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In learning from examples, the main goal is to use a collection
of positive examples and a collection of negative examples to
derive a Boolean expression which satisfies the requirements
imposed by the examples. In order to represent such a Boolean
expression, the conjunctive normal form (CNF) and the disjunc-
tive normal form (DNF) have been proposed. This paper makes
two contributions. First it shows how to use any DNF algorithm
to derive a CNF formula (or vice-versa). Furthermore, it demon-
strates how to make efficient use of DNF algorithms which
cannot handle a large number of positive (or negative) exam-
ples by using them as negative (or positive) examples and
deriving CNF (or vice-versa). Therefore, the findings of this
paper can be used to solve efficiently large scale learning
problems. Two learning algorithms are used to illustrate the
above issues.

I.earning from examples has attracted the interest of many
researchers in recent years. This is mainly due to the belief
that any intelligent system should be able to improve its
performance over time. In the typical learning problem of
this type, both positive and negative examples are available
and the main goal is to determine a Boolean expression that
accepts all the positive examples, while it rejects all the
negative examples. This kind of learning has been exam-
ined intensively in the last years (see, for instance, [2, 6,
8-13)). Typically the Boolean expression found by the sys-
tem is either in the conjunctive normal form (CNF) or in
the disjunctive normal form (DNF) (see, for instance, [1,
3-6, 11, 12].

The findings of this paper reveal a useful relationship
between the CNF and DNF systems derivable from the
same data. This relationship can benefit approaches which
attempt to solve large problems and use either the CNF or
the DNF form in representing a Boolean expression. Sup-
pose that a learning algorithm depends heavily on the
number of positive (or negative) examples. If the number of
positive (or negative) examples is larger than the number
of negative (or positive) examples, then it is more efficient
to solve a slightly different problem. That is, apply the
same algorithm as before, but instead of using the original
examples now use their complements. However, now the
complements of the original positive (or negative) exam-
ples should be treated as the new negative (or positive)
examples.

If the original algorithm derives a CNF (or DNF) expres-
sion, then in this way it will derive a DNF (or CNF)
expression which will satisfy the constraints of the original
data. The previous situation is similar to the strategy of
solving the dual of an LP problem. Recall that if the primal
LP problem has many constraints and few variables, then
the Simplex approach is faster for the dual problem (which
will have fewer constraints and many variables).

Let v be an example (either positive or negative). Then, T
is defined as the complement of example v. For instance, if
v =(1,0,0), then T = (0,1,1). The following definition in-
troduces the concept of the complement of a set of exam-
ples. Let E be a collection of examples (either positive or
negative). Then, E is defined as the complement of the
collection E.

1. Generating Systems in CNF and DNF Form
Define the general form of a CNF and DNF system as (1)
and (2), respectively.
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where 4, is either A; or A;. Then the following theorem
states an important property which exists when CNF and
DNF systems are inferred from collections of positive and
negative examples. The proof of this theorem is based on
the observation that an example v is accepted (rejected) by
a conjunction A, ,4; if and only if the example 7 is
rejected (accepted) by the disjunction V ;. ,a;.

Theorem 1. Let E* and E™ be the sets of positive and negative
examples, respectively. A CNF system given as (1) satisfies the
constraints of the E* and E~ sets if and only if the DNF system
given as (2) satisfies the constraints of E~ (considered as the
positive examples) and E™ (considered as the negative examples).

This theorem will be applied to two algorithms which
use learning from examples. In [11] an algorithm which
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infers CNF systems from positive and negative examples is
developed. In that approach, CNF clauses are generated in
a way which attempts to minimize the number of CNF
clauses that constitute the recommended CNF system. The
strategy followed there is called the One Clause At a Time
(OCAT) approach. A new and enhanced version of the
OCAT approach with some extensions is given in [12]. The
OCAT approach is sequential. In the first iteration it deter-
mines a single clause in CNF form which accepts all the
positive examples in the E* set while it rejects as many
negative examples in E” as possible. In the second itera-
tion it performs the same task using the original E* set but
the revised E~ set has only those negative examples which
have not been rejected by any clause so far. The iterations
continue until a set of clauses is constructed which reject all
the negative examples in the original E~ set.

The second algorithm formulates the clause inference
problem as a clause satisfiability (SAT) problem!s! In
turn, this satisfiability problem is solved by using an inte-
rior point method proposed by Karmakar, et al”! Let M,
and M, be the numbers of examples in the E* and E~
sets, respectively, and N the number of atoms. In [6] it is
shown that given two collections of positive and negative
examples, then a DNF system can be inferred to satisfy the
requirements of these examples. This approach pre-as-
sumes the value of k; the number of conjunctions in the
DNF system. In general, this SAT problem has k(N(M, +
1) + M,) + M, dauses, and k@N(1 + M) + N M, + M,)
Boolean variables. Besides the fact that the first algorithm
infers CNF systems, while the second infers DNF systems,
the two approaches have another major difference. The first
approach attempts to minimize the number of disjunctions
in the CNF system, while the second approach assumes a
given number, say k, of conjunctions in the DNF system
and solves a SAT problem. If this SAT problem is infeasi-
ble, the conclusion is that there is no DNF system which
has k or less conjunctions and satisfies the requirements
imposed by the examples.

2. An Example of Deriving CNF and DNF Systems
Suppose that the following are two collections of positive
and negative examples:

1 0 1
E*=|1 0 0| and E~= [(1) (1) H
0 1 1

When the SAT approach is used on the previous data, the
resulting satisfiability problem has 31 clauses and 66
Boolean variables (it is assumed that k = 2). Since there are
more positive examples than negative ones, the comple-
mented problem is smaller. It has 58 variables and 26
clauses. The complemented sets are as follows:

0 1 0
E= [é (1) 8] and E*=|0 1 1
1 0 0

When the SAT approach is applied on the sets E~ and
E* (treating the first set as the positive examples and the
second set as the negative examples), then the following
DNF system is derived: (A; A A,) V (A; A A,). Therefore,
according to Theorem 1, the following CNF system satisfies
the requirements of the original E™ and E~ data: (A; V
A A(A, VA,

Similarly, when the OCAT approach is applied on the
previous E~ and E* data, then the following CNF system
is derived: (A, V A,) A (A; V A,). According to Theorem
1, the following DNF system satisfies the requirements of
the original E* and E~ data: (A; A A,) V (A] A Ay).

Table I presents some computational results when the
OCAT approach is used on random test problems with
N = 30 atoms. In this table, | E?| indicates the total number
of examples and |E™| represents the number of positive
examples. To understand the table, consider the third line
of the first column. This represents a problem with 5
positive examples and 95 negative examples which re-
quired 2 CPU seconds to derive a set of CNF clauses
(which accepts all 5 positive examples and rejects the 95

TableI. Some Computational Results When N = 30 and the OCAT Approach is Used
|E°| [E*| Time? [E| |E*| Time |E?| [E*| Time [E°| |E*| Time
100 1 1 200 10 6 400 5 3 500 35 194
100 3 1 200 11 38 400 7 10 600 8 16
100 5 2 200 18 18 400 10 10 600 11 15
100 5 3 200 19 4 400 15 7 600 23 184
100 7 2 200 51 212 400 16 8 600 44 41
100 7 6 300 2 1 400 17 23 600 49 315
100 7 3 300 3 2 400 36 282 600 83 300
100 8 2 300 14 29 400 47 97 700 13 26
100 9 2 300 14 25 400 49 400 700 18 30
100 15 7 300 17 107 500 6 13 700 19 60
200 1 1 300 22 102 500 7 15 700 19 15
200 2 1 300 22 70 500 13 8 700 56 467
200 4 2 300 24 12 500 16 38 800 64 739
200 5 2 300 36 243 500 20 19 900 72 836
200 6 2 300 71 524 500 34 73 1000 47 80

®Time is in CPU seconds on an IBM ES /3090-600S machine.
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negative examples). For a given problem size, e.g. |E%| =
100, note how the CPU time increases as the number of
positive examples, | E*|, increases.

The savings in applying theorem 1 for the SAT approach
can be easily determined. Compute the difference in the
number of clauses and variables when M; and M, are
interchanged. This difference is

(M; — M)[k(N —1) + 1] (clauses)
and the difference in the number of variables is
(M; — My)k(N + 1). (variables)

Hence, when M, > M, (positive examples exceed negative
examples) the number of clauses and the number of vari-
ables can be reduced by a factor proportional to (M; — M,)
and a term of the order of kK X N when the positive and
negative examples are interchanged. For instance, if M; —
M, =50, k=10 and N = 20, the reduction in the number
of clauses and variables needed for the SAT approach
would be 9,550 and 10,500, respectively.

3. Concluding Remarks

In this paper we examined an interesting relationship that
exists between CNF and DNF systems derivable from col-
lections of positive and negative examples. The findings of
this paper can benefit any algorithm which derives CNF or
DNF clauses from positive and negative examples. This
relationship was demonstrated on two learning algorithms.
Furthermore, the findings of this research can lead to in-
creased efficiency for solving large learning problems of the
type described in this paper.
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