Ai or QAi) is included in the clause under construction. A similar meaning applies for the
NEG(ai) function in regard with the negative examples. If NEG(ai)=0 in Step 2, then the atom
aj is given a very high priority for inclusion in the clause being formed [21]. That heuristic was
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also combined with some randomization techniques and also with the previous B&B approach
in order to deliver functions under di<erent input sizes. Now the inferred functions are not of
minimal or near minimal size, but their sizes are still small.

The algorithms for Step 2 in Fig. 2 (i.e., the B&B approach or the heuristic depicted in
Fig. 3) infer a Boolean function from training examples even if a collection of training ex-
amples is updated by adding just one new example. This is known as NILE. This may be
computationally expensive when one already has a Boolean function and then he=she needs to
update it because a newly introduced single training example is misclassiKed by the current
function. Extensive surveys of NILE learning can be found, for instance, in [22–29].

On the other hand, ILE may be an attractive strategy to modify an existing function when
it misclassiKes a newly introduced training example. Among the Krst contributions in ILE is
the concept learning system (CLS) [22]. In CLS prior observations were selected at random
and were replaced with new examples in order to reconstruct the new knowledge. The CLS
approach was soon abandoned because the learning rates were slow. In [23], the AQ system [30]
was adapted to learn incrementally by limiting the number of examples needed to reconstruct
the faulty knowledge, which was expressed in the DNF form. The AQ system repaired this
knowledge by using a Euclidean distance measure to identify new examples that were good
concept representatives. Its goal was to reconstruct only those portions of the knowledge (i.e.,
a set of clauses that describe an individual concept) that caused the misclassiKcation.

Later, Reine and Michalski [25] extended the AQ system into the GEM system that repairs
only individual terms of a DNF expression. In the GEM system, only the faulty conjunctive
terms were submitted to a generalization procedure along with the observations it currently
covered and those that triggered the classiKcation inconsistency. The results of this system sug-
gested that (i) ILE methods may yield more complex concept descriptions than NILE methods,
and (ii) knowledge updates might be less expensive using ILE than with the NILE methods.

Next, suppose that two sets of training examples have, somehow, become available. One set
will be called the “positive” class and the other the “negative” class (these names are assigned
arbitrarily). Then a function inference algorithm is applied on these training examples and a
single Boolean function is learned. This Boolean function is derived in an attempt to infer
the “hidden” system that classiKed these training examples. Since this function accepts all the
positive examples while it rejects all the negative ones, we will call the function “the set with
the positive rules” or just the “positive rules” (since a Boolean function in CNF or DNF can
also be viewed as a set of rules). For convenience, this function will be denoted as R+. Next,
one can use the same Boolean function inference algorithm to construct the “negative rules” (to
be denoted as R−) by simply switching the roles of the training examples. That is, by treating
the initial negative examples as the positive examples and vice-versa. Obviously, the negative
rules (negative Boolean function) will reject all the positive examples while they will accept
all the negative ones.

These two functions (i.e., the positive and the negative rules denoted as R+ and R−, re-
spectively) can play a pivotal role in an incremental learning setting. This was Krst applied on
the guided learning strategy described by Triantaphyllou and Soyster in [19]. In that strategy,
the OCAT approach was used to infer the previous two Boolean functions in an incremen-
tal learning environment. That is, it was assumed that the analyst had control on determining
the composition of the next example to be sent for classiKcation to the oracle and then to be
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included in the training examples. In the strategy described by Triantaphyllou and Soyster in
[19], the next example selected was one that was classiKed (before sending it to the oracle for
the actual class classiKcation) identically by both functions. In this way, it was secured that af-
ter the actual class membership was determined, then one of the two functions will be modiKed
and hopefully its classiKcation accuracy would be improved. The empirical results reported in
[19] strongly suggested that this guided learning strategy is superior to just randomly selecting
the next example for inclusion in the two training sets.

The above issues are best formalized as follows. Suppose that the oracle classiKes the new
example. If the oracle classiKes this new example as a positive one, then it will be denoted as
e+. Otherwise (i.e., if it is classiKed as a negative one), it will be denoted as e−. When the
new example is fed to the two Boolean functions R+ and R−, then one and only one of the
following three scenarios is possible.

1. It has been classiKed correctly if and only if:
(a) R+(e+)=1 and R−(e+)=0; or:
(b) R+(e−)=0 and R−(e−)=1.

2. It has been classiKed incorrectly if and only if:
(c) R+(e+)=0 and R−(e+)=1; or:
(d) R+(e−)=1 and R−(e−)=0.

3. The new example triggers an undecided situation if and only if:
(e) R+(e+)=1 and R−(e+)=1; or:
(f) R+(e−)=1 and R−(e−)=1; or:
(g) R+(e+)=0 and R−(e+)=0; or:
(h) R+(e−)=0 and R−(e−)=0.

Therefore, in the proposed ILE approach, the new examples will be determined such that
scenario 3, above, occurs as frequently as possible. Such an example can be determined by
solving a SAT (clause satisKability) problem or by simply randomly sampling a large enough
sample of unclassiKed examples until an example that is classiKed identically by both Boolean
functions is detected [19].

4. The proposed incremental algorithm

The proposed incremental learning algorithm has some similarity to the GEM system [25].
They are similar in the sense that any disagreement between the inferred system and the training
examples is not allowed and only the disjunctive terms triggering the wrong classiKcation are
repaired in the proposed algorithm. Nonetheless, they di<er in the way new training examples
are selected and used to reconstruct the current system. For instance, in the GEM system new
information is submitted to a generalization process only when a set of misclassiKed examples
has been collected. In contrast, in this paper this knowledge (i.e., the group of the two Boolean
functions) is repaired by considering examples identiKed as “undecided ”. This guarantees either
one of the positive or the negative Boolean function to be altered. Furthermore, the approach
presented here di<ers from the GEM system because we always maintain two Boolean functions
as described earlier.
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In the GEM system, the methodology for repairing only the portion(s) of the function fol-
lowed the procedures described in [23]. In this paper, however, this repair was divided into
the following two mutually exclusive sub-problems that capture all possibilities: (i) Repair of
a Boolean function that incorrectly rejects a positive example, and (ii) repair of a Boolean
function that incorrectly accepts a negative example. For both sub-problems, we assume that
the inferred Boolean function is in DNF. The CNF case can be developed in a similar manner.
However, it seems that for this kind of problems the DNF case is more intuitive to follow.

4.1. Repairing a Boolean function that incorrectly rejects a positive example

From the deKnition of the DNF form given as expression (1) in Section 3, a Boolean function
F accepts (i.e., it evaluates to true) an example if and only if at least one of its disjunctive
clauses (terms) accepts it. Alternatively, a Boolean function rejects an example if and only
if all its clauses (terms) reject it. Next, suppose that the current system, denoted as Boolean
function F, incorrectly rejects the positive example e+. Then, the following relation (3) should
be obviously satisKed:

F(e+)= c1 ∨ c2 ∨ c3 ∨ · · · ∨ cn=0; (3)

where ci (for i=1; 2; 3; : : : ; n) is the ith clause (term) of F.
The previous discussion naturally raises the question of how to decide the clause, among the

n clauses ci (for i=1; 2; 3; : : : ; n) in relationship (3), one should alter such that the new positive
example will be accepted by the modiKed Boolean function. The algorithm depicted in Fig. 4
addresses this problem.

This algorithm indicates (in Step 3) that two extreme strategies can be implemented. The Krst
strategy is to select for change (repair) the clause that is the most generalizing clause (denoted
as the MGC clause), while the second strategy is to select for repair the least generalizing clause
(denoted as the LGC clause) in Fig. 4. These two strategies represent two extreme scenarios.
They rank the clauses according to their generalization capability and then select the two extreme
cases. In this way, it is hoped that one can study all possibilities. The generalizability of a clause
is assessed in term of two parameters. One is the number of positive examples accepted by
that clause. This is represented as |E+(ci)| in Fig. 4. The higher this number is, the higher the
generalizability of the clauses is assumed to be. The second parameter is the size of the clause
denoted as A(ci). As size, we consider its length or the number of the atoms that deKne it. The
fewer the atoms, the more general the clause is (for the DNF case). For these reasons, the most
generalizing clause (MGC) in Fig. 4 is deKned as the clause with the maximum |E+(ci)|=A(ci)
value. Similarly, the least generalizing clause (LGC) is the one that corresponds to the minimum
|E+(ci)|=A(ci) value.

It should be stated at this point that if one ranks the clauses of Boolean function according to
their generalizability power, then one may expect that the clause that ranks the highest (i.e., the
MGC clause), has also the most potential to e<ect the behavior of the Boolean function when
that clause is altered. After all, by deKnition a LGC clause plays a smaller role. Therefore,
it is reasonable to expect that by focusing the attention on the MGC will lead to better re-
sults. However, this is not possible to assess quantitatively without some kind of computational
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Input:  
The training sets E+ and E_.  A Boolean function F  in DNF that accepts all the positive examples
while it rejects all negative ones.  This function is comprised of n clauses (in DNF) denoted as ci  
(for i = 1, 2, 3, ..., n).  A new positive example that is incorrectly rejected by F. 
 
Output: A modified Boolean function F  / (in DNF) that accepts all positive examples  

in E+ ∪  {e+ } and it rejects all negative examples in E_. 
 
begin 

Step 1: Let E+(ci) (for i = 1, 2, 3, ..., n) be the set of the members of E+ which are  
               accepted by clause ci ; 
Step 2: Let A(ci ) be the number of atoms in ci; 
Step 3: Select a clause ck (for some k;  1 < k < n) according to a clause selection  
 criterion (i.e., MGC or LGC, as described below);  
Step 4: Let F    F

F

 - ck; 
Step 5: Let E+(ck)     E+(ck) ∪

∪

 {e+}; 
Step 6: Let  f   be the function (in DNF) that solves the sub-problem  OCAT(E+(ck), E

_); 
Step 7: Set  F  /         f ; 

end;  
 

Clause Selection Criteria:  
 

1. Most Generalizing Clause (MGC): A clause ci   
              

 E+(ci )  |  / A(ci)} value.  
2. Least Generalizing Clause (LGC):  A  clause ci

 with the max
 with the min

 Where |x| indicates the cardinality of set x.
  

   

←
←

←

{
{
|

 E+(ci )  |  / A(ci)} value.  |

_ _

Fig. 4. Proposed strategy for repairing a Boolean function which incorrectly rejects a positive example (for the
DNF case).

experiments. The computational results reported in the next section indicate that this hypothesis
seems to be indeed the case.

In the same Kgure, the notation OCAT (E+(ck); E−) denotes a Boolean function inference
problem that has as positive examples the members of the set E+(ck) and as negative examples
the members of the set E−. This notation is used in the remaining of this paper. The e<ectiveness
of these two selection criteria is further studied empirically later in terms of the size and the
accuracy of the produced Boolean functions and also the required CPU times.

A key step for achieving an e<ective and e>cient incremental learning solution is the size of
the sub-problem OCAT(E+(ck); E−) in Step 6 of the algorithm depicted in Fig. 4. This is a key
concept because if it is assumed that |E+(ck)|�|E+| (where |x| is the size of the set x), then
it is reasonable to assume that the CPU time for solving the sub-problem OCAT(E+(ck); E−)
would be signiKcantly shorter than the time required to solve the complete (and much bigger)
problem OCAT(E+ ∪ {e+}; E−). The branch-and-bound (B&B) approach that is used to solve
such a problem in [2] deals with an NP-complete problem. The faster heuristic described in
[21] is of polynomial time complexity. At this point, it is also important to notice that by using
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Input: The negative example e_  that is incorrectly accepted by  
        the function F  = c1  c2  ...  cn  (in DNF). 
 The two training sets E+ and E_ . 
Output:  A Boolean function F //  that accepts all examples in E+  and rejects all    
  examples in E_  ∪  e_ . 
 
begin 
 Step 1:   Let  C  be the set of clauses ci (for i = 1, 2, 3, ..., n) that incorrectly accept e_ ; 
 Step 2:   Let  F ← F   - C ; 
 Step 3:   Let  E+(C) be set of the members of E+ which are accepted by C ; 
 Step 4:   Let  f  be the Boolean function in DNF form that solves the 
          sub-problem   OCAT(E+(C),   E_  ∪ 

∪ 
 {e_ } ) ; 

 Step 5:   Let F//      f  ; 
end; 

           F←               

< < <

Fig. 5. Repair of a Boolean function that erroneously accepts a negative example (for the DNF case).

either one of the two clause selection criteria, it may happen that one or more clauses might be
added to the function F increasing this way its size. According to [23], this situation can be
anticipated because the utilization of an ILE approach often results in more complex systems.

4.2. Repair of a Boolean function that incorrectly accepts a negative example

The algorithm in Fig. 5 addresses the second scenario for repairing a Boolean function F
(in DNF). This scenario occurs when the Boolean function incorrectly accepts as positive a
new example that has been classiKed by the oracle as negative (recall that this example is now
denoted as e−). In this case the current function F erroneously satisKes the condition:

F(e−)= c1 ∨ c2 ∨ c3 ∨ · · · ∨ cn=1: (4)

The function in (4) shows that at least one of the n clauses incorrectly accepts the negative
example e−. The main problem in this scenario is how to select the clause(s) to repair so that
the updated function, denoted as F||, will reject the negative example e− while maintaining the
correctness for the other examples (positive and negative).

The algorithm in Fig. 5 solves the problem implied in relation (4) by Krst identifying the
set of clauses C that incorrectly accept the negative example e−, and then by forming a subset
of positive examples (denoted as E+(C)), which is comprised of the examples in E+ that are
accepted by the clauses in C. The set of negative examples is formed by E− ∪ {e−}. As with
the sub-problem in the Krst scenario, the potential of the algorithm in Fig. 5 is based on solving
the smaller size Boolean function inference problem OCAT(E+(C); E− ∪ {e−}) in Step 4. This
is an important issue because if |E+(C)|�|E+| (where |x| is the size of the set x), then the
CPU time requirement for solving this sub-problem is most likely signiKcantly shorter than that
for solving the entire Boolean function inference problem OCAT(E+; E− ∪ {e−}).
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4.3. Computational complexity of the algorithms for the ILE approach

An inspection of the algorithms in Figs. 4 and 5 indicates that in the worst case, the entire
problems OCAT(E+∪{e+}; E−) and OCAT(E+; E−∪{e−}) will have to be executed. It should
be emphasized here that the Boolean function inference problems described so far can be solved
with any function construction method and not only the OCAT approach. In the experiments
described in the next section these problems were solved by using the fast heuristic of polyno-
mial time described in [21]. Another alternative would be to use the B&B approach described
in [2]. Other methods could be used as well. The heuristic described in [21] is of O(mn2) time
complexity (where m is the total number of examples and n is the number of binary attributes).
On the other hand, the B&B approach is an NP-complete problem. Thus, the proposed incre-
mental learning approach takes the time complexity of the learning algorithm used to solve the
small function inference sub-problems.

The next section describes an extensive empirical study of the relative e<ectiveness of the
ILE and NILE approaches when they are combined with the fast heuristic described in [21]
for inferring a Boolean function. This empirical study examines the relative performance of the
two clause-selection criteria described in Fig. 4 (i.e., the MGC and LGM criteria). As mea-
surements of performance we used the CPU time, accuracy of derived systems (i.e., how ac-
curately they classiKed the remaining available examples) and the size of the derived systems.
The various approaches were analyzed in terms of the sign test [31] in order to determine
any di<erence in the performance of pairs of algorithms. Please note that the sign test is a
non-parametric test that compares paired observations of two populations. The number of posi-
tive and negative signs of the comparisons is used to make inference on the two populations of
observations.

5. Experimental data

Table 1 shows the numbers of documents from the TIPSTER collection that were used in
the experimentation. The TIPSTER collection is comprised of numerous documents extracted
from various sources. As it was mentioned in Section 1, this collection of documents is of-
ten used to evaluate the performance of information retrieval (IR) and machine learning sys-
tems. These documents were randomly extracted from the four classes of the collection. The
numbers in each class were determined from the RAM limitations of the PC we used in the
experiments. The computer used was a Pentium II PC with a 400 MHz CPU running the Win-
dows 95 OS. The computer programs for this study were written in Turbo Pascal 1.5 for
Windows [32].

In order to simulate two mutually exclusive classes, the following three class-pairs (DOE
vs. ZIPFF), (AP vs. DOE), and (WSJ vs. ZIPFF) were formed. These three class-pairs were
randomly selected from all possible pair combinations. Furthermore, to comply with the notation
presented in earlier sections, the Krst class of each class-pair was denoted as E+, while the
second class was denoted as E− (these class designations were set randomly). The conversion
of these documents into binary vectors followed the methodology discussed in [5,11,12,33–
35]. It should be mentioned here that similar examples, also derived from large collections
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Table 1
Number of documents randomly extracted from each classa

Class DOE AP WSJ ZIPFF Total

Number of documents 1407 336 624 530 2897

aDOE, AP, and WSJ stand for Department of Energy, Associated Press, and the Wall Street Journal, respectively; ZIPFF is a
collection of technical documents of various topics.

of text documents, were used in a study reported in [36]. In that study the OCAT approach
was compared with the vector space model (VSM) [5] that is the traditional method used for
document classiKcation. It is noticeable that in that study, the OCAT approach signiKcantly
outperformed the VSM method.

6. Analysis of the computational results

The computational experiments were conducted as follows. First, a collection of examples
was formed under one of the target class-pairs as deKned in the previous section (Table 1).
The test examples were derived by analyzing the text documents in the previous TIPSTER
categories. The size of each example was detrimental by reaching the limits depicted in Table
1 for each class-pair. Next, an example was retrieved from the class-pair collection and was
presented to the learning algorithm, along with its actual class membership. We used three
learning algorithms as follows. The Krst one was the OCAT approach with the polynomial time
complexity heuristic described in Fig. 3. The second algorithm is the ILE approach coupled with
the MGC selection criterion and also the heuristic described in Fig. 3. The third ILE algorithm
was similar to the second one, but now the LGC selection criterion is used instead of the MGC
one.

The results are depicted in Figs. 6–14. In these Kgures the thickest lines correspond to
results under the plain OCAT approach, the thick lines to results under the IOCAT when it is
combined with the MGC criterion, while the thin lines to results under the IOCAT when it is
combined with the LGC criterion. In the horizontal axes the term “documents” is used instead
of “examples”, since examples correspond to documents from the TIPSTER collection.

The results are grouped into three sub-sections with three Kgures in each sub-section. We
present the plots for each class pair individually, in order to maintain some subtle di<erences
that were observed in these results. The Krst sub-section deals with the accuracy of the derived
system (i.e., the combinations of the “positive” and “negative” Boolean functions). The second
sub-section deals with the number of clauses in the derived Boolean functions, while the third
sub-section deals with the CPU time required by each approach.

6.1. Results on the classi<cation accuracy

In these experiments the di<erent learning processes started with the same initial random
collection of 50 examples and then proceeded by incrementing the training examples one at
a time according to the corresponding methods. The accuracy was deKned as the number of
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Fig. 6. Accuracy results for the class-pair (DOE vs. ZIPFF).

Fig. 7. Accuracy results for the class-pair (AP vs. DOE).
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Fig. 8. Accuracy results for the class-pair (WSJ vs. ZIPFF).

Fig. 9. Number of clauses for the class-pair (DOE vs. ZIPFF).
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Fig. 10. Number of clauses for the class-pair (AP vs. DOE).

Fig. 11. Number of clauses for the class-pair (WSJ vs. ZIPFF).
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Fig. 12. Required CPU time for the class-pair (DOE vs. ZIPFF).

Fig. 13. Required CPU time for the class-pair (AP vs. DOE).
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Fig. 14. Required CPU time for the class-Pair (WSJ vs. ZIPFF).

Table 2
Number of training documents to construct a rule that classiKed all 510 documentsa

Class-pair Mean

DOE vs. ZIPFF AP vs. DOE WSJ vs. ZIPFF

OCAT 335 311 363 336
IOCAT(MGC) 244 311 288 281
IOCAT(LGC) 277 319 303 299

aMGC and LGC stand for the most and the least generalizing clause selection criterion, respectively.

correct classiKcations on the remaining unseen examples from the population of the examples
in each class-pair (as shown in Table 1). Table 2 summarizes the number of training examples
these learning algorithms needed to extract rules (Boolean functions) that could classify all the
available examples correctly for each one of the three class-pairs from the TIPSTER collection.

The data in this table suggest that the rules constructed by the two IOCAT approaches used
signiKcantly fewer examples than the plain OCAT approach before the extracted Boolean func-
tions could correctly classify the entire population (i.e., the training plus the unseen) of exam-
ples. Furthermore, an inspection of Figs. 6–8, indicates that the “speed” of correct classiKcations
for IOCAT (thick and thin lines) was faster (steeper) than that for the plain OCAT approach
(thickest line which is below the previous two lines). Next, in Table 3, the 0 (zero) positive
signs from the comparison of the di<erence OCAT–IOCAT(MGC) for class-pair DOE vs. ZIPF
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Table 3
Statistical comparison of the classiKcation accuracy between OCAT and IOCATa

Number of positive signsb

DOE vs. ZIPFF AP vs. DOE WSJ vs. ZIPFF

OCAT–IOCAT(MGC) 0c 1c 5c

OCAT–IOCAT(LGC) 1c 2c 0c

IOCAT(MGC)–IOCAT(LGC) 92c 210d 163d

aMGC and LGC stand for the most and least generalizing clause selection criterion, respectively.
bAll p-values were approximated using N (np; np(1− p)1=2).
cDenotes a p-value close to 0. Instances n=250. These di<erent values of n were needed because all the di<erences yielding
zero were discarded [31]. For sign test p=0:5.
dDenotes a p-value close to 1. Instances n was, 237, 240, and 242. These di<erent values of n were needed because all the
di<erences yielding zero were discarded [31]. For sign test p=0:5.

Table 4
Number of clauses in the rules at the end of an experimenta

Class-pair Mean

DOE vs. ZIPFF AP vs. DOE WSJ vs. ZIPFF

OCAT 23 10 25 19
IOCAT(MGC) 47 36 36 40
IOCAT(LGC) 37 60 74 57

aMGC and LGC stand for most and least generalizing clause selection criterion, respectively.

indicates that the ICAT(MGC) approach was always more accurate than the plain OCAT ap-
proach in all the paired observations. In contrast, the datum for IOCAT(MGC)–IOCAT(LGC)
for class-pair AP vs. DOE indicates that 210 positive signs were obtained. In this case, the
high number of positive signs shows that the most generalizing criterion (MGC) was a better
performer than the least generalizing criterion (LGC). As it was stated in Section 4.1 this was
anticipated since the MGC clause has, by deKnition, more potential to make an impact in the
way the target Boolean function classiKes examples.

The small p-value of the comparison between the two algorithms indicates that the two
versions of IOCAT were much better performers than the plain OCAT approach. Second, the
large p-values of the comparison of the two versions of IOCAT suggest that the two clause
selection criteria performed in a similar manner.

6.2. Results on the number of clauses

The corresponding results are depicted in Figs. 9–11. These results represent the total num-
ber of clauses of the “positive” and “negative” Boolean functions. As before, some numerical
highlights are summarized in Tables 4 and 5. From these results it is evident that under the
plain OCAT approach the two Boolean functions had much less clauses (less than 50%) than
the functions under the two ILE approaches. The same results also indicate that the IOCAT
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Table 5
Statistical comparison on the number of clauses constructed by OCAT and IOCATa

Number of positive signsb

DOE vs. ZIPFF AP vs. DOE WSJ vs. ZIPFF

OCAT–IOCAT(MGC) 0 1 0
OCAT–IOCAT(LGC) 1 2 0
IOCAT(MGC)–IOCAT(LGC) 44c 0 0

aMGC and LGC stand for the most and least generalizing clause selection criterion, respectively.
bAll p-values were approximated using N (np; np(1− p)1=2).
cDenotes a p-value close to 0. For all instances, n=243 since all di<erences yielding zero were discarded [31]. The p-value for
the sign test was equal to 0.50.

Table 6
CPU Time (in s) required to complete an experimenta

Class-pair Mean

DOE vs. ZIPFF AP vs. DOE WSJ vs. ZIPFF

OCAT 468.532 514.584 729.430 570.848
IOCAT(MGC) 150.896 156.374 142.966 150.088
IOCAT(LGC) 178.885 168.371 215.932 187.729

aMGC and LGC stand for most and least generalizing clause selection criterion, respectively.

approach with the MGC selection criterion did better than the IOCAT approach when it was
combined with the LGC selection criterion. As with the previous results, this can be attributed
to the higher potential of the MGC clause.

An interesting phenomenon in the previous results is the occasional drop on the number
of clauses under the two ILE approaches. This occurred when the ILE approach (i.e., either
the IOCAT(MGC) or the IOCAT(LGC) approach) had to solve the entire function inference
problem. This problem was denoted as sub-problem OCAT(E+; E− ∪ {e−}) in Section 2. This
occasional reconstruction step of the entire function alleviated the problem of generating large
numbers of clauses.

6.3. Results on the CPU times

These results are depicted in Figs. 12–14, and are summarized in Tables 6 and 7. As it was
anticipated, the ILE approaches (i.e., the IOCAT(MGC) and the IOCAT(LGC) approaches)
required signiKcantly less CPU time than the plain OCAT approach. This is in agreement with
the discussions in Section 2 and also with similar references from the literature. For instance,
[23,25] have indicated that incremental approaches always required shorter CPU times than
non-incremental approaches. When the two versions of the IOCAT approach are compared,
then the small p-values shown in Table 7 reveal that the MGC selection criterion always
required shorter CPU times than the LGC one. This is most likely caused because the MGC
can impact the behavior of the target Boolean function more signiKcantly than the LGC one.
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Table 7
Statistical comparison on the CPU time to reconstruct=modify the Boolean functionsa

Number of positive signsb

DOE vs. ZIPFF AP vs. DOE WSJ vs. ZIPFF

OCAT–IOCAT(MGC) 269 262 257
OCAT–IOCAT(LGC) 273 272 274
IOCAT(MGC)–IOCAT(LGC) 29c 10c 26c

aMGC and LGC stand for the most and least generalizing clause selection criterion, respectively.
bAll p-values were approximated using N (np; np(1− p)1=2).
cDenotes a p-value close to 0. For all instances, n=243, 217, and 247 since all di<erences yielding zero were discarded [31].
The p-value for the sign test was equal to 0.50.

As with the results regarding the total number of the derived clauses, here too the plots have
some spikes. These spikes correspond to occasions when an inference problem had to be solved
on its entirety. This occurred when the set E+(C) was identical to the E+ set in Steps 3 and 4
in Fig. 5. A similar situation also occurred in the experiments reported in [29] when a decision
tree had to be rebuilt from the beginning.

7. Summary

This paper proposed an approach for inferring a Boolean function in an incremental learning
environment. In such an environment, it was assumed that some training examples are available
and are divided into two mutually exclusive classes. Also a “positive” and a “negative” Boolean
function are available and they satisfy the requirements of the initial training data. As new
examples become available, either one of the two Boolean functions may need to be modiKed
(if it misclassiKes new observations) to satisfy the requirements of the existing and also the new
training data. The algorithms proposed in this paper modify a Boolean function in a localized
manner, unless it is determined that the function inference problem needs to be solved on its
entirety.

The proposed function modiKcation procedures were combined with an existing algorithm for
inferring a Boolean function from two classes of examples. That algorithm is the OCAT (one
clause at a time) approach [1,2]. However, any Boolean function algorithm can be used with the
proposed incremental learning approaches. An extensive empirical study was also undertaken to
better assess the numerical properties of the new approaches and how they compare with the
non-incremental OCAT approach. As data for the empirical study, we used binary examples
that were deKned by analyzing text documents from the TIPSTER collection.

The results of this investigation suggest that the proposed approaches are both e<ective and
e>cient. In these tests, the new approaches returned Boolean functions that were more accurate
than the corresponding functions returned by the non-incremental OCAT approach. Furthermore,
they did so in a signiKcantly small fraction of the CPU time required by the non-incremental
approach. However, as it was anticipated, the Boolean functions returned by the incremental ap-
proaches had more (slightly more than twice) clauses than under the non-incremental approach.
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In summary, the results in this paper strongly suggest that if a learning task involves fre-
quent incremental processing of large collections of examples (deKned on a large set of binary
attributes), then the proposed incremental learning algorithms are an e<ective and e>cient al-
ternative to more time consuming non-incremental approaches. It should also be stated here that
these results can be extended to problems with non-binary data, since such problems can be
transformed into problems deKned on binary variables [37].
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